
Li et al. BMC Infectious Diseases          (2023) 23:679  
https://doi.org/10.1186/s12879-023-08667-1

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Infectious Diseases

Reconstructing COVID-19 incidences 
from positive RT-PCR tests by deconvolution
Mengtian Li1,2, Jiachen Li1,3, Ke Wang1,3 and Lei M. Li1,3* 

Abstract 

Background The emergency of new COVID-19 variants over the past three years posed a serious challenge 
to the public health. Cities in China implemented mass daily RT-PCR tests by pooling strategies. However, a random 
delay exists between an infection and its first positive RT-PCR test. It is valuable for disease control to know the delay 
pattern and daily infection incidences reconstructed from RT-PCR test observations.

Methods We formulated the convolution model between daily incidences and positive RT-PCR test counts as a lin-
ear inverse problem with positivity restrictions. Consequently, the Richard-Lucy deconvolution algorithm was used 
to reconstruct COVID-19 incidences from daily PCR tests. A real-time deconvolution was further developed based 
on the same mathematical principle. The method was applied to an Omicron epidemic data set of a bar outbreak 
in Beijing and another in Wuxi in June 2022. We estimated the delay function by maximizing likelihood via an E-M 
algorithm.

Results The delay function of the bar-outbreak in 2022 differs from that reported in 2020. Its mode was shortened 
to 4 days by one day. A 95% confidence interval of the mean delay is [4.43,5.55] as evaluated by bootstrap. In addition, 
the deconvolved infection incidences successfully detected two associated infection events after the bar was closed. 
The application of the real-time deconvolution to the Wuxi data identified all explosive incidence increases. The 
results revealed the progression of the two COVID-19 outbreaks and provided new insights for prevention and control 
strategies, especially for the role of mass daily RT-PCR testing.

Conclusions The proposed deconvolution method is generally applicable to other infectious diseases if the delay 
model can be assumed to be approximately valid. To ensure a fair reconstruction of daily infection incidences, 
the delay function should be estimated in a similar context in terms of virus variant and test protocol. Both the delay 
estimate from the E-M algorithm and the incidences resulted from deconvolution are valuable for epidemic preven-
tion and control. The real-time feedback is particularly useful during the epidemic’s acute phase because it can help 
the local disease control authorities modify the control measures more promptly and precisely.
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Introduction
The emergence of new COVID-19 variants over the past 
three years has posed a serious challenge to public health. 
From August 2021 to the fall of 2022, the Chinese public 
health department adopted a dynamic zero-COVID policy 
that aimed to eliminate local transmission through rigorous 
testing, tracing, and isolation. Once a local outbreak of the 
epidemic occurs, it is important for decision-makers to get 
an accurate and rapid analysis of the epidemic, including 
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the number of people who have been infected, the scope 
of infection, and the speed of transmission. In order to get 
real-time infection information, cities or regions in China 
implemented mass daily RT-PCR (Reverse Transcription 
Polymerase Chain Reaction) tests by the pooling strategy. 
However, the RT-PCR test, though recognized as the gold 
standard in COVID-19 diagnosis [1], has a high false-neg-
ative rate during the first few days after infection [2]. The 
delay between one’s infection and his First Positive RT-
PCR Test (FPRT) is a random variable, whose distribution 
depends on factors such as the pathological characteristics 
of the new coronavirus variant, the testing strategy, and the 
reporting pipeline arrangement. Three questions arise nat-
urally: 1. Can we estimate the delay pattern with accuracy 
evaluation? 2. How can we reconstruct the daily infection 
incidences from the daily positive PCR test series? 3. Can 
we find some insights from the above two results to guide 
the policy in the case of an epidemic outbreak?

In the literature, Goldstein et  al. [3] utilized Richard-
Lucy deconvolution [4, 5] to reconstruct the incidence 
curves for the 1918 influenza epidemic from a recorded 
daily death curve and a time-to-death distribution. In the 
scenario of COVID-19, Maria Jahja [6] considered the 
delay between symptom onset and reporting dates by the 
local public health authorities.

In contrast, we focused on the delay from infection-by-
contact to one’s FPRT date in this article. Specifically, we 
assume the availability of mass daily RT-PCR tests. During 
2022 in China, mass daily RT-PCR tests in relevant regions 
were a common practice once an outbreak was reported 
in a city. This study used the daily FPRT counts from two 
Omicron outbreaks, one in Beijing, and the other in Wuxi.

We represent the observed FPRT series as a convolu-
tion of the infection series and the delay distribution in a 
COVID-19 epidemic. The reconstruction of the daily infec-
tion incidences is nothing but deconvolution, which is gen-
erally ill-posed as an inverse problem. Since both counts 
and delay distribution are nonnegative, we formulated the 

problem as a linear inverse problem with positivity restric-
tions (LININPOS). The non-negativity mitigates the ill-
posedness greatly by converting the problem into a convex 
optimization one [7, 8]. Moreover, by the same mathemati-
cal principles, we developed a real-time deconvolution algo-
rithm that enables us to reconstruct daily incidence counts 
timely as an outbreak progresses. We used the proposed 
method to analyse public data from a bar-related Omi-
cron outbreak in Beijing in June 2022. First, we estimated, 
by maximizing likelihood, the delay function based on 258 

bar-visitors. Then the estimated delay function was put into 
the deconvolution algorithm to reconstruct the daily inci-
dences of the other bar-involver group. The inferences made 
from the outbreak of mere 393 cases unveiled insights into 
the transmission and PCR test characteristics of the Omi-
cron virus. Furthermore, we applied the real-time decon-
volution algorithm to the epidemic in Wuxi City, which 
occurred immediately after the bar-outbreak in Beijing.

The deconvolution approach potentially has several real-
world applications. First, the estimate of the delay function 
is a key epidemiological parameter relating to the incu-
bation of the virus variant. Second, the daily incidences 
reconstructed from deconvolution would help the local 
disease control authorities identify significant infection 
events retrospectively and understand the transmission 
pattern. Third, the real-time deconvolution is particularly 
useful during the epidemic’s acute phase because it can 
help the local disease control authorities modify the con-
trol measures swiftly. Finally, the code of the approach is 
publicly-available as Supplementary materials.

Methods
The convolution model
Consider an epidemic chain in which a total of N 
patients are reported within n days. Notice that only 
patients who have at least one positive RT-PCR test are 
considered. Denote the series of daily FPRT count as 
G = (G1,G2, . . . ,Gn) , and the series of daily infection 
count as F = (F1, F2, . . . , Fn) . The former is observed while 
the latter is not. For each patient indexed by k, denote his 
infection date and FPRT date respectively by random vari-
ables X(k) and Y(k) . Suppose that for all infected indi-
viduals, their delay days from infection to testing positive, 
follow the same probability distribution, namely,

where m is the maximum delay. By the calculation of 
total probability, we have

If we write the probability as the expecta-
tion of an indicator variable, the above Eq. (2) 
becomes: E[I(Y(k)=j)] =

m
t=0 E[I(X(k)=j−t)]wt . Sum-

ming over all individuals k ∈ {1, 2, . . . ,N } , we get 
E[Gj] =

∑m
t=0 E[Fj−t ]wt . Let w � (wt) , the simple con-

volution equation is established:

where ∗ denotes the convolution operator.

(1)
P(Y(k) = s + t|X(k) = s) � wt , ∀s ∈ {1, 2, . . . , n}, t = 0, 1, . . . ,m,

(2)P(Y(k) = j) =

m
∑

t=0

P(X(k) = j − t)P(Y(k) = j|X(k) = j − t), j = 1, 2, . . . , n.

(3)E[G] = E[F] ∗ w,
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Estimate the daily incidences by the Richard‑Lucy 
deconvolution
A fair estimate of F is its expectation. The expectation 
of G in (3) can be replaced by its observation. When the 
delay distribution w is known, we can reconstruct F by 
deconvolution. Since all elements of Fi,Gj ,wt are non-
negative, this is a typical LININPOS problem defined by 
Vardi and Lee [7]. Remember 

∑

i Fi =
∑

j Gj = N  and 
∑

t wt = 1 , normalizing both sides of (3) by dividing N 
makes them probability mass functions over day indices 
{1, 2, . . . , n} . Denote

Denote the reconstructed values by F̂ . Due to varia-
tions, the difference between G and F̂ ∗ w are not nec-
essarily zero. A natural measure of goodness of fit is the 
Kullback-Leibler divergence proposed in [7], namely, we 
solve F̂ by minimizing the following:

Using a heuristic approach to optimizing the diver-
gence, Vardi and Lee [7] proposed an E-M algorithm, 
which turned out to be nothing but the Richard-Lucy 
deconvolution. Li and Speed [8] proved its convergence 
directly by showing that each iteration reduces the 
Kullback-Leibler divergence, which is a convex function 
defined over a convex set. Since it is an optimization 
problem subject to nonnegativity constraints, they pro-
vided the Kuhn-Tucker condition that the minimizer of 
(5) satisfies (see Supplementary Note S3). The Richad-
Lucy algorithm that we estimate F̂ is as follows.

 

Algorithm 1 The Richard-Lucy deconvolution algorithm

(4)fi =
Fi

N
, gj =

Gj

N
, i, j = 1, .., n.

(5)DKL(G||F̂ ∗ w) �

n
∑

j=1

Gj log

(

Gj
∑

i F̂iwj−i

)

.

Real‑time deconvolution
Crucial to infectious disease control is the availabil-
ity of real-time incidence counts of the current infec-
tions, particularly during the pandemic’s acute phase. 
However, Algorithm  1 needs the complete FPRT series 
{Gj , j = 1, 2, · · · , n} so that the detected infection events 
can only be traced and investigated towards the end of an 
outbreak. To have a more timely tool, we further proposed 
a real-time deconvolution algorithm by a modification to 
the Richard-Lucy algorithm.

In this subsection, we consider a more practical assump-
tion in which only the FPRT counts up to the K-th (K < n) 
day are known. We denote the truncated FPRT series as 
G1:K = (G1, . . . ,GK ) . In this case, the equation between 
the infection and the FPRT becomes:

Let NK �
∑K

j=1Gj , which denotes the sum of positive 
cases reported up to day K. Let

Then the normalized parameters 
g1:K = (g1, . . . , gK ), f1:K = (f1, . . . , fK ),W = (wt) form the 
following equation:

Denote the first K terms of F̂ by F̂1:K . Accordingly, we 
solve F̂1:K by minimizing the following function subject to 
the condition (6):

K
∑

j=1

Gj =

K
∑

j=1

j
∑

i=1

Fiwj−i,

fi =
Fi

NK
, gj =

Gj

NK
, i, j = 1, . . . ,K .

(6)
K
∑

i=1

(

K−i
∑

t=0

wt

)

fi =

K
∑

j=1

gj = 1.



Page 4 of 10Li et al. BMC Infectious Diseases          (2023) 23:679 

DKL

(

G1:K ||F̂1:K ∗ w
)

�

K
∑

j=1

Gj log

(

Gj
∑

i F̂iwj−i

)

.
Similarly, we derived the Kuhn-Tucker condition 

(details c.f. Supplementary Note S4), which led to the 
deconvolution algorithm that estimates F̂1:K  as follows:

 

Algorithm 2 The real-time deconvolution algorithm on day K 

Compared to Algorithm  1, in the denominator of the 
iterative formula, Algorithm  2 has an extra term 
(

∑K−i
t=0 wt

)

 , which depends on the current index K. 
Another modification is that in real-time algorithm, we 
initialize F̂1:K  by the counts deconvolved from observa-
tions up to day (K − 1).

According to the Omicron delay function esti-
mated from the bar-visitors, the sensitivity of the 
PCR test is zero up to day 2 after infection, that is, 
w0 = w1 = w2 = 0 . In other words, on day K we have no 
knowledge about the infection incidences on day (K − 1) 
and (K − 2) at all. Consequently, the real-time deconvo-
lution on day K can only deconvolve the infection counts 
up to day (K − 3).

Results
An Omicron outbreak at Heaven Supermarket Bar 
in Beijing
An Omicron outbreak occurred at Heaven Supermar-
ket Bar, Beijing, in early June 2022. This event separated 
itself from other infection events reported earlier and 
offered a valuable dataset for studying its transmission 
pattern. Due to the persistent reports of COVID-19 cases 
since April and the increasing trend in May, the Beijing 
government imposed certain restrictions on business 
involving people gathering in relevant regions of the city 

until PCR-positive counts reached dynamic zero for a 
week. The restriction was lifted on June 6th; however, on 
exactly the same day an Omicron outbreak occurred at 
Heaven Supermarket Bar. The outbreak was single-origin 
yet explosive in nature and widespread in scope. Since 
the city was on high alert, measures were taken immedi-
ately and the spreading was put down completely within 
three weeks.

We collected the public daily FPRT counts from June 9 
to 25 at the official website of Beijing Municipal Health 
Commission [9] (see Supplementary Table S1). A total 
of 393 cases had been traced back to the bar. They can 
further be partitioned into two groups: (A) 258 individu-
als who were reported to have visited the bar in person, 
referred to as “visitors”; (B) 135 individuals who had 
not visited the bar and were infected by previous infec-
tors, referred to as “involvers”. The 258 visitors in group 
A were known to be infected at the bar from June 6 to 9 
whereas they were reported PCR test-positive from June 
9 to 15. Based on the data of visitors, we first obtained 
the maximum likelihood estimate (MLE) of the delay 
distribution w by an E-M algorithm, which imputed the 
daily incidences of these visitors Fvis as well. Next, we 
reconstructed the daily incidences of the involvers Finv in 
group B from their daily FPRT count series by the Rich-
ard-Lucy algorithm. Figure 1a illustrates the flow diagram 
of the research design.
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The PCR delay distribution of the Omicron variant
In 2020, researchers at Johns Hopkins University [2] 
combined several published public data sets to study the 
false-negative rate of RT-PCR test by days since infection. 

Based on their estimate of the false-negative rate, we 
computed the corresponding PCR delay distribution 
of COVID-19 in 2020 as shown at the top in Fig. 1b. In 
contrast, we estimated the PCR delay distribution of the 

Fig. 1 a The flow diagram of our research on the bar epidemic. b A comparison of the delay distributions between 2020 and 2022. c Results 
for re-estimating the delay distribution with perturbed {Gj} s. The top plot is perturbed by resampling from the multinomial distribution 
with the empirical frequencies, and the bottom plot is perturbed by adding a normal noise
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Omicron variant in Beijing in 2022 based on the Heaven 
Supermarket Bar epidemic data via an E-M algorithm 
[10], c.f. details in Supplementary Notes.

Comparing the two delay distributions, we can see that 
the delay between infection and one’s FPRT has been sig-
nificantly reduced in 2022. Specifically, both the mode 
and median of delay days have been shortened from 5 to 
4 days, and the expectation has decreased from 5.022 to 
4.67. The total probability of being PCR-positive within 5 
days since exposure increases from 73.2% to 86.1%.

A related parameter in epidemiology is the incubation 
period, which is defined as the interval between the date 
of transmission and the date of onset of clinical symp-
toms/signs in the study subjects. A shorter incubation 
period for the BA.1 Omicron variant in 2022 than that 
for the Alpha variant in 2021 was demonstrated by previ-
ous research [11]. The former was 3.03± 1.35 days (mean 
± SDM) while the latter was 4.94 ± 2.19 days. The shorter 
incubation period and the PCR delay days were consist-
ent for the Omicron variant.

Stability of delay distribution estimate
The reported daily FPRT series were subject to varia-
tions caused by both epidemic and technical factors. To 
study the stability or variability of the estimated delay 
distribution, we perturbed the observed series and gener-
ated re-estimates by the same E-M algorithm. The FPRT 
series were perturbed in two ways. First, they were self-
perturbed, and this technique is known as bootstrap. 
Namely, 100 simulated FPRT series were re-sampled 
from the multinomial distribution with the empirical fre-
quencies (G1/N ,G2/N , . . . ,Gn/N ) . Second, 100 FPRT 
series were simulated by introducing a normally distrib-
uted noise to the observed series. For each of the simu-
lated series, we implemented Algorithm S1 to obtain an 
estimation of the delay distribution w . The results of the 
perturbed FPRT series are shown in Fig.  1c. In general, 
the perturbed delay distribution remained to be uni-
modal, and the peak was around day 4. Meanwhile, the 
probabilities of day 4 and day 7 are less stable. We also 
obtained confidence intervals for the estimated delay dis-
tribution from the bootstrapping results. A 95% confi-
dence interval for the mean of delay days is [4.426, 5.545].

Reconstruction of the daily incidences of the bar‑involvers
We further deconvolved the daily infection series of those 
involvers using the Richard-Lucy algorithm. Specifically, 
we initialize F̂ by setting F̂1 = F̂2 = · · · = F̂n−3 =

N

n− 3
 , 

F̂n−2 = F̂n−1 = F̂n = 0 . The deconvolution result is 
shown in Fig.  2b. The result suggests that the epidemic 
chain was immediately cut off on June 10, but a leak 

occurred on June 12. In fact, the Beijing government 
reacted rapidly upon the report of the first PCR-positive 
case on June 9. The bar was closed and immediate epide-
miological investigation and tracking were implemented 
within two days. All known visitors were brought to 
quarantine hotels or hospitals. However, in the local 
news, three bar-visitors were reported for not following 
the prevention and control rules [12]. Their activities 
before the diagnosis of COVID-19 led to the leak we 
observed. Another leak occurred before June 16 and was 
not noticed until an infector was detected by the mass 
RT-PCR test on June 19 [13].

In contrast to non-visitors, the average daily incidence 
counts of the 258 bar-visitors were imputed (Fig. 2a and 
Supplementary Notes S1, S2) by the E-M algorithm along 
the way of parameter estimation. The imputed values 
of Fvis from June 6-9 were their mathematical expecta-
tions evaluated at the maximum likelihood estimates of 
parameters.

The pattern in the daily incidences of the bar-involvers 
is very different from that of the bar-visitors (Fig. 2a). The 
bar-involvers were primarily infected by the bar-visitors. 
Although the incidences of bar-visitors on June 6 and 
7 were imputed to be 105 and 53 respectively, the inci-
dences of bar-involvers, who were in direct contact with 
visitors, were imputed to be merely 6 and 7 on June 6 
and 7 respectively. Starting from June 8, they increased 
sharply. This implies that the transmission risk was rela-
tively low in the first two days after being infected, and 
increased substantially from day 3 to day 5. Moreover, 
during the period of June 6 to 26, only one confirmed 
case was not linked to any contact with bar visitors. 
This implies that the risk of the secondary contact being 
infected was much less than that of the direct contact 
being infected in the outbreak.

Application of real‑time deconvolution to Wuxi City’s 
epidemic
Right after the outbreak of the Beijing Heaven bar, 
another one emerged in Wuxi City around June 26th, 
2022, caused by imported cases from other provinces 
after a period of “dynamic-zero”. We collected the daily 
FPRT cases reported by the Wuxi Government [14] 
starting from June 26 to July 15 when this outbreak 
ended. Then we applied the real-time deconvolution 
algorithm to the FPRT series from June 30 to July 14 
( K = 5, 6, . . . , 19 , c.f. Fig.  3a). Since the two outbreaks 
were close in timing and in the test pipeline, the delay ŵ 
estimated in Section “The PCR delay distribution of the 
Omicron variant” was reused in the deconvolution.

Unlike the Richard-Lucy deconvolution, which takes 
input of the whole data only once, the real-time decon-
volution is an online algorithm. After obtaining the K-th 
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day FPRT count, it updated estimates of all the incidence 
counts up to the (K − 3)-th day. The results of real-
time deconvolution are shown in Fig. 3a. The line chart 
in Fig.  3b shows that the cumulative incidence count 
resulted from the real-time deconvolution is comparable 
to that from the Richard-Lucy algorithm. Furthermore, 
the real-time deconvolution detected all the days marked 
by explosive incidence increases, namely, the first, third, 

fifth, seventh, ninth, and tenth day. During the acute 
phase of the pandemic, the real-time deconvolution can 
serve as a timely alarm. Since an explosive increase often 
corresponds to a very recent substantial infection event 
in the public space, the real-time deconvolution results 
provide a scientific basis for local disease control author-
ities to take proper measures such as rapid epidemiologi-
cal investigations and isolations.

Fig. 2 Daily infections and FPRT series of bar-visitors (a) and bar-involvers (b) compared in the bar epidemic. The daily infection counts are 
estimated by an E-M algorithm for bar-visitors and deconvolved by the Richard-Lucy algorithm for bar-involvers
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It is worth mentioning that the Wuxi Government’s 
epidemic prevention and control measures were imple-
mented with good precision, guaranteeing the rapid 
containment of the outbreak and minimizing its impact 
on the economy and society.

Discussion
The delay between the incidence and a positive test result 
is also observed in infectious diseases diagnosed through 
other testing protocols such as large-scale antigen test-
ing. If the delay model (1) is approximately valid, we can 
apply the deconvolution method to reconstructing the 
incidences. The pipeline of delay function estimation and 
incidence reconstruction provides a paradigm for study-
ing other epidemic outbreaks based on delayed observed 
data.

By imposing non-negative constraints, the deconvolu-
tion of infection incidences is formulated as a LININPOS 
model, whose theoretical properties were extensively 
investigated by Vardi, Lee, Li (the corresponding author 
of this article) and Speed. The Kuhn-Tucker condition 
required by the non-negativity works particularly well 
when the incidences are sparse, that is, the infection 
events are separate from each other. To obtain sparse 
results, machine learning techniques usually impose a 
penalty on the size of the infection incidences [6]. In 
the case of the Heaven-bar outbreak, we found no fur-
ther improvement by adding a penalty term. As shown 

in Fig.  2b, the separation of the infection events could 
help staff at centres for disease control and prevention 
conduct epidemiological investigations more efficiently. 
When the infection events were not sparse, the gain from 
non-negative constraints would be less significant.

To reconstruct daily infection incidences fairly, we 
need to estimate the delay function adaptively as the 
virus evolves. The delay function in the convolution 
model represents the overall effect of the disease latency, 
PCR sensitivity, and the operation pipeline performance. 
It is helpful to know if we can estimate the overall delay 
function using data from one outbreak with such a sam-
ple size of 258 as in the Heaven-bar case. In the Heaven-
bar outbreak, other than daily FPRT counts, the infection 
dates of the bar-visitors were narrowed down to within 
3 days and a half. Besides, the outbreak was not con-
founded with any others. We showed, with the availabil-
ity of such clean data, the delay function of the Omicron 
variant can fairly be estimated by maximizing likelihood. 
The bootstrap method was used to evaluate the variabil-
ity of the delay function estimate.

The goodness of deconvolution relies on the quality 
of the delay function. In this study, the delay function 
estimated from the bar-visitors was applied to the bar-
involvers in the same outbreak, and to the Wuxi outbreak 
occurred right after the Heaven-bar one. The applicabil-
ity of the delay function to variants other than Omicron 
and to other countries would be less reliable. Similar data 

Fig. 3 The real-time deconvolution of Wuxi’s epidemic data. a The table presents the deconvolved infection counts in Wuxi from June 26 to July 
11 obtained by Algorithm 2. The real-time deconvolution using the FPRT counts up to the K-th day is shown in the K-th column, which includes 
reconstructed infection counts up to the (K − 3)-th day. The days with explosive incidence increases are marked by red rectangles. b A comparison 
of the cumulative infection counts up to the (K − 3)-th day using real-time deconvolution versus Richard-Lucy deconvolution
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as that of bar-visitors would be helpful in re-estimating 
the delay function.

The deconvolution result of the Heaven-bar outbreak 
suggests that over 86% and 93.9% of diagnosed patients 
can be detected by RT-PCR test within respectively 5 
days and 7 days. The third day after infection is a criti-
cal time point, from which the infectivity of the infected 
patients increases sharply. Our deconvolved infection 
incidences of the bar-involvers suggest that if all close 
contacts are isolated within 3 or 4 days, the spread chain 
will be cut off quickly. On June 28, 2022, the Joint Pre-
vention and Control Mechanism of the State Council 
released the ninth edition of the COVID-19 prevention 
and control plan, in which the quarantine period for close 
contacts and inbound travellers has been shortened to 
“7 + 3”. Our deconvolution results supported the policy 
adjustment.

In the meantime of estimating the delay function, the 
algorithm S1 imputed the infection counts for the bar’s 
epidemic from June 6 to 9 as well. While only 53 and 23 
were infected on June 7 and 8, 105 and 76 were infected 
on June 6 and 9. Notably, exactly on these two days the 
suspicious “number-zero patient” visited the bar [15]. 
As reported, this individual had only mild symptoms of 
COVID-19. This suggested that some infected may be 
more infectious than others. Epidemic prevention and 
control needs to pay specific attention to these “super 
spreaders”.

Right after we finished the mathematical modeling 
work of deconvolution based on the Heaven-bar epi-
demic data, another Omicron outbreak occurred in 
Wuxi. Through a colleague, the findings from the 
Heaven-bar epidemic data analysis and our prediction 
based on the deconvolution were passed on to a Wuxi 
local government official. After 431 PCR positives were 
reported, the outbreak was successfully controlled within 
a month. It is expected that participatory mathematical 
modeling work could be made known to the community 
and be utilized by experts in other regions and countries 
timely through international consortia [16, 17].

Conclusion
The study has two main objectives. The first objective is 
to reconstruct the series of daily infection count F from 
the observed counts of G , given the delay function w . 
The second objective is to estimate the delay function w , 
which is specific to a variant and the test operation pipe-
line in a region, from an epidemic outbreak with rela-
tively sufficient contact tracing records and information. 
To achieve the primary objective, we developed a general 
deconvolution approach, which is described in detail in 
Algorithm 1 and Algorithm 2. In addition, we presented 

an E-M algorithm to estimate the delay function w using 
the Heaven Supermarket Bar epidemic data.

The proposed deconvolution method is generally appli-
cable to other infectious diseases if the delay model can 
be assumed to be approximately valid. To ensure a fair 
reconstruction of daily infection incidences, the delay 
function should be estimated in a similar context in 
terms of virus variant and test protocol. Both the delay 
estimate from the E-M algorithm and the incidences 
resulted from deconvolution are valuable for epidemic 
prevention and control. The real-time deconvolution is 
particularly useful information during the epidemic’s 
acute phase because it can help the local disease control 
authorities modify the control measures more promptly 
and precisely.
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