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Abstract 

Background  Common air pollutants such as ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate 
matter play significant roles as influential factors in influenza-like illness (ILI). However, evidence regarding the impact 
of O3 on influenza transmissibility in multi-subtropical regions is limited, and our understanding of the effects of O3 
on influenza transmissibility in temperate regions remain unknown.

Methods  We studied the transmissibility of influenza in eight provinces across both temperate and subtropical 
regions in China based on 2013 to 2018 provincial-level surveillance data on influenza-like illness (ILI) incidence 
and viral activity. We estimated influenza transmissibility by using the instantaneous reproduction number ( Rt ) 
and examined the relationships between transmissibility and daily O3 concentrations, air temperature, humidity, 
and school holidays. We developed a multivariable regression model for Rt to quantify the contribution of O3 to varia-
tions in transmissibility.

Results  Our findings revealed a significant association between O3 and influenza transmissibility. In Beijing, Tian-
jin, Shanghai and Jiangsu, the association exhibited a U-shaped trend. In Liaoning, Gansu, Hunan, and Guang-
dong, the association was L-shaped. When aggregating data across all eight provinces, a U-shaped association 
was emerged. O3 was able to accounted for up to 13% of the variance in Rt . O3 plus other environmental drivers 
including mean daily temperature, relative humidity, absolute humidity, and school holidays explained up to 20% 
of the variance in Rt.

Conclusions  O3 was a significant driver of influenza transmissibility, and the association between O3 and influenza 
transmissibility tended to display a U-shaped pattern.
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Introduction
In different climates, influenza shows a variable epidemic 
pattern. For example, in temperate climates, seasonal 
epidemics mainly occur during winter [1]; in subtropi-
cal climates, influenza often shows two annual peaks, in 
winter and summer; and in tropical climates, influenza 
outbreaks may occur irregularly throughout the year [1, 
2]. The difference in influenza epidemic patterns may 
directly or indirectly affect the response strategies, such 
as vaccination and the allocation of medical resources [3].

Many factors affect the spread of influenza including 
human mobility [4], humidity [5, 6], non-pharmaceutical 
interventions [7], air pollution [8], the types of virus, and 
the immunity of the population [9]. Of these, ambient 
pollutants have received an increasing amount of atten-
tion. One study in Australia showed that high concentra-
tions of ozone (O3) and PM10 were significant risk factors 
for pediatric influenza [8]. In Beijing, China, ambient 
PM2.5 concentrations were significantly associated with 
influenza-like illness (ILI) incidence risk during the flu 
season across multiple age groups [10]. Compared with 
the occurrence of influenza, evidence of the relationship 
between ambient pollution and influenza transmissibility 
remains limited. The transmissibility index of influenza 
can be characterized by the reproduction number ( Rt ), 
defined as the average number of secondary infections 
caused by a typical single infectious individual at time 
t; a higher Rt value indicates higher transmissibility. Ali 
et al. reported that O3 is a significant driver for influenza 
transmissibility and has an L-shaped relationship with 
Rt in Hong Kong based on data for all types/subtypes 
[11]. However, as Hong Kong is located in the subtropic, 
differences in climate may affect such relationships 
in other regions. Accordingly, exploring the relation-
ship between O3 and Rt in different climates is urgently 
needed to clarify the potential impact of O3 on influenza 
transmissibility.

In China, most of the northern provinces have a tem-
perate climate, while most of the southern provinces are 
subtropical. Therefore, in this study, we selected four 
provinces each in northern and southern China to exam-
ine the impact of O3 on influenza transmission.

Methods
Data source: 5 years of data from 2013 to 2018
Hourly ambient temperature and dew point temperature 
data for each province were obtained from the National 
Centers for Environmental Information (Global Surface 
Summary of the Day—GSOD. https://​www.​ncei.​noaa.​
gov/​access/​search/​data-​search/​global-​hourly?​bbox=​
40.​563,115.​742,39.​252,117.​052&​pageN​um=1, Accessed 
4 August 11 2021). Using the R package “humidity” (R 
software, version 4.2.1), we calculated hourly relative 

and absolute humidity. The daily values for tempera-
ture, relative humidity (RH) and absolute humidity (AH) 
were determined by taking the arithmetic mean of their 
respective hourly values for each day.

Daily concentrations of O3 in the eight provinces were 
obtained from the China High Air Pollutants (CHAP) 
dataset [12]. CHAP is a long-term, full-coverage, high-
resolution, and high-quality datasets of ground-level air 
pollutants for China. This dataset produced high-quality 
daily O3 concentrations on 10  km × 10  km grid scale, 
derived from big data (e.g., ground-based measurements, 
satellite remote sensing products, atmospheric reanalysis, 
and model simulations), by using artificial intelligence. 
Its cross-validation coefficient of determination, a root-
mean-square error (RMSE), and a mean absolute error 
(MAE) for daily O3 concentrations were found to be 0.87, 
17.10 ug/m3 and 11.29 ug/m3 respectively when com-
pared with data from ground stations [13, 14]. For pro-
vincial-level, the daily O3 concentration was calculated 
by taking the arithmetic mean of values from each 10 km 
x 10  km grid.  Information about holiday-related school 
closures, including public holidays, summer holidays, 
Chinese New Year holidays and winter holidays, was also 
collected. Weekly ILI and viral-detection rate data for 
each province were obtained from the Chinese National 
Influenza Surveillance Network. Based on previous stud-
ies [15–20], proxy measures for the weekly incidence rate 
were obtained by multiplying the ILI percentage among 
patients visiting sentinel hospitals with the proportions 
of influenza-positive specimens, which is referred to as 
influenza rate. This proxy is considered a precise repre-
sentation of the activity of influenza infection [21, 22]. 
We multiplied the weekly incidence rate by a constant 
(10,000) representing the inverse of the coverage of the 
sentinel sites in the studied provinces, and rounded the 
resulting values to the nearest integers to obtain a time 
series of weekly incidence rate counts (ILI + counts) [23]. 
Due to differences in the epidemiological characteristics 
of influenza in southern and northern China [5, 24], we 
conducted analysis by region and constricted in 8 prov-
inces and municipalities (Fig. S1). We selected these loca-
tions based on the availability of influenza surveillance 
data and O3 concentration during the study period. Bei-
jing, Tianjin, Shanghai and Jiangsu have relatively high O3 
concentrations, while Hunan, Guangdong, Liaoning and 
Gansu have relatively low O3 concentrations [12].

Influenza epidemics were defined as outbreaks exceed-
ing the epidemic threshold for at least seven consecutive 
weeks or more. The epidemic threshold was determined 
as the 50th percentile of all the non-zero weekly inci-
dence rate counts over the study period [23]. Cubic spline 
interpolation was employed to convert the weekly influ-
enza rate and ILI + counts into daily influenza rate and 

https://www.ncei.noaa.gov/access/search/data-search/global-hourly?bbox=40.563,115.742,39.252,117.052&pageNum=1
https://www.ncei.noaa.gov/access/search/data-search/global-hourly?bbox=40.563,115.742,39.252,117.052&pageNum=1
https://www.ncei.noaa.gov/access/search/data-search/global-hourly?bbox=40.563,115.742,39.252,117.052&pageNum=1
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ILI + counts, which were subsequently used to estimate 
transmissibility [22, 23]. Cubic spline interpolation oper-
ates by constructing piecewise cubic polynomial func-
tions that smoothly connect each weekly data point. By 
doing so, it generates interpolated values for daily data 
points. These functions ensure not only that the curve 
passes through each weekly data point, but also that 
the transitions between segments are continuous and 
smooth.

Rt and adjusted Rt estimation
Using the Bayesian framework applied to the branching 
process model, Rt was estimated as proposed by Cori 
et  al. [25]. Rt serves as a measure of transmissibility. A 
gamma distribution, characterized by a mean of 2.6 days 
and a standard deviation of 1.5  days, was assumed for 
the serial interval distribution [26]. As the epidemic pro-
gresses, there is an observable decline in the number of 
susceptible individuals in the population, resulting in a 
gradual decrease of Rt . To accommodate this change, the 
adjusted Rt was calculated using the methodology out-
lined by Ali et al. [23]. Further details on the Rt estima-
tion process can be found in the Supplementary Material.

Exploratory data analysis using Rt
To accommodate reporting lags ranging from 0 to 
14  days, we evaluated the best functional relationship 
between Rt and every potential driver in each province, 
utilizing both exponential and power univariate regres-
sion models [22, 23]. The selection of significant drivers 
with best-fitted functions was based on variations in the 
Akaike information criterion (ΔAIC):

where i = exponential or power form of the association 
and:

In addition, we employed aggregated data from the 
eight provinces to construct a general model that inves-
tigates the correlation between Rt and its various driv-
ers. Subsequently, we executed a permutation analysis on 
1,000 dummy or null scenarios using regression models 
to ascertain if the relationship between Rt and O3 was 
due to chance. The results of this investigation were com-
pared with the true time-series dataset.

Quantifying the impacts of drivers on Rt
We constructed three multivariable regression models to 
explore the impacts of the different drivers on Rt . “Model 
1” evaluated the impacts of the depletion in susceptibil-
ity over time and/or inter-epidemic effects on Rt ; “Model 

�i = �AIC i = AICi − AICmain

AICmin = AICexponential , AICpower

2” incorporated the additional effect of O3; and “Model 
3” further took into account school holidays, tempera-
ture, relative humidity, and absolute humidity. Using the 
best lagged model and distributed lag non-linear mod-
els (DLNMs), we calculated R2 to quantify the extent to 
which these influencing factors explained the variation in 
Rt . The formula of the DLNMs model is

wherey
t
 is the expected Rt on day t. βi is the regression 

coefficient value for each factor onRt . Tt,l is the cross-
basis function of the each factor (temperature,relative 
humidity, absolute humidity and O3) level at day t and lag 
l, and the basis function is “poly”, and the natural spline 
function with a degree of freedom of 3 is used for the 
lag dimension; ns is the natural spline basis function; df 
is the degree of freedom; In addition, we controlled the 
effects of depletion of susceptibles ( cum_inci ) by using a 
natural cubic spline with 3 df.

The formula of the best lagged model is

where yt is the expected Rt on day t. β0 is the intercept 
term. β1 is the coefficient for the factor x1 . β2 is the coef-
ficient for the squared term of factor x1 . Similarly, each 
factor has two associated coefficients: one for the factor 
itself and another for its squared term.

The best lag model (i.e., those with a specific lag and 
the largest R2 value) and the distributed lag non-linear 
models (DLNMs, the R package “dlnm”, version 2.4.7) 
were utilized to compute the R2 values. The difference 
between the R2 values of Model 1 and Model 2 quantified 
the effect of O3 on Rt . The R2 values of Model 3 gauged 
the impact of all factors on Rt . The DLNMs accounts for 
the overall effect of the multi-day distribution, rather 
than presenting results solely for the most optimal lag. 
This distributed modeling approach also factors in the 
probability of infection from previous days (equivalent to 
at least the average generation time) to assess the trans-
missibility, Rt.

Results
Background characteristics by province
As shown in Fig.  1, during the study period (2013–
2018), a total of 54 distinct influenza epidemics were 
identified (seven for Beijing, six for Tianjin, six for 
Liaoning, five for Gansu, eight for Shanghai, eight 
for Jiangsu, eight for Guangdong, and six for Hunan) 

(1)

log E[yt ] = α + β1Tt,l tempt + β2Tt,l(AHt)

+ β3Tt,l(RHt)+ β4Tt,l(O3t)

+ ns cumincit , df = 3

+ ns holidayst , df = 3

(2)yt = eβ0 + β1x1 + β2x
2
2 + β3x2 + β4x

2
2 · · ·
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Fig. 1  Weekly influenza activity as ILI + counts (blue lines) along with the predefined epidemics (gray shaded area) in eight different provinces 
in China from 2013 to 2018
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with different lengths and patterns (i.e., single or dou-
ble peaks). Table  1 presented the summary statistics 
of influenza rate, ILI + counts, Rt , O3, daily tempera-
ture, and humidity in the eight provinces. The areas 
with daily ILI + counts ranked from high to low were 
Jiangsu, Guangdong, Beijing, Hunan, Shanghai, Tian-
jin, Liaoning and Gansu. The areas with daily median 
ozone concentrations, ranked from high to low were 
Shanghai, Gansu, Jiangsu, Liaoning, Beijing, Tianjin, 
Guangdong, Hunan. However, for the 75th percentile of 
daily O3 concentrations, the ranking from high to low 
is Shanghai, Beijing, Tianjin, Jiangsu, Liaoning, Gansu, 
Guangdong, and Hunan. The median values of Rt for all 
the epidemics was 1.0, with the minimum values rang-
ing from 0.7 to 0.8 and the maximum values from 1.23 

to 2.0. The climate is colder and drier in the Northern 
provinces.

Univariate regression model
We first constructed two univariate non-linear regres-
sion functions (exponential and power forms) to explore 
the associations between each driver and Rt with lagged 
values of 0–14 d for each province. AIC differences were 
used to select the best-fitting function for each driver, 
and the results are shown in Table S1. In all provinces, 
an exponential fit was better than that of the power form 
when fitting each factor and transmissibility. On this 
basis, we determined the significant influencing factors 
for influenza transmissibility, and incorporated these into 
further multivariable regression models.

Table 1  Descriptive Statistics (including median, min–max for Rt and median and IQR for influenza rate, ILI + counts, O3, daily 
temperature, and humidity) across eight provinces in northern and southern China from 2013 to 2018

IQR Interquartile Range
a  Given that the influenza rate has a very small value, it is denoted in parts per thousand
b  ILI + counts = Influenza rate × 10000

Provinces Rt Influenza rate 
(‰)a

ILI + countsb O3 ( ug/m3) Temperature 
(℃)

Relative 
humidity (%)

Absolute 
humidity ( g/m3)

Northern China Beijing 1.0 (0.8,2.0) 0.3 (0.1,1.2) 32.0 (11.0,116.0) 82.9 (54.0,123.4) 13.6 (1.9,23.4) 48.7 (32.1,67.0) 5.1 (2.2,12.2)

Tianjin 1.0 (0.7,1.6) 0.2 (0.0,0.8) 18.0 (3.0,82.0) 80.0 (49.4,123.0) 14.1 (2.5,24.1) 52.5 (37.2,67.5) 5.6 (2.8,12.7)

Gansu 1.0 (0.7,1.5) 0.0 (0.0,0.3) 4.0 (1.0,25.0) 95.4 (76.3,109.1) 10.8 (2.2,18.3) 54.2 (39.2,71.3) 5.5 (2.5,9.7)

Liaoning 1.0 (0.7,1.5) 0.1 (0.0,0.5) 13.0 (2.0,52.0) 83.2 (60.7,109.9) 10.5 (-2.1,20.8) 58.0 (46.8,69.9) 5.0 (2.3,11.7)

Southern China Shanghai 1.0 (0.7,1.4) 0.2 (0.1,0.6) 20.0 (7.0,57.0) 96.0 (72.8,124.2) 18.1 (9.4,24.5) 69.2 (59.4,79.1) 10.4 (6.1,17.1)

Jiangsu 1.0 (0.8,1.4) 0.3 (0.2,0.8) 34.0 (16.0,77.0) 91.1 (68.2,118.0) 16.0 (7.0,23.5) 70.7 (58.9,80.4) 8.7 (4.9,15.6)

Guangdong 1.0 (0.8,1.3) 0.3 (0.2,0.7) 33.0 (15.0,74.0) 80.1 (64.4,100.3) 23.5 (17.5,27.7) 76.2 (68.2,83.2) 16.2 (10.5,21.9)

Hunan 1.0 (0.8,1.5) 0.3 (0.1,0.7) 29.0 (12.0,70.0) 77.5 (62.3,93.9) 17.4 (9.6,24.1) 75.4 (63.9,84.4) 10.7 (6.4,17.2)

Fig. 2  The association between O3 and influenza transmissibility (Rt) of influenza in different provinces (A-H). A-D for four provinces in northern 
China (Beijing, Tianjin, Liaoning and Gansu), (E–H) for four provinces in southern China (Shanghai, Jiangsu, Guangdong and Hunan). The blue line 
refers to the R_t, and the gray shading is the 95% confidence interval for the transmissibility
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As shown in Fig.  2, the U-shaped or L-shaped asso-
ciation gave the best-fitting model for the associa-
tion between O3 and influenza transmissibility. In 
provinces with relatively high O3 concentrations (maxi-
mum > 180 µg/m3), the association between O3 and Rt is 
more likely U-shaped, such as in Shanghai, Beijing, Tian-
jin, and Jiangsu. However, in provinces with relatively 
low O3 concentrations (maximum < 180 µg/m3), the asso-
ciation between O3 and Rt is more likely to be L-shaped, 
such as in Liaoning, Gansu, Hunan, and Guangdong. In 
addition, to further explore whether this U-shaped or 
L-shaped association was universal, we conducted the 
same analysis using the aggregated data for eight prov-
inces. The results revealed a persistent U-shaped associa-
tion (Fig. 3). The permutation test indicated that the true 
time series of O3 explained a significantly larger variance 
in Rt compared the null/dummy time series of O3 (Table 
S2). Therefore, O3 is a significant driver of influenza 
transmissibility.

Quantifying the impacts of different drivers on Rt
Our multivariate regression model explained 28%–68% 
of the observed variation in Rt . Notably, a considerable 
part of the variation was explained by model 1, includ-
ing the depletion in susceptibility and/or inter-epidemic 
effects (Table 2). Incorporating O3 into model 2 slightly 
improved the model fit ( R2 ), explaining an additional 
1%–13% ( %�R2 ) of the variance in Rt (Table 2) compared 
with model 1. To control for the depletion in susceptibil-
ity, we repeated three multivariate regression analyses 

with adjusted Rt . The results showed that O3 significantly 
improved the prediction of residual Rt , and further 
inclusion of other influencing factors only marginally 
improved the model fit. We used two methods to assess 
the explanatory power of drivers on Rt , and found that 
the DLNMs explained a higher proportion of the varia-
tion in Rt than the best lag regression model (Table S3).

Discussion
Our study, which used data from 2013 to 2018 across 
eight provinces, revealed significant variations in influ-
enza epidemics and highlighted a significant association 
between O3 concentrations and influenza transmissibil-
ity. In areas with high O3 levels, we observed a U-shaped 
relationship with Rt , while an L-shaped association was 
noted in regions with lower O3. The consistent influ-
ence of O3 across all provinces underscores its pervasive 
role in influenza dynamics. Our multivariate regression 
emphasized the important effect of O3 on Rt , even when 
accounting for other factors. These findings will enhance 
our understanding of the objective relationships between 
ambient pollutants, especially O3, and the prevention and 
control of influenza epidemic.

Our results support the evidence of earlier work [11] 
on ambient O3 and influenza transmissibility showing 
a significant negative association. The combined data 
analysis for the eight provinces showed a U-shaped asso-
ciation between O3 and Rt ; this U-shaped association 
was observed for Tianjin, Beijing, Shanghai, and Jiangsu, 
while in Gansu, Liaoning, Guangdong, and Hunan, the 
association was L-shaped. An L-shaped association is 
consistent with the findings of Ali et al. [11], they studied 
the association between Rt and ambient O3 across all the 
types/subtypes of influenza. To our knowledge, this is the 
first study to report a U-shaped association between O3 
and Rt.

Differences in the shape of the association between 
O3 and Rt in may be related to the variances in ambient 
O3 concentrations. At low concentrations, O3 and Rt are 
more likely to show an L-shaped association. For exam-
ple, the maximum O3 concentration in Hong Kong did 
not exceed 140 µg/m3 in Ali et al.’s research [11] and the 
maximum O3 concentration did not exceed 180 µg/m3 in 
Gansu, Liaoning, Guangdong, and Hunan. In contrast, 
the U-shaped association between O3 and Rt may become 
more visible at high concentrations of O3 exposure. The 
maximum O3 concentrations exceeded 180  µg/m3 in 
Shanghai and Jiangsu, and those in Beijing and Tian-
jin exceeded 200 µg/m3. These four provinces showed a 
U-shaped association. Our findings are consistent with 
the conclusion of Wang et al. that exposure to both low 
concentration and extremely high concentration of ambi-
ent O3 increased the risk of influenza [27]. These results 

Fig. 3  A The predicted general U-shaped form (blue line) with 95% 
CI (shaded region) of association for O3 on influenza transmissibility; 
(B) violin plot of aggregated O3 across all the eight provinces
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consistently reflect that there may be a U-shaped concen-
tration-reaction correlation between O3 and influenza/ 
influenza transmissibility, and suggest that attention 
should be given to the causes of high ambient O3 levels, 
as appropriate measures to reduce these may be benefi-
cial for reducing influenza transmission.

Similar to previous research [11], our multivariate 
regression analysis showed that a large proportion of Rt 
variance was explained by the intrinsic factors in model 
1, and ambient O3 contributed a further 1%–13% of the 
total variance. Two main reasons may be responsible 
for the U-shaped association between O3 and influenza 
transmissibility. First, reductions in influenza transmis-
sibility may be related to the virucidal activity of O3 and 
its effect on host defense. In vitro studies have reported 
that O3 can inactivate the influenza virus within hours 
[28], and animal toxicological studies demonstrate that 

inflammation, injury, and oxidative stress are reduced 
following exposure to O3 at concentrations as low as 
300  ppb (642ug/m3)for up to 72  h [29]. In mice, con-
tinuous exposure to 0.5  ppm (1072ug/m3)O3 could 
reduce the lung injury induced by influenza via acti-
vate the immune suppression mechanism [30]. Inha-
lation of ambient O3 has also been shown to enhance 
type-2 immune responses that promote allergy- and 
asthma-related responses in healthy human subjects 
and susceptible populations [31]. Second, higher influ-
enza transmissibility may be associated with a positive 
relationship between short-term, high-concentration O3 
exposure and respiratory infection. For example, previ-
ous studies of animals provide evidence for increased 
susceptibility to pneumonia infection after exposure to 
high concentrations (2 ppm: 4885 ug/m3 ) of O3 [32]; and 
animal studies also report increased injury markers and 

Table 2  Percentage of the variance of the instantaneous reproduction number ( Rt ) explained by the drivers, across respective 
provinces from 2013 to 2018. The results are based on the distributed lag model (DLNMs) with lags of 0–2 weeks

R2 and df  are measures of R-square and degree of freedom from the regression model respectively

%�R2 measured the change in the explained variance (i.e., variance explained by either model 2 or model 3) in comparison to the model 1. For model 2, the equation 
is: %�R2 = |(R2model2 − R2model1)| × 100 . For model 3, the equation is: %�R2 = |(R2model3 − R2model1)| × 100

a  Model1: factors affecting Rt (or adjusted Rt ) include depletion of susceptibles, and /or inter-epidemic factors
b  Model2: model 1 for Rt plus O3
c  Model3: model 1 for Rt plus O3 and other drivers

Provinces Models With unadjusted Rt With adjusted Rt

R2 %△R2 df R2 %△R2 df

Northern China Beijing Model1a 0.39 - 719 0.13 - 719

Model2b 0.43 5.00 711 0.25 12.00 711

Model3c 0.52 13.00 677 0.54 41.00 677

Tianjin Model1a 0.50 - 663 0.33 - 663

Model2b 0.52 2.00 655 0.50 17.00 655

Model3c 0.61 11.00 621 0.71 38.00 621

Gansu Model1a 0.42 - 488 0.03 - 488

Model2b 0.46 4.00 484 0.37 34.00 484

Model3c 0.56 14.00 450 0.48 45.00 450

Liaoning Model1a 0.08 - 623 0.06 - 623

Model2b 0.21 13.00 615 0.39 33.00 615

Model3c 0.28 20.00 587 0.45 39.00 587

Southern China Shanghai Model1a 0.64 - 828 0.40 - 828

Model2b 0.65 1.00 820 0.42 2.00 820

Model3c 0.68 3.00 800 0.45 3.00 800

Jiangsu Model1a 0.43 - 831 0.04 - 831

Model2b 0.46 3.00 824 0.45 41.00 824

Model3c 0.47 4.00 818 0.43 39.00 818

Guangdong Model1a 0.20 - 800 0.07 - 800

Model2b 0.25 5.00 792 0.26 19.00 792

Model3c 0.39 19.00 768 0.49 42.00 768

Hunan Model1a 0.28 - 814 0.35 - 814

Model2b 0.30 2.00 806 0.56 21.00 806

Model3c 0.38 10.00 778 0.51 16.00 778
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inflammatory responses following O3 exposure at con-
centrations of 1 ppm (2142ug/m3)or more [33, 34].

There are some potential limitations in this study. First, 
the seasonal influenza data were collected from surveil-
lance sentinel hospitals, and values varied between years, 
which could have negatively affected the results. Second, 
observations from other parts of the world would help 
evaluate the studied associations in other climatic set-
tings and populations. Third, we interpolated daily inci-
dence rates from the weekly data, which may artificially 
reduce variability and lead to underestimated effects. 
Thus, where available, using daily positive ILI rate data 
would likely prove advantageous.

Conclusions
From 2013–2018, 54 influenza epidemics were stud-
ied across eight provinces. A significant correlation was 
found between O3 concentrations and influenza trans-
missibility. High O3 regions showed a U-shaped rela-
tionship with transmissibility, while low O3 areas had 
an L-shaped association. This U-shaped finding is novel, 
emphasizing O3’s role in influenza dynamics. In various 
climatic conditions, this study provides supplemental evi-
dence regarding the impact of O3 on influenza, enriching 
research on environmental factors driving influenza vari-
ations. These findings could be instrumental for public 
health strategies, suggesting the need to surveillance and 
manage ambient O3 levels to mitigate influenza spread.
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