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Abstract 

Background We describe the genotypic characteristics and antimicrobial resistance (AMR) determinants of Salmo-
nella enterica serovar Isangi (Salmonella Isangi) clinical isolates in South Africa from 2020 through 2021.

Methods During the years 2020 to 2021, the Centre for Enteric Diseases of the National Institute for Communicable 
Diseases, a national reference centre in South Africa for human infections resulting from enteric bacterial pathogens, 
investigated a total of 3549 clinical isolates of Salmonella species. Whole genome sequencing (WGS) was performed 
using Illumina NextSeq Technology. WGS data was analyzed using Centre for Genomic Epidemiology-based tools 
and EnteroBase web-based platform. Genotypic relatedness and cluster analysis was investigated based on core-
genome multilocus sequence typing.

Results Forty-nine isolates were confirmed to be Salmonella Isangi, with most submitted from Gauteng Province 
(24/49, 49%). The most prevalent sequence type was ST335 (48/49, 98%), and the remaining 1 isolate was ST216. All 
ST335 isolates were genotypically multidrug-resistant (MDR), with resistance to fluoroquinolones, chloramphenicol, 
trimethoprim-sulfamethoxazole and tetracycline; the ST216 isolate was resistant only to aminoglycosides. All ST335 
isolates carried ESBL genes, the most common being blaCTX-M-15. Five clusters (consisting of isolates related within five 
allele differences) were detected, all being ST335.

Conclusions Most Salmonella Isangi isolates in South Africa are MDR and ESBL-positive. Ongoing monitoring 
of the epidemiology and AMR profile of this serovar is important for public health and treatment guidelines.
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Background
Non-typhoidal Salmonella (NTS) infections present a 
major public health concern and are linked to foodborne 
gastroenteritis worldwide. Invasive NTS disease, include 
septicemia, endovascular infection, and meningitis. These 
can cause significant morbidity and mortality in adults, 

children, and immunocompromised individuals, particu-
larly in sub-Saharan Africa [1]. While most Salmonella 
infections are self-limiting, invasive salmonellosis often 
require antibiotic treatment [2]. Emerging multidrug-
resistance (MDR) against commonly used antibiotics, 
including ampicillin, chloramphenicol, and sulfameth-
oxazole, has necessitated the use of fluoroquinolones 
and extended-spectrum cephalosporins (ceftriaxone 
and cefotaxime) [1]. Consequently, this has promoted 
the development of extended-spectrum β-lactamases 
(ESBLs) and class C beta-lactamases (AmpC)-production 
in Salmonella enterica (S. enterica) serovars including 
Salmonella enterica serovar Isangi (Salmonella Isangi) 
[3]. ESBLs and AmpC are enzymes that confer resist-
ance against most beta-lactam antibiotics, including 
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penicillins, and cephalosporins, with ESBLs compris-
ing of isolates that exhibit co-resistance to other classes 
of antibiotics such as aminoglycosides, fluoroquinolones 
and sulfonamides. ESBLs can be inhibited by β-lactamase 
inhibitors such as clavulanic acid, while AmpC activity is 
not affected by ESBL inhibitors [4]. Although ESBL-pro-
duction is predominantly associated with other species in 
the Enterobacteriaceae family, the emergence of ESBLs in 
Salmonella Isangi has become increasingly more preva-
lent in South Africa [2]. ESBLs in Salmonella Isangi in 
South Africa (SA) were first reported in 2001 and have 
since gained interest due to transmissible mobile genetic 
elements that produce a variety of ESBL enzymes, includ-
ing blaTEM, blaSHV, blaCTX-M-15 and blaCTX-M-37 [3, 5]. 
Plasmid-mediated AmpC-type β-lactamases produc-
ing Salmonella strains have been detected in the USA 
[6]. Identification of the presence of ESBLs and AmpC 
β-lactamases in Salmonella species is of significant thera-
peutic importance, particularly in SA where the majority 
of Salmonella Isangi isolations are MDR. The aim of this 
study was to identify genotypic characteristics, molecular 
strain relatedness, as well as the genetic basis of antimi-
crobial resistance determinants of Salmonella Isangi clin-
ical isolates collected from SA in year 2020 through 2021.

Methods
Study location
The Centre for Enteric Diseases (CED) of the National 
Institute for Communicable Diseases (NICD) partici-
pates in national laboratory-based surveillance for iso-
lates of Salmonella, where > 200 diagnostic clinical 
microbiology laboratories across the country voluntarily 
submit various enteric bacterial isolates to the CED.

Biographic distribution of samples
For the current study, clinical Salmonella isolates for the 
years 2020 and 2021 were investigated. The demographic 
information of the cases including age, sex, and region 
(province; see supplementary Fig.  1) and sample source 
were recorded. A South African map outlining the vari-
ous province the isolate came from is shown in Supple-
mentary Fig.  1. Age was classified into three categories: 
children (0–17 years), adults (18–59 years) and senior 
adults (60 years and above).

Phenotypic and genetic analysis
These isolates were phenotypically identified using the 
VITEK-2 COMPACT 15 automated microbial identifica-
tion system (bioMérieux, Marcy-l′Étoile, France). Sub-
sequently, VITEK identified isolates were sub-cultured 
onto blood agar (Diagnostic Media Products, National 
Health Laboratory Service, South Africa). Thereafter, 
genomic DNA of Salmonella isolates was extracted using 

the Invitrogen™ PureLink™ Microbiome DNA Purifi-
cation Kit (Thermo Fisher Scientific, Waltham, USA). 
Genomic DNA was then subjected to WGS using Illu-
mina NextSeq (Illumina, San Diego, CA) next genera-
tion sequencing technology. WGS data of all genomes 
was analyzed using various bioinformatics tools available 
at the Centre for Genomic Epidemiology (https:// www. 
genom icepi demio logy. org/) web-based platform. Gen-
erated raw reads (FastQ files for paired-end reads) were 
uploaded and automatically assembled in EnteroBase 
web-based platform (http:// enter obase. warwi ck. ac. uk/ 
speci es/ index/ sente rica). We analyzed the presence and 
distribution of acquired genes associated with antimicro-
bial resistance to the following classes of antimicrobials: 
aminoglycosides, β-lactams, fluoroquinolone and ami-
noglycoside, fosfomycin, macrolide, phenicol, quinolone, 
rifampicin, sulphonamide, tetracycline, and trimetho-
prim. Genotypic relatedness and cluster analysis of iso-
lates was investigated using the core-genome multilocus 
sequence typing (cgMLST) approach using the ‘cgMLST 
V2 +HierCC V1’ scheme of EnteroBase. The phylogeny 
and genetic relatedness of isolates was depicted using 
a GrapeTree-generated minimum spanning tree using 
the ‘MSTree V2’ algorithm (https:// bitbu cket. org/ enter 
obase/ enter obase- web/ wiki/ Grape Tree) [7]. A cluster of 
isolates was defined as ≥3 isolates showing ≤5 allelic dif-
ferences, as determined following cgMLST analysis and 
visualized on a GrapeTree-generated minimum spanning 
tree.

Results and discussion
Phenotypic and genotypic prevalence of Salmonella Isangi
For the years 2020 to 2021, a total of 4945 clinical cases 
of Salmonella infection were notified to CED, NICD. For 
these cases, only 3637 viable cultures were received by 
the CED, of which the cultures were stored in glycerol 
stock at − 70 °C until ready to use. At the time for whole 
genome sequencing (WGS), only 3549 cultures could be 
revived and were analyzed further using WGS. Forty-
nine Salmonella isolates were identified as Salmonella 
Isangi by analysis of WGS data. Gauteng Province had 
the highest number of Salmonella Isangi isolates (24/49, 
49%) with other isolates belonging to the following 
regions: Limpopo Province (n = 8), Mpumalanga Prov-
ince (n = 7), KwaZulu-Natal Province (n = 3), North-West 
Province (n = 2), Eastern Cape Province (n = 3), and Free 
State Province (n = 2). The sources of the isolates were 
stool (22 isolates), blood culture (10 isolates), urine (7 
cultures), rectal swab (2 isolates), and other (8 isolates). 
A total of 36 isolates were non-invasive (stool) while 13 
isolates were invasive (blood, CSF) as indicated by the 
metadata of each patient. The age distribution was as fol-
lows: children (n = 11), adults (n = 30) and senior adults 
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(n = 8); with a total of 22 females, 23 males and 4 gender 
unclassified cases.

Genetic characteristics of isolates
A total of 25 different AMR profiles (AMR profile 1–25) 
which group AMR gene combinations or resistance 
trends were identified. WGS revealed that Salmonella 
Isangi isolates (n = 48/49, 98%) linked to AMR profile 1 to 
24 were MDR. Isolates from these AMR profiles harbored 
several resistance genes conferring resistance to amino-
glycosides (aac(6′)-Iaa, aph(6)-Id, aph(3″)-Ib, aadA1, 
aadA2, aac(3)-IIa, aac(6′)-Ib-cr, armA, ant(3″)-Ia), 
fluoroquinolones (aac(6′)-Ib-cr, qnrB1), macrolides 
(mphA), phenicols (floR, cmlA1, catB3, catA1), rifampicin 
(ARR-2), sulphonamides (sul1, sul2), trimethoprim 
(dfrA14, dfrA23) and tetracyclines (tetA). Collectively, 
these isolates carried ESBL genes, including blaCTX-

M-15 (n = 48/49, 98%), as well as blaCTX-M-22, blaCTX-M-3; 
blaCTX-M-216; blaCTX-M-203; blaCTX-M-202; blaCTX-M-176; 
blaCTX-M-167; blaCTX-M-156; blaCTX-M-103; blaCTX-M-88; and 
blaCTX-M-71. All the other blaCTX-M genes were detected 
only under AMR profile 24 (n = 1/49, 2%). The presence 
of other ESBL genes, SHV-type (blaSHV-5), TEM-type 

(blaTEM-1 and blaTEM-63) and OXA-type (blaOXA-1 and 
blaOXA-10) was detected in AMR profile  23, 9–24 and 
AMR 1–24, respectively. TEM β-lactamases are known 
to proficiently catalyze the hydrolysis of penicillins and 
early generation cephalosporins and subsequently confer 
high-level bacterial resistance against these drugs [8]. The 
OXA-type β-lactamases confer resistance to ampicillin 
and cephalothin and are depicted by their high hydrolytic 
activity against oxacillin and cloxacillin [9]. In addition, 
plasmid mediated AmpC β-lactamases genes (blaDHA-1 
blaDHA-24; blaDHA-7; and blaNDM-1) were identified in AMR 
profile  24. One isolate under AMR profile  25 harbored 
one resistance gene (aac(6′)-Iaa) conferring resistance 
only to aminoglycosides. AMR profiles 1–7 were associ-
ated with major clusters and are shown below (Table 1). 
AMR profile 1 (n = 13) was the most prevalent AMR pro-
file. Although numerous studies [10–13] have reported 
correlation between Salmonella phenotypic AMR data 
and genotypic AMR data, data analysis to make corre-
lations to genotypic AMR data was not possible in our 
study as Salmonella isolates reported had incomplete 
phenotypic AMR data, with many isolates having no phe-
notypic AMR data.
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Genotypic relatedness and cluster of the isolates
MLST grouped all MDR and ESBL producing (AMR pro-
file 1–24) Salmonella Isangi (48/49, 98%) isolates into one 
known sequence type, ST335 which was most prevalent. 
High prevalence of ST335 among South African Salmo-
nella Isangi genomes has previously been reported [14]. 
One non-ESBL producing mono-drug resistant isolate 
belonging to AMR profile 25 was assigned under ST216 
by MLST. The genetic relatedness and cluster analysis 
of these isolates was investigated using cgMLST, with 
results depicted in a minimum spanning tree (Fig. 1). Iso-
lates associated with Cluster A (n = 8), B (n = 5), C (n = 3), 
D (n = 3) and E (n = 4) were related within five allele dif-
ferences. The five-allele difference threshold is within 
the recommended threshold for genetically related S. 
enterica serovars and is indicative of a high probability of 
epidemiological relatedness [15]. Isolates linked to clus-
ter A had a similar AMR profile (depicted under AMR 
profile 4–7) and were from the Gauteng (n = 5), Eastern 
Cape (n = 2) and KwaZulu-Natal (n = 1) Province. Isolates 
linked to Cluster B (n = 5) and C (n = 3) had AMR pro-
file 1 and were from the Gauteng Province only. Cluster 
D isolates (n = 3) had an AMR profile of 1 and 2 and were 
from Mpumalanga Province. Likewise isolates linked to 
cluster E (n = 4) showed AMR profile  1 and 3 and were 
from Gauteng (n = 2) and Mpumalanga (n = 2) Province.

Conclusion
The present study identified blaCTX-M-15 ESBL gene 
(n = 48/49, 98%) and AmpC (blaDHA-1 and blaNDM-1) pro-
ducing strains. ESBLs producing Salmonella Isangi in SA 
have been detected since the early 2000s. The observed 
high prevalence of blaCTX-M-15, an ESBL associated gene 
in MDR Salmonella Isangi presents a need for continu-
ous monitoring of this resistance threat in order to miti-
gate its public health impact. Detecting and determining 
the degree of ESBLs and AmpC is essential for effective 
treatment and for prevention and control of multid-
rug-resistant Salmonella serovars. This study therefore 
provides insight for further studies on antibacterial 
resistance mechanisms in Salmonella Isangi.
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