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Abstract 

Background Understanding community transmission of SARS-CoV-2 variants of concern (VOCs) is critical for disease 
control in the post pandemic era. The Delta variant (B.1.617.2) emerged in late 2020 and became the dominant VOC 
globally in the summer of 2021. While the epidemiological features of the Delta variant have been extensively studied, 
how those characteristics shaped community transmission in urban settings remains poorly understood.

Methods Using high-resolution contact tracing data and testing records, we analyze the transmission of SARS-CoV-2 
during the Delta wave within New York City (NYC) from May 2021 to October 2021. We reconstruct transmission 
networks at the individual level and across 177 ZIP code areas, examine network structure and spatial spread patterns, 
and use statistical analysis to estimate the effects of factors associated with COVID-19 spread.

Results We find considerable individual variations in reported contacts and secondary infections, consistent 
with the pre-Delta period. Compared with earlier waves, Delta-period has more frequent long-range transmission 
events across ZIP codes. Using socioeconomic, mobility and COVID-19 surveillance data at the ZIP code level, we find 
that a larger number of cumulative cases in a ZIP code area is associated with reduced within- and cross-ZIP code 
transmission and the number of visitors to each ZIP code is positively associated with the number of non-household 
infections identified through contact tracing and testing.

Conclusions The Delta variant produced greater long-range spatial transmission across NYC ZIP code areas, likely 
caused by its increased transmissibility and elevated human mobility during the study period. Our findings highlight 
the potential role of population immunity in reducing transmission of VOCs. Quantifying variability of immunity 
is critical for identifying subpopulations susceptible to future VOCs. In addition, non-pharmaceutical interventions lim-
iting human mobility likely reduced SARS-CoV-2 spread over successive pandemic waves and should be encouraged 
for reducing transmission of future VOCs.
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Background
Since September 2020, the global circulation of SARS-
CoV-2 has been characterized by the continual evolution 
of the novel coronavirus and the emergence of multiple 
new variants [1, 2]. The Delta variant (B.1.617.2), which 
emerged in India during late 2020, was first characterized 
in early 2021 [3]. It was designated a variant of concern 
(VOC) by the World Health Organization (WHO) on 
May 1, 2021. In the following months, the Delta variant 
rapidly spread across the world and replaced previously 
circulating VOCs [4].

Epidemiological studies have highlighted that the Delta 
variant was more transmissible than previous VOCs [5–
7]. Studies from UK [8], Canada [9], Singapore [10] and 
Scotland [11] reported an increased risk of hospitaliza-
tion for the Delta variant compared to the Alpha variant. 
Further studies suggested a substantial level of immunity 
escape for the Delta variant [12–15], resulting in re-infec-
tions among previously infected populations and break-
through infections among vaccinated people [16–19].

Despite an improved understanding of the epide-
miological features of the Delta variant, much remains 
unknown regarding how these characteristics manifest 
in population-level community transmission in urban 
settings. Addressing this knowledge gap is particularly 
challenging due to heterogeneous immunity during the 
Delta wave, caused by individual differences in natural 
infection and vaccination, as well as non-pharmaceutical 
interventions implemented to limit viral transmission. 
Data collected through contact tracing can provide valu-
able insights into the community transmission of infec-
tious diseases [20]. In this study, we used large-scale 
contact tracing data in New York City (NYC) to under-
stand community transmission of SARS-CoV-2 during 
the Delta wave. High-resolution data on close contacts 
(excluding facility investigation) and individual-level 
COVID-19 testing results linked to the contact tracing 
records enabled reconstruction of the transmission net-
works at individual and ZIP code levels.

Methods
Data sources
We analyzed the contact tracing data in NYC collected 
by the contact tracing team from May 11, 2021 to Octo-
ber 14, 2021. The contact tracing data contain informa-
tion gathered from contact tracing phone calls, such as 
the age and home locations of index cases, their close 
contacts, and contact type. Contacts identified via facil-
ity investigations were excluded from the analysis. Index 
cases and their contacts were identified in the dataset 
using a matching algorithm based on personal identifying 
information (see details in Supplementary information). 
We cross-linked the contact tracing data with COVID-19 

testing records provided by the NYC Department of 
Health and Mental Hygiene (DOHMH). Testing results 
for reported contacts were identified for the analysis. 
We refer to the contact tracing data and the cross-linked 
COVID-19 testing results as the Test and Trace dataset.

Demographic and socioeconomic data for NYC ZIP 
code tabulation areas (ZCTA) were compiled from 
the 5-year American Community Survey (ACS) [21]. 
COVID-19 surveillance data in NYC at the MOZCTA 
(modified ZIP code tabulation area) level are available 
at the GitHub repository maintained by DOHMH [22]. 
Vaccination data were obtained from the public reposi-
tory of DOHMH [23]. Human mobility data recording 
the weekly number of visitors to points of interest (POIs, 
e.g., restaurants, grocery stores, etc.) in NYC were pro-
vided by SafeGraph [24], which aggregates anonymized 
location data from mobile phone applications to provide 
insights about physical places. We aggregated the mobil-
ity data to ZIP code level to estimate the weekly number 
of visitors (regardless of visitors’ location of residence) to 
POIs in each ZIP code area. We mapped the data from 
the ZCTA level to the MOZCTA level to align the geo-
graphical scale in the statistical analysis. In total, we col-
lected data for all 177 MOZCTAs in NYC. For simplicity, 
we refer to MOZCTAs as ZIP code areas in the following 
analyses.

Reconstructing transmission networks
Persons infected with SARS-CoV-2 can be contagious 
before symptom onset or even without symptoms [25–
27]. Therefore, transmission might occur from an index 
case to a reported contact or vice versa. To reflect the 
uncertainty in the direction of transmission, we used 
a maximum-likelihood method to infer transmission 
chains based on the risk of transmission across differ-
ent age groups. This method has been previously used to 
reconstruct transmission chains in the pre-Delta period 
[20]. Specifically, for symptomatic infections, we ran-
domly sampled the infection date of each infected per-
son using the earliest symptom onset date informed by 
the distribution of incubation period (i.e., interval from 
infection to symptom onset) [28]; for asymptomatic 
infections, we sampled the infection date using specimen 
collection date, where the interval from infection date to 
date testing positive was estimated using viral dynamics 
[29]. The sampled infection dates were used to determine 
the transmission direction between index cases and their 
infected contacts. We then used the Test and Trace data 
to estimate the probability of transmission for exposures 
across age groups. Finally, we randomly sampled 1000 
possible transmission networks comprised of all inferred 
transmission links and selected the network that maxi-
mized the transmission likelihood using the cross-age 
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group transmission probability. Further technical details 
can be found in Supplementary information.

To uncover potentially stable structural features of the 
transmission networks, we focused on a larger spatial 
scale than ZIP codes and identified communities, clusters 
of ZIP codes that were tightly connected by transmis-
sion. This approach acknowledges that the transmission 
of COVID-19 is not confined to neighboring ZIP codes 
and the patterns of connectivity between geographically 
distant communities may be persistent. We detected 
communities using a greedy search algorithm, which 
was chosen to optimize the modularity score [30, 31]. 
Modularity measures the strength of dividing a network 
into clusters: a network with high modularity has dense 
connections among the nodes within clusters but sparse 
connections between nodes in different clusters. This 
analysis was performed using the function “cluster_fast-
greedy” in R package igraph [32].

Statistical analysis
We used conditional autoregressive (CAR) models [33–
35] to assess the associations of non-household within- 
and cross-ZIP code transmission with demographic, 
socioeconomic, disease surveillance, vaccination cover-
age, and human mobility features. Pearson correlation 
coefficients between these variables are shown in Fig. S1. 
Specifically, we fitted a Poisson generalized linear mixed 
model (GLMM) where the random effect was modeled 
by CAR priors to account for the inherent spatial-tem-
poral autocorrelation present in the disease transmission 
data. Denote ywithin(i, t) as the weekly numbers of non-
household within-ZIP code transmission events in ZIP 
code i and week t . The model for ywithin(i, t) is described 
by:

(1)

log ywithin(i, t) = log(population(i))+ β1

× log population density(i)

+ β2 × log weekly cases per capita(i, t)

+ β3 × log weekly tests per capita(i, t)

+ β4 × cumulative cases per capita(i, t)

+ β5 × % Black resident(i)+ β6

× % Hispanic resident(i)+ β7

× % resident over 65(i)+ β8

×median household income(i)+ β10

×mean household size(i)+ β11

× % fully vaccinated resident(i, t)

+ β12 × weekly POI visitors per capita(i, t)

+ ψit + ǫit .

Here  log(population(i)) is the offset, ψit is the ran-
dom effect for location i and week t , and ǫit is the error 
term. All covariates were standardized (mean zero and 
standard deviation one) before the regression analysis. 
The unit of each variable (i.e., the standard deviation of 
the original data) is reported in Table S1. We used log-
transformed population as an offset, assuming the num-
bers of transmission events are proportional to local 
population. We used weekly cases per capita to represent 
the local force of infection that impacts the number of 
observed transmission events. The model for cross-zip 
code transmission is defined using the same Eq.  (1). In 
the final model, we aimed to minimize multicollinearity 
by ensuring that the variance inflation factor (VIF) was 
less than 5 for all variables. While additional variables, 
such as percent bachelor’s and the opportunity to work 
from home, are expected to influence transmission, both 
were found to be correlated with the existing variables 
in the model. The models were implemented using the R 
package CARBayesST, in which model coefficients and 
parameters were estimated using a Markov chain Monte 
Carlo (MCMC) algorithm. Details on the implementa-
tion of the MCMC algorithm can be found in Ref. [33].

Results

Population mixing and age profile of Infection
During the study period, the Delta variant displaced 
other VOCs and became dominant in the city (Fig. 1A) 
[22]. We observed a typical three-band pattern in the 
contact matrix across age groups, representing frequent 
contacts among people with similar ages and inter-gener-
ational contacts within household (Fig. 1B). In particular, 
the number of reported contacts among young adults (20 
to 40 years old) was considerably higher than other age 
groups. Young adults constituted the majority of index 
cases, similar to the pre-Delta period [20]; however, an 
increased number of children and adolescents below 15 
years old were infected during the Delta wave (Fig. 1C). 
Young adults aged 20 to 40 years old were also more likely 
to be reported as close contacts (Fig. 1D). Compared with 
the pre-Delta period, infections among children and ado-
lescents became more prevalent.

Structure of exposure and transmission networks
We reconstructed the exposure networks between index 
cases (both persons tested positive and symptomatic 
contacts who completed case investigation) and contacts. 
The number of contacts reported by cases was highly 
skewed (Fig.  2A), with most index cases reporting less 
than three close contacts. We further reconstructed the 
transmission networks between index cases and their 
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contacts who tested positive using PCR or antigen tests. 
Here we excluded probable cases in contacts from the 
transmission network and focused on confirmed trans-
mission events. The number of confirmed secondary 
infections per index case had a large individual variation 
(Fig.  2B). We visualized examples of exposure networks 
(Fig.  2C) and transmission networks (Fig.  2D), using 
colors to indicate the borough where each person lives 
(Bronx, Brooklyn, Manhattan, Queens, Staten Island, 
outside NYC, and unknown). While most exposures and 
transmission events involved residents living within the 
same borough, cross-borough exposures and transmis-
sions were also observed. The heterogeneity of exposure 
and transmission networks was comparable to that of the 
pre-Delta period [20, 28, 36, 37] and therefore might be a 
persistent epidemiological feature of SARS-CoV-2. How-
ever, the maximum numbers of reported contacts and 
secondary infections were lower (exposure: pre-Delta 77 
versus Delta 12; infection: pre-Delta 7 versus Delta 5).

Community transmission of SARS‑CoV‑2
We compared cumulative reported cases at the ZIP code 
level in the pre-Delta and Delta periods (Fig.  3A-B). 
Staten Island and the Bronx reported a large number of 

infections during the Delta wave (Fig. 3B), similar to the 
pattern in the pre-Delta period (Fig. 3A). The number of 
confirmed cases in Manhattan remained low before and 
after the emergence of Delta. In contrast, certain com-
munities in Queens and Brooklyn with high transmission 
during the pre-Delta period were less impacted by the 
Delta variant.

To examine the spatial transmission pattern across 
ZIP code areas, we aggregated cross-ZIP code transmis-
sion events to form a weighted network with directed 
links. Each node represents one ZIP code area, and the 
weight of each directed link represents the number of 
transmission events from one location to another. We 
used network community detection to identify clusters 
of ZIP codes that were tightly connected by transmission 
within each cluster. The resulting network communities, 
highlighted with distinct colors, were compared for the 
pre-Delta period (Fig. 3C) and the Delta wave (Fig. 3D). 
Some ZIP code clusters in locations such as the Bronx, 
Staten Island and southern Brooklyn persisted over time; 
however, ZIP code clusters during the Delta wave were 
more fragmented in Queens, Brooklyn, and Manhat-
tan, indicating a greater number of small clusters with 
strong localized transmission. In addition, we found 

Fig. 1 Emergence of the Delta variant and contact patterns in NYC. A Percentage of SARS-CoV-2 variants in NYC from May 1 2021 to September 
25 2021. The ancestral virus strain is classified as part of “Others”. Data were obtained from the NYC DOHMH public repository (https:// github. com/ 
nyche alth/ coron avirus- data/ tree/ master/ varia nts). B The contact mixing matrix showing the total number of reported contacts among age groups 
during the study period. C, D Age distributions of index cases and self-reported contacts (solid lines). The age distribution of NYC residents is shown 
by pink bars

https://github.com/nychealth/coronavirus-data/tree/master/variants
https://github.com/nychealth/coronavirus-data/tree/master/variants
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that the number of weekly visitors increased during the 
Delta wave, compared to the pre-Delta period (p < 0.001). 
Given the higher transmissibility of the Delta variant and 
increased mobility during the summer of 2021, both local 
and long-range transmission occurred more frequently. 
The increase in long-range transmission, in particu-
lar, may have created non-local transmission clusters. 
We examined distributions of index cases who initiated 
transmission and their infected contacts across ZIP codes 
and found that certain ZIP codes were more involved in 
the spatial spread of COVID-19 (Fig. S2). Geographi-
cally, most cross-ZIP code transmission events occurred 
within 10 km; however, longer-distance transmission was 
also evident (Fig. S2).

Factors associated with COVID‑19 spread
For both within- and cross-ZIP code transmission, the 
model identifies strong negative effects of population 
density, weekly tests per capita, and cumulative cases per 
capita, as well as a strong positive effect of weekly cases 
per capita (Fig. 4). Thus, during the Delta wave, ZIP code 
areas with lower population density, a higher ongoing 

infection, a lower testing effort, and a lower level of prior 
infection (measured by cumulative confirmed cases in 
each location) had more transmission events. A larger 
mean household size is associated with lower transmis-
sion for both within- and cross-ZIP code spread. Vacci-
nation was not found to be associated with SARS-CoV-2 
transmission during the Delta wave, while increased POI 
visitors per capita is associated with a higher level of 
within- and cross-ZIP transmission. The model did not 
find a significant association between transmission and 
most demographic (% Black residents, % Hispanic resi-
dents, % 65 + population) and socioeconomic (Median 
household income, % residents with bachelor) factors 
(except for a weak effect of % 65 + population on cross-
ZIP code transmission).

Discussion and conclusions
In this study, using detailed contact tracing data and 
testing records, we analyzed the transmission of SARS-
CoV-2 during the Delta wave in NYC from May 2021 to 
October 2021. During the study period, the transmission 

Fig. 2 Structure of exposure and transmission networks. A Distribution of the number of reported contacts. B Distribution of secondary cases 
caused by index cases identified in the testing results. C–D Examples of exposure and transmission networks. Colors indicate the home location 
of each person (five boroughs in NYC, outside NYC, and unknown)
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of SARS-CoV-2 is likely driven by young adults aged 20 to 
40 years old, consistent with the pre-Delta period. How-
ever, infections among children and adolescents below 15 
years old substantially increased. Potential causes include 
the low vaccination coverage in this subgroup (vaccines 
for adolescents aged 12 through 15 became available in 
May 2021) and increased transmissibility of the Delta 

variant. Heterogeneity in the numbers of close contacts 
and secondary infections persisted during the Delta 
wave, but the maximum number for self-reported con-
tacts was lower.

We observed a less clustered community transmis-
sion of SARS-CoV-2 among ZCTAs during the Delta 
wave, with more frequent long-range transmission events 

Fig. 3 Community transmission of SARS-CoV-2 during the second wave and the Delta wave in NYC. A The cumulative number of reported 
COVID-19 cases in each ZIP code from October 1 2020 to May 10 2021. B The cumulative number of reported COVID-19 in each ZIP code from May 
11 2021 to October 14 2021. C, D Clusters of ZIP code areas that were strongly connected by transmission events during the second wave (C) 
and the Delta wave (D). Clusters were identified using a network community detection method applied to weighted networks. Different clusters are 
highlighted using colors
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occurring in Queens, Brooklyn, and Manhattan. This is 
likely the result of the increased transmissibility of the 
Delta variant and increased human contact following the 
gradual relaxation of control measures. Coupled with the 
increase in local transmission, the increase in long-range 
transmission of SARS-CoV-2 across NYC communities 
made containment of the virus in the metropolitan area 
challenging.

Many of the findings are at odds with the results from 
the same analysis for the pre-Delta period [20]. For 
instance, the effects of population density and mean 
household size have opposite signs, and the effects of 
many factors that were previously found significant dis-
appeared during the Delta wave. These varied findings 
are possibly due to changes to population immunity 
in different ZIP code areas acquired from prior infec-
tion. In general, communities hit hard in the pre-Delta 
period (with high population density and large house-
hold size) may have possessed higher immunity against 
the Delta variant. Prior infection can confer protection 
against repeat infection with the Delta variant, modu-
lating transmission of subsequent VOCs. The effect of 
vaccination on population-level transmission was not 
observed, possibly due to high overall vaccine coverage 
across the city. Our findings underscore the importance 

of documenting variability in immunity across a popula-
tion, i.e. the ‘immunity landscape’, to identify sub-popula-
tions at potential high-risk for infection by future VOCs 
[38]. With a complex combination of natural infection, 
vaccination, boosting, re-infection and breakthrough 
infection, the evolution and transmission of new variants 
will be shaped by this immunity landscape. POI visitors 
per capita were found to be a significant driver of SARS-
CoV-2 transmission, as during prior waves. This implies 
that non-pharmaceutical interventions limiting person-
to-person contact likely remained effective over succes-
sive pandemic waves and are a viable option for reducing 
transmission of VOCs.

A few limitations exist in this study. Firstly, self-
reported contact tracing data are subject to observa-
tional biases. These biases include differential reporting 
rates by contact type (overwhelmingly biased to house-
hold contacts) and age group, and the tendency of 
contacts to get tested. Due to the incomplete records 
of contacts as well as strong under-reporting of infec-
tions [39, 40], identified exposure and transmission 
networks are highly fragmented. As a result, the trans-
mission networks are more reflective of ego-networks 
given the extremely incomplete elicitation of contacts 
and missed transmissions. This likely has implications 

Fig. 4 Effects of various features on the transmission of SARS-CoV-2 in NYC during the Delta wave. Coefficients for non-household within-ZIP code 
transmission and cross-ZIP code transmission are shown for 11 covariates. Median estimates and 95% CIs are presented. The unit of each variable 
is reported in Table S1
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for generalizing the findings of the observed network 
structure to the population level. Secondly, several 
VOCs co-circulated in May and June of 2021. Findings 
in this study are not exclusively for the Delta variant. 
Thirdly, matching of close contacts and their testing 
results may be incomplete due to missing and incorrect 
personal identifying information. Lastly, human mobil-
ity data derived from mobile devices may have been 
biased across POI types and age groups.
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