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Introduction
Foodborne disease (FBD) are a major cause of morbidity 
and mortality and a very important public health prob-
lem worldwide. According to the estimation of World 
Health Organization (WHO), 600 million people world-
wide fall ill each year due to the consumption of con-
taminated food, resulting in 420,000 deaths and a loss of 
33 million healthy lives [1, 2]. This equates to 550 disabil-
ity-adjusted life years (DALYs). A DALYs can be consid-
ered as a loss of health and life for one year [3, 4], WHO 
FBD Epidemiology Reference Group (FERG) estimated 
that FBD cause a global loss of 33 million DALYs annu-
ally [5], which will have a huge impact on people’s lives 
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Abstract
Background According to the World Health Organization, foodborne disease is a significant public health issue. We 
will choose the best model to predict foodborne disease by comparison, to provide evidence for government policies 
to prevent foodborne illness.

Methods The foodborne disease monthly incidence data from June 2017 to April 2022 were obtained from the 
Chongqing Nan’an District Center for Disease Prevention and Control. Data from June 2017 to June 2021 were used to 
train the model, and the last 10 months of incidence were used for prediction and validation The incidence was fitted 
using the seasonal autoregressive integrated moving average (SARIMA) model, Holt-Winters model and Exponential 
Smoothing (ETS) model. Besides, we used MSE, MAE, RMSE to determine which model fits better.

Results During June 2017 to April 2022, the incidence of foodborne disease showed seasonal changes, the months 
with the highest incidence are June to November. The optimal model of SARIMA is SARIMA (1,0,0) (1,1,0)12. The MSE, 
MAE, RMSE of the Holt-Winters model are 8.78, 2.33 and 2.96 respectively, which less than those of the SARIMA and 
ETS model, and its prediction curve is closer to the true value. The optimal model has good predictive performance.

Conclusion Based on the results, Holt-Winters model produces better prediction accuracy of the model.
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and health. These effects are not limited to low-income 
and high-income countries, such as those in Europe, 
where 41 to 49 DALYs per 100,000 population can be 
attributed to FBD [5]. Food insecurity costs $110 billion 
a year in lost productivity and health care costs among 
low-and middle-income countries [6]. As the world’s 
largest developing country, the situation of FBD in China 
is also not optimistic. An analysis of nearly 2,500 Chinese 
articles on diseases from 1994 to 2005 revealed 1,082 
cases of bacterial FBD, if relying solely on these numbers 
alone would seriously underestimate the number of FBD 
in China, and a national acute gastroenteritis survey esti-
mates that 748 million cases of acute gastroenteritis and 
420  million medical consultations occur in China every 
year [7]. Patients with FBD often lack awareness of the 
severity of the disease, which may cause them to post-
pone medical treatment. This delay can easily cover up 
the outbreak of food safety incidents, which is not con-
ducive to the timely control of disease outbreak. These 
health effects have economic implications for affected 
people, healthcare systems, food producers and distribu-
tors [8]. To address these issues, China has begun using 
systems such as Pulse Net domestically to track and cor-
relate food-borne pathogens.

FBD ranges from mild self-limiting diseases to life-
threatening food poisoning [9], and foodborne pollutants 
are abundant. They include viruses and bacteria, para-
sites, chemicals, toxins and allergens that cause a wide 
variety of diseases [5]. In addition, many foodborne haz-
ards are transmitted by other means: through water, soil 
or air; by direct contact between people, or between peo-
ple and animals. FBD are becoming a greater challenge 
due to new and emerging microorganisms and toxins, 
the growth of antibiotic resistance, and increasing food 
contamination due to new environmental and food pro-
duction methods [10]. The effort of improving food safety 
and reducing the burden of FBD relies on data from FBD 
monitoring and epidemic investigations to help priori-
tize food safety interventions, policies, and practices [11]. 
Recognizing the necessity for global and regional esti-
mates of FBD to guide public health policy, the WHO 
launched the Estimating the Global Burden of FBD Ini-
tiative in 2006. The main aim of the initiative is to get 
policy makers and some people involved in food safety to 
set up appropriate evidence-based regulations, which can 
also improve the capacity of countries to assess their FBD 
burden. In addition, since 2011, China has established a 
web-based FBD monitoring platform, which has gradu-
ally played a role in the early warning of food safety emer-
gencies, food safety emergencies, and research on the 
burden brought by FBD [12]. Through these monitoring 
platforms, we can timely discover clusters, improve the 
early identification, warning, and prevention and control 

capabilities of food safety risks, and grasp the baseline of 
important FBD.

According to WHO estimates, approximately 2.2  mil-
lion people worldwide die each year due to foodborne or 
waterborne diarrhea. There are approximately 600  mil-
lion cases of foodborne diseases worldwide each year, 
with a death toll of many people, of which 125,000 are 
children under the age of 5 [13]. The Centers for Disease 
Control reported that 48  million people in the United 
States get sick from FBD each year, with 128,000 hospi-
talized and 3,000 dying [14]. Nan’an District is one of the 
main urban areas of Chongqing, which is an area driven 
by light industry, catering and tourism industry, and also 
with many people who suffer from FBD here. However, 
due to the low sensitivity of FBD surveillance, there is a 
certain gap between the number of cases reported and 
the actual situation, so it is necessary to choose a better 
prediction model for FBD.

The autoregressive integrated moving average 
(ARIMA) model is a widely used time series analysis tool, 
which is widely used to predict infectious diseases such as 
malaria, hemorrhagic fevers, hand, foot and mouth dis-
ease, influenza, COVID -19 and tuberculosis [15]. Addi-
tionally, ARIMA-related hybrid models such as Seasonal 
Autoregressive Integrated Moving Average (SARIMA) 
was also developed as modeling candidates for future 
trend prediction. SARIMA model and Holt-Winters 
model are two of the most widely used time series fore-
casting methods, which are suitable for different types of 
time series models and can reflect time changes as well 
as periodic changes in the original data [16]. Exponential 
Smoothing (ETS) model is also widely used in predicting 
infectious disease, such as brucellosis and epidemiologi-
cal surveillance [17].

Previous studies on FBD mainly focused on analyzing 
public surveillance data and estimating the actual inci-
dence rate of FBD in a country or a region, and assess the 
disease burden caused by various pathogens [18]. How-
ever, there are few studies that compare the advantages 
and disadvantages of the three models. This study pro-
poses to establish a SARIMA model, Holt-Winters and 
ETS model by the number of monthly incidences and 
compare the advantages and disadvantages of three dif-
ferent models, so as to select the optimal model.

Materials & methods
Data source
China’s FBD surveillance platform was established in 
2011, which mainly includes: the FBD Outbreaks Sur-
veillance System, the FBD Surveillance and Reporting 
System, the National Molecular Traceability Network for 
FBD and other surveillance systems. The China National 
Center for Food Safety Risk Assessment maintains and 
manages the platform for data collection and periodic 
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reporting to the National Health Commission [20]. The 
data of the FDB and population used in this study were 
obtained from Chongqing Nan’an District Center for 
Disease Prevention and Control from June 2017 to April 
2022. FBD data were collected from 25 medical institu-
tions for monitoring sites and 14 primary medical insti-
tutions for health emergency response teams in Nan’an 
District, and reporting form of the data is the incidence 
of cases. We collect continuous monthly data, which 
helps input and build the model. Data from June 2017 to 
June 2021 were used to train the model, and the last 10 
months of incidence were used for prediction and valida-
tion. The incidence was fitted using the SARIMA model, 
Holt-Winters model and ETS model.

Data processing and analysis
SPSS 25.0 was used for data preprocessing and descrip-
tive statistics, the SARIMA, Holt-Winters and ETS mod-
els were developed by R 4.1.2. In addition, all the figures 
are also made of R 4.1.2. In this study, p < 0.05 was con-
sidered statistically significant.

SARIMA model
The ARIMA model consists of three parts: autoregres-
sion order  (p), difference order (d), and moving average 
order (q) [21]. The SARIMA model is a Seasonal ARIMA, 
which consists by seasonal effect, long-term trend effect, 
periodic change and random disturbance. The general 
form of the SARIMA model is (p, d, q) × (P, D, Q) s, p, d 
and q are non-negative integers, representing the order 
of non-seasonal autoregressive (AR) term, non-seasonal 
difference and non-seasonal moving average (MA), 
respectively. P, D and Q are also non-negative integers 
indicating the order of seasonal AR term, seasonal dif-
ference term and seasonal MA term respectively; S is the 
length of the seasonal period [22].

Generally speaking, time series modeling methods 
include the following three steps: model recognition, 
parameter estimation, and diagnostic checks. Firstly, 
if necessary, perform appropriate differencing on the 
sequence to achieve stationarity and normality. We use 
the augmented Dickey Fuller (ADF) unit root test to 
estimate whether the time series is stationary, if result 
of the ADF test is significant, the sequence is proven to 
be stationary. Secondly, the time dependent structure 
of the transformed data is identified by examining the 
autocorrelation functions (ACF) and partial autocor-
relation functions (PACF) of the transformed data [23]. 
Besides, the values of p, d and q, q are finally determined 
by considering the smallest Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC) val-
ues corresponding to the higher prediction accuracy. At 
last, in order to test the normality of SARIMA residuals, 

the Ljung-Box Q test was used to diagnose whether the 
residual error sequence was a white-noise sequence [24].

Holt-winters model
The component form of the Holt-Winters model con-
sists of four equations, namely the prediction equation 
and three smoothing equations [25]. The characteristic of 
Holt-Winters model is to eliminate some random fluctua-
tions while correcting seasonal trends. It assigns different 
weights to data from each period and reasonably predicts 
future development trends. The α (level) and β (slope) of 
the trend should be between 0 and 1, and when a value 
close to 0 means that the estimation of current/future 
time points is based on recent observations [26].

ETS model
ETS model take the errors, trends, and seasonal com-
ponents of a given time series into consideration, and 
evaluates possible alternative models before selecting the 
best performing model to simulate the data. ETS model 
considered comprehensive historical information, it has 
three main parameters: error, trend, and seasonal com-
ponent, which can be additive (A), multiplicative (M), 
or none (N). The ETS method includes several detailed 
methods, such as single ETS, double ETS, Holt trend ETS 
(with or without seasonal features), and other methods 
based on various features of the original sequence. The 
optimal model is selected according to the AIC mini-
mum, the corrected Akaike message criterion (AICc), or 
the BIC [27]. What’s more, Ljung-Box Q test was used to 
diagnose whether the residual sequence is white noise 
sequence.

Evaluation metrics
In order to evaluate the performance of the SARIMA, 
Holt-Winters and ETS model, we tested the fitting values. 
Several performance indexes, namely, root means square 
error (RMSE), mean absolute error (MAE), mean abso-
lute percentage error (MAPE) and means square error 
(MSE) are used to determine the predictive efficiency of 
the three models [28]. Many researchers have used these 
metrics to assess the accuracy of models, when the MSE, 
MAE, and RMSE values of the model are smaller, the fit-
ting degree of the model is better. If all three indicators 
of a model are lower than another model, then the model 
is more superior. For the measure of these metrics, the 
smallest value corresponds to the best method. The fol-
lowing are the calculation methods for some indicators.

 RMSE =
√∑

(actual − forecast)2 × (1/samplesize)

 MAE =
∑

(|actual − forecast|)× (1/sample size)
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 MAPE = (1/sample size)×
∑ [

|actual−forcast|
|actual|

]
× 100%

 MSE =
∑

(actual − forecast)2 × (1/sample size)

Ethics approval and consent to participate
The research protocols and informed consent forms 
submitted for this project comply with the principles of 
medical ethics and the requirements of the Declaration 
of Helsinki. This study was approved by the Ethics Com-
mittee of Nan’an District for center disease control and 
prevention, and informed consent was obtain from all the 
participant. All the data collection in this study are was in 
accordance to the Law of the People’s Republic of China 
on the Prevention and Treatment of Infectious Diseases.

Results
Descriptive statistics
Table  1 shows the incidence rate of each month from 
June 2017 to April 2022 based on the average popula-
tion of the Nan’an District. The month with the highest 
incidence was November 2021, which reached 17.03 per 
100,000, while the lowest incidence occurred in January 
2019 with 0.08 per 100,000.

The analysis of SARIMA model results
This study used the “STL” function to decompose the 
sequence, Fig. 1 presents seasonal distribution of FBD in 
Nan’an District from June 2017 to April 2022. It can be 
clearly seen from the figure that June to November is the 
peak period of incidence.

Only six models passed the residual test and param-
eter test, the six models were SARIMA (1,0,0) (1,1,0)12, 
SARIMA (0,0,1) (0,1,1)12, SARIMA (0,0,1) (0,1,0)12, 
SARIMA (0,0,1) (1,1,0)12, SARIMA (0,0,0) (0,1,1)12. 
The AIC values of the five candidate models are listed 
in Table  2, and we finally confirmed SARIMA (1,0,0) 
(1,1,0)12 model with drift is finally selected as the optimal 
SARIMA model after comparing the AIC values. Besides, 
the evaluation criteria for the SARIMA model are dis-
played in Table 3.

Note:  SARIMA,  Seasonal Autoregressive Integrated 
Moving Average; AIC,  Akaike information criterion; 
BIC, Bayesian information criterion.

The analysis of ETS model results
ETS programming functions were used to simulate time 
series data sets on the incidence of FBD, from which 
we found an appropriate ETS model (AIC = 228.24, 
BIC = 256.62). The evaluation criteria for the ETS model 
are displayed in Table 3.
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The analysis of Holt-winters model results
R software automatically selects the model that best fits 
the original data. The results showed that Holt-Winters 
model have good prediction accuracy of the model. 
Table 3 showed the evaluation index of the Holt-Winters 
model.

Model comparison
Many scholars have conducted research on disease pre-
diction models. SARIMA model is a model for relatively 
stable time series data. It integrates time trend, seasonal, 
periodic change, random error and other factors to quan-
tify the model parameters [29]. However, the Holt-Win-
ters model has a relatively simple principle, and has a 
high prediction accuracy for diseases with periodic regu-
larity [30]. This method assigns different weights to the 
distance of data on the timeline, which is suitable for pre-
dicting individual time series data. We found MSE, MAE, 
RMSE of the Holt-Winters model are less than those of 

the SARIMA and ETS model Table 3. What’s more, the 
Holt-Winters model also has better predictive accuracy 
than SARIMA. This may be due to the characteristics 
of each model. In terms of models alone, the SARIMA 
model is more suitable for predicting data with stable 
changing trends than the Holt-Winters model, while the 
Holt-Winters model is more suitable for predicting data 
with single changing trends.

Note: MSE, means square error; MAE, mean absolute 
error; RMSE,  root means square error; MAPE,  mean 
absolute percentage error; ETS,  Exponential Smooth-
ing; SARIMA, Seasonal Autoregressive Integrated Mov-
ing Average.

The forecast results from July 2021 to April 2022 
of FBD incidence in Nan ‘an district according to the 
SARIMA (1, 0, 0) (1, 1, 0) 12 model, ETS model and Holt-
Winters model are shown in Table 4. The observed inci-
dence of SARIMA (1, 0, 0) (1, 1, 0) 12 model in September 
and October 2021, the observed incidence of ETS model 
in December 2021 and the observed incidence of Holt-
Winters model in September, November and December 

Table 2 AIC and BIC values for candidate SARIMA models
Candidate Models AIC BIC
SARIMA (1,0,0) (1,1,0)12 with drift 188.83 193.67

SARIMA (0,0,1) (0,1,1) 12 with drift 189.79 194.62

SARIMA (0,0,1) (0,1,0) 12 with drift 189.21 192.43

SARIMA (0,0,1) (1,1,0) 12 with drift 190.23 195.06

SARIMA (0,0,0) (0,1,1) 12 with drift 194.49 197.71
Best: SARIMA (1,0,0) (1,1,0) 12 with drift

Table 3 Evaluation indicators of the three models
Evaluation indicators ETS Holt-Winters SARIMA
MSE 14.45 8.78 17.88

MAE 2.68 2.33 2.75

RMSE 3.80 2.96 4.23

MAPE 29.42 39.29 28.80

Fig. 1 Seasonal distribution of FBD in Nan’an District
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2021 were not within the 95% confidence interval (CI) of 
the predicted values.

Note: ETS, Exponential Smoothing; SARIMA, Seasonal 
Autoregressive Integrated Moving Average; CI,  confi-
dence interval.

In addition, Table  5 shows the comparison of predic-
tion results of three models, in most months of the fore-
cast, the forecast error of the Holt-Winters model was 
smaller than that of the other two models. Comparing 
the fitting effects of the three models, it can be seen from 
Fig. 2 that the fitting value of the Holt-Winters model is 
closer to the actual value. Therefore, it can be concluded 
that the optimal model is Holt-Winters model.

Note: ETS, Exponential Smoothing; SARIMA, Seasonal 
Autoregressive Integrated Moving Average.

Discussion
As can been seen from the descriptive statistics in 
Table  1 and the seasonal distribution of FBD in Fig.  1 
that the number of reported cases from December 2019 
to April 2020 was at low level. Possibly due to the out-
break of COVID-19, In response to the outbreak of the 
COVID-19 in December 2019, by the end of February, 
China’s national, provincial and municipal governments 
had taken a series of public health interventions to effec-
tively curb the epidemic [31], such as lockdown mea-
sures. People are staying at home rather than taking the 

risk of going to hospital, so there are far fewer reported 
cases of FBD.

We analyzed the FBD incidence rates and observed a 
fluctuating downward trend and seasonal characteris-
tics in this study, with the valley is in January to Febru-
ary, and the incidence is higher from June to November 
almost every year. The reasons could be as follows: In the 
first place, Chinese New Year usually falls in January or 
February, and it is traditionally considered bad luck to 
go to the hospital at this time, resulting the reduction of 
reported incidence case [32]. In the second place, higher 
temperatures in June, July and August make food spoil 
more quickly, which is more likely to cause FBD. Besides, 
this phenomenon may be related to the climate and 
human behaviors [33], as temperatures rise, social activi-
ties and contacts between people tend to increase dur-
ing the spring and summer months. Thus, the reported 
incidence is consistently high during the three months of 
each year, leading to the widespread epidemics. In addi-
tion to this, from Fig.  1 we can see that September to 
November are also high incidence month of FBD, studies 
have shown that cold weather or wind can affect the inci-
dence of some diseases [34].

Many scholars have studied the disease prediction 
model. Some research shows that the ARIMA model is 
suitable for complex interactions between temporal sea-
sonal effects, long-term trends, and random fluctuations. 

Table 4 The prediction of SARIMA (1, 0, 0) (1, 1, 0) 12 model, ETS model and Holt-Winters model
Month Incidence SARIMA model(95%CI) ETS model(95%CI) Holt-Winter

model(95%CI)
2021/7/1 7.14 7.11(1.54,12.68) 8.48(-0.04,17) 13.09(12.51,13.67)

2021/8/1 7.72 6.36(0.25,12.47) 7.12(-0.53,14.76) 7.19(6.57,7.81)

2021/9/1 16.61 6.75(0.54,12.97) 8.74(-1.23,18.71) 11.63(10.61,12.65)

2021/10/1 15.28 7.9(1.66,14.14) 8.94(-1.83,19.71) 11.65(10.3,12.99)

2021/11/1 17.03 13.24(7,19.49) 11.86(-3.18,26.9) 15.19(13.03,17.35)

2021/12/1 4.98 2.09(-4.15,8.34) 1.75(-0.58,4.08) 2.46(1.74,3.17)

2022/1/1 1.08 1.33(-4.91,7.58) 0.94(-0.37,2.24) 1.43(0.74,2.12)

2022/2/1 1.49 1.47(-4.78,7.71) 1.15(-0.52,2.81) 2.37(1.18,3.56)

2022/3/1 3.73 2.19(-4.05,8.43) 2(-1.02,5.03) 2.4(0.86,3.94)

Table 5 Comparison of prediction results of three models
Month Incidence Holt-Winters forecast SARIMA forecast ETS forecast

Forecast Forecast error (%) Forecast Forecast error (%) Forecast Forecast error (%)
2021/7/1 7.14 13.09 83.33 7.11 -0.42 8.48 18.77

2021/8/1 7.72 7.19 -6.87 6.36 -17.62 7.12 -7.77

2021/9/1 16.61 11.63 -29.98 6.75 -59.36 8.74 -47.38

2021/10/1 15.28 11.65 -23.76 7.9 -48.3 8.94 -41.49

2021/11/1 17.03 15.19 -10.8 13.24 -22.25 11.86 -30.36

2021/12/1 4.98 2.46 -50.6 2.09 -58.03 1.75 -64.86

2022/1/1 1.08 1.43 32.41 1.33 23.15 0.94 -12.96

2022/2/1 1.49 2.37 59.06 1.47 -1.34 1.15 -22.82

2022/3/1 3.73 2.4 -35.66 2.19 -41.29 2 -46.38

2022/4/1 2.15 3.45 60.47 2.5 16.28 2.17 0.93
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This model is one of the commonly used time series 
analysis models for predicting infectious diseases, such 
as tuberculosis, hand-foot-mouth disease, mumps, influ-
enza etc. [35–38]. What’s more, the “STL” function is 
used to decompose the series, which can not only display 
the trend and seasonal change of the incidence rate series 
of FBD, but also calculate the seasonal index of each 
month, which can intuitively understand its seasonality 
[39]. We use the SARIMA model to perform linear fitting 
on the FBD series. By comparing the AIC, BIC values, 
SARIMA(1, 0, 0)× (1, 1, 0) 12 is the best model, and the 
RMSE and MAPE values of this model are 4.23 and 28.80, 
respectively. Holt-Winters model has high prediction 
accuracy the periodic regularity disease. Besides, ETS 
model take comprehensive historical information into 
consideration, it’s also a good method. In order to high-
light the performance accuracy of developed SARIMA, 
ETS, and Holt-Winters models, we divided the FBD time 
series sample into two parts. The first part of data, June 
2017 to June 2021, as a training set for in-sample simu-
lated modeling. The rest of 10 month, July 2021 to April 
2022, as a testing set. Based on these modellings’ accu-
racy metrics, it can be seen from the evaluation indica-
tors of the three models (Table  3), we found the MSE, 
MAE, RMSE of the Holt-Winters model are 8.78, 2.33 
and 2.96 respectively. It’s indicated the Holt-Winters 

model has better predictive accuracy than SARIMA and 
ETS models. This may be due to the different character-
istics of each model, as the Holt-Winters model is built 
using historical data and does not consider the interfer-
ence of other factors [32]. Therefore, this model has cer-
tain reference value for predicting FBD. And through 
Fig. 2, we can also clearly see that the fitting curve of the 
Holt-Winters model is closer to the true value.

At present, FBD hamper socio-economic development 
by placing pressure on health care systems and harm-
ing national economies, tourism and trade [40]. Despite 
significant improvements in medical services and infec-
tious disease control capabilities, FBD still remain a 
major public health problem in China [41]. Like other 
countries, FBD characterized by acute gastrointestinal 
diseases are the largest food safety issue and the most 
disturbing public health threat related to food in China 
[42, 43]. However, few studies have chosen the optimal 
model by comparing the degree of fit of the three mod-
els. The purpose of this study is to select the model with 
the best prediction and fitting performance by compar-
ing several common models, in order to better assist in 
the rational allocation of medical resources and person-
nel, and provide clues for the prevention and treatment 
of this disease from data analysis. Reliable prediction of 
FBD helps to better coordinate the relief and intervention 

Fig. 2 Fitting status between the actual incidence of foodborne illness in Chongqing Nan’an District from June 2017 to June 2021 and the predicted 
incidence from July 2021 to April 2022. The black line indicates the actual incidence rate, orange, blue, and purple indicate the incidence rates predicted 
by the ETS, Holt-Winters, and SARIMA models, and hazy areas indicate the upper and lower ranges of the 95% CI for the predicted incidence rates of 
foodborne illness
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resources of the public health system, and alleviate the 
pressure on the healthcare system [44]. In addition, the 
optimal prediction model of FBD obtained in this study 
can also be used in other countries and regions to predict 
and control this disease.

Although we have selected the optimal prediction 
model for FBD by comparing the three, there are still 
some shortcomings that need to be improved. In this 
study, we chose the model with good overall forecasting 
effect, but the performance of the three models is various 
in different months, so the month-specific forecasting 
model may need further research and verification in the 
future. Besides, the data is not comprehensive enough, 
and we should consider combining more years of data to 
make better predictions in future research.

Conclusions
We used SARIMA model, Holt-Winters model and ETS 
model in predicting the incidence of FBD, from which we 
found the highest incidence was November 2021and the 
lowest incidence occurred in January 2019. The incidence 
of FBD presented obvious seasonal trends in this study. 
By comparing of prediction results of three models, in 
most months of the forecast, the forecast error of the 
Holt-Winters model was smaller than that of the other 
two models. When make comparison of the fitting effects 
between the three models, the fitting value of the Holt-
Winters model is closer to the actual value. Therefore, it 
can be concluded that the optimal model is Holt-Winters 
model, which can provide convenience and new ideas for 
related forecasting research in the future.
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