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Abstract 

Objective Infectious diseases continue to pose a significant threat in the field of global public health, and our under-
standing of their metabolic pathogenesis remains limited. However, the advent of genome-wide association studies 
(GWAS) offers an unprecedented opportunity to unravel the relationship between metabolites and infections.

Methods Univariable and multivariable Mendelian randomization (MR) was commandeered to elucidate the causal 
relationship between blood metabolism and five high-frequency infection phenotypes: sepsis, pneumonia, upper res-
piratory tract infections (URTI), urinary tract infections (UTI), and skin and subcutaneous tissue infection (SSTI). GWAS 
data for infections were derived from UK Biobank and the FinnGen consortium. The primary analysis was conducted 
using the inverse variance weighted method on the UK Biobank data, along with a series of sensitivity analyses. Sub-
sequently, replication and meta-analysis were performed on the FinnGen consortium data.

Results After primary analysis and a series of sensitivity analyses, 17 metabolites were identified from UK Biobank 
that have a causal relationship with five infections. Upon joint analysis with the FinGen cohort, 7 of these metabolites 
demonstrated consistent associations. Subsequently, we conducted a multivariable Mendelian randomization analysis 
to confirm the independent effects of these metabolites. Among known metabolites, genetically predicted 1-stearoyl-
glycerol (1-SG) (odds ratio [OR] = 0.561, 95% confidence interval [CI]: 0.403–0.780, P < 0.001) and 3-carboxy-4-methyl-
5-propyl-2-furanpropanoate (CMPF) (OR = 0.780, 95%CI: 0.689–0.883, P < 0.001) was causatively associated with a lower 
risk of sepsis, and genetically predicted phenylacetate (PA) (OR = 1.426, 95%CI: 1.152–1.765, P = 0.001) and cysteine 
(OR = 1.522, 95%CI: 1.170–1.980, P = 0.002) were associated with an increased risk of UTI. Ursodeoxycholate (UDCA) 
(OR = 0.906, 95%CI: 0.829–0.990, P = 0.029) is a protective factor against pneumonia. Two unknown metabolites, 
X-12407 (OR = 1.294, 95%CI: 1.131–1.481, P < 0.001), and X-12847 (OR = 1.344, 95%CI: 1.152–1.568, P < 0.001), were 
also identified as independent risk factors for sepsis.

Conclusions In this MR study, we demonstrated a causal relationship between blood metabolites and the risk 
of developing sepsis, pneumonia, and UTI. However, there was no evidence of a causal connection between blood 
metabolites and the risk of URTI or SSTI, indicating a need for larger-scale studies to further investigate susceptibility 
to certain infection phenotypes.
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Introduction
Infections have long been recognized as a global pub-
lic health priority, which account for over 20% of deaths 
worldwide [1]. From 2009 to 2013, infections affected 
around one-fourteenth of the global population, thus 
amplifying the burden of disease globally [2]. Due to anti-
biotic resistance, aging populations, and the emergence 
of new pathogens, the burden of disease is expected to 
increase. Therefore, identifying modifiable risk factors for 
these infections is crucial.

With the advent of high-throughput technology, we are 
now able to measure hundreds of circulating metabolites 
and perform gene typing in large-scale populations in 
parallel. By aggregating the statistics from Shin et.al, vari-
ous metabolic characteristics have been found to have 
chance associations with the risks of several diseases, 
such as cardiovascular disease, autoimmune disease, pol-
ycystic ovary syndrome, and mental illness [3–5]. How-
ever, evidence for the discussion of blood metabolites 
and the risk of infections is lacking, even though some 
studies have described several modifiable risk factors 
(such as body mass index, body fat percentage, total cho-
lesterol level, and low-density lipoprotein-cholesterol) [6, 
7]. Given the intrinsic limitations of traditional observa-
tional research, an unequivocal metabolic spectrum that 
contributes to infectious diseases based on existing evi-
dence cannot be provided.

Mendelian Randomization (MR) is an increasingly 
prevalent analytical technique that has been extensively 
employed to deduce the causal impact of exposures on 
outcomes [8]. In the absence of a randomized controlled 
trial (RCT) or the initiation of a new RCT, the approach 
is an important alternative strategy that can provide reli-
able evidence of a causal relationship between exposure 
and disease risk [9].

In the current study, we aimed to adopt an approach 
to determine the potential causal impaction of blood 
metabolites on the risk of five infections. We selected five 
infection phenotypes with a relatively high incidence in 
Europe: sepsis, pneumonia, upper respiratory tract infec-
tion (URTI), urinary tract infection (UTI), and skin and 
subcutaneous tissue infection (SSTI) [6, 10]. Meanwhile, 
these selections were also based on their possessing ade-
quate sample sizes to carry out a GWAS with enough 
power. This study used a full-exposure design containing 
more than 400 blood metabolites to provide reliable sup-
port for the establishment of feasible infectious disease 
screening and prevention strategies in clinical practice.

Methods
Study design
We conducted multiple two-sample studies to system-
atically evaluate the intrinsic connections in the range 

of 452 blood metabolites to the occurrence risk of five 
infections. Assuming multiple cohorts share similari-
ties in epidemiology and genetics, employing genome-
wide significant associations within a larger cohort can 
efficiently amplify sample size, elevate the potential to 
detect rare associations, and enhance statistical power. 
Therefore, our analysis was bidirectional, beginning with 
an assessment of the causal impact of metabolites on five 
infection phenotypes, followed by an investigation into 
the reverse relationship. To ensure the credibility of the 
design, we also carried out a series of statistical methods 
to test the results. Summary data on infections was col-
lected from two separate GWAS databases, with the UK 
Biobank cohort [11] utilized for preliminary analysis and 
a range of sensitivity tests, while data from the FinnGen 
cohort [12] was used for replication analysis, and meta-
analysis was conducted to strengthen the results. A sum-
mary of the study design and data sources can be found 
in Fig. 1 and Table 1.

Selection of metabolite genetic instruments
The GWAS data on blood metabolites were obtained 
from the Metabolomics GWAS server (http:// metab 
olomi cs. helmh oltz- muenc hen. de/ gwas/), which included 
genetic information from 7,824 individuals of European 
ancestry. Genome-wide association scans and high-
throughput metabolomic analyses detected approxi-
mately 2.1 million SNPs and 452 metabolites [13], of 
which the chemical properties of 177 metabolites have 
yet to be determined. Based on the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database, the remaining 
275 metabolites were chemically recognized and classi-
fied into eight major metabolic categories, which include 
xenobiotics, nucleotides, amino acids, lipids, cofactors 
and vitamins, energy, peptides, and carbohydrates [14].

Qualified genetic variants associated with metabolites 
were selected through a series of steps. First, given the 
scarcity of SNPs reaching genome-wide significance, we 
eased the criteria and adopted a P < 1E-05 cutoff to obtain 
the top independent SNPs  (r2 < 0.001 within 10,000-kb 
windows), consistent with Yang et  al.’s study [15]. This 
method has been widely used in previous MR studies 
[16]. At the same time, to avoid bias arising from weak 
instrumental variables, we calculated the F-statistic for 
each SNP to measure statistical strength. SNPs with 
F > 10 were selected for further analysis because they are 
unlikely to be weak instrumental variables.

We obtained exposure SNPs by extracting them 
from the results and removed outcome-related SNPs 
(P < 1E-05). Missing SNPs in the outcome were dis-
carded. An allele calibration process was executed for 
harmonization purposes to ensure that exposure- and 
outcome- SNPs were in alignment, with the exclusion 

http://metabolomics.helmholtz-muenchen.de/gwas/
http://metabolomics.helmholtz-muenchen.de/gwas/
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of palindrome SNPs with intermediate effect allele fre-
quency (EAF > 0.42) or incompatible alleles (such as A/G 
and A/C). Lastly, we retained only those metabolites that 
had three or more SNPs for MR analysis.

GWAS data for infection outcomes
We conducted MR analysis on five infection phenotypes 
(Table  1): sepsis, pneumonia, upper respiratory tract 
infection (URTI), urinary tract infection (UTI), and skin 

and subcutaneous tissue infection (SSTI). These were 
selected because there was a sufficient sample size to 
perform a powerful GWAS. The GWAS results for all 
of these diseases came from two independent European 
ancestry cohort databases: the UK Biobank [11] and 
FinnGen Release 8 [12]. To determine whether genetic 
variation is associated with common infection pheno-
types, we used the UKB cohort, which has whole-genome 
gene typing data. We then extracted these summary data 

Fig. 1 Flow chart for the Mendelian randomized analysis. IVW, inverse variance weighted; URTI, upper respiratory tract infection; UTI, urinary tract 
infection; SSTI, skin and subcutaneous tissues

Table 1 Source of outcome genome-wide association study summary data

Abbreviations: URTI upper respiratory tract infection, UTI urinary tract infection, SSTI skin and subcutaneous tissue infection

Outcome Source Cases Control GWAS ID/Phenocode Population

Sepsis UK Biobank 10154 454764 ieu-b-69 European

FinnGen Mrach 2023 Release 10666 303314 AB1_other_sepsis European

Pneumonia UK Biobank 22576 463917 ieu-b-4976 European

FinnGen Mrach 2023 Release 52021 290478 J10_pneumoni European

URTI UK Biobank 2795 483689 ieu-b-5063 European

FinnGen Mrach 2023 Release 61543 280956 J10_UPPERINFEC European

UTI UK Biobank 21958 464256 ieu-b-5065 European

FinnGen Mrach 2023 Release 2588 163702 N14 Urethraoth European

SSTI UK Biobank 4035 357159 L08 other local infections of skin 
and subcutaneous tissue

European
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from the GWAS analysis in the latest version of the UK 
Biobank Infectious Disease Genetics Project. In order to 
confirm the validity of our findings via replication and 
meta-analysis, we made use of data from the FinnGen 
consortium, which defines cases and controls using ICD-
10 codes obtained from digital health records, and these 
data are publicly available on their website: https:// r8. 
fnngen. f/ pheno.

MR preliminary analysis
The primary strategy utilized in this study to evaluate 
the initial connection between metabolites and infec-
tions was the inverse variance weighted (IVW) method. 
IVW is a method widely used in MR Research that esti-
mates causal effects by weighting the Wald ratios of 
each SNP [17]. IVW is one of the most important MR 
estimation methods, it assumes that all genetic variants 
are valid, which may be susceptible to pleiotropic bias. 
Therefore, supplementary methods, including weighted 
median (WM) and MR-Egger (slope-intercept), were also 
employed in this study. WM, as a robust MR method, can 
still offer stable estimates even when more than half of 
the information sourced from invalid IVs [18], while MR-
Egger regression can identify and correct for potential 
pleiotropy, providing estimates that are relatively consist-
ent [19].

MR sensitivity analysis
A sensitivity analysis was conducted to assess potential 
biases in the MR hypothesis after identifying significant 
estimates (IVW P < 0.05). The presence of heterogene-
ity was detected by using Cochran’s Q test [20], which 
yielded a P value of < 0.05 and an  I2 value of > 25%. The 
level of horizontal pleiotropy was assessed by the Egger 
intercept [19]. The MR-PRESSO test was utilized to iden-
tify outliers [21], meanwhile, in order to detect individual 
SNP that had a significant impact on merged IVW esti-
mates, a leave-one-out (LOO) analysis was carried out. 
Finally, the MR Steiger test was performed to confirm 
the directionality of the association for the five infec-
tions [22]. The false discovery rate method was used to 
correct multiple testing. To be considered statistically 
significant, a metabolite’s estimated causal effect had to 
have a Benjamini–Hochberg adjusted P-value less than 
0.05. P-values that were originally < 0.05 but had adjusted 
P-values > 0.05 were suggestive of correlation.

We subsequently investigated the potential association 
of the SNPs related to metabolites with other phenotypes 
through the utilization of the PhenoScanner V2 website 
(http:// www. pheno scann er. medsc hl. cam. ac. uk/). SNPs 
that exhibited associations with potential confound-
ing factors, such as body mass index, body fat percent-
age, total cholesterol level, and low-density lipoprotein 

cholesterol, were removed, and IVW was carried out 
again to confirm the robustness of the results.

Assessing the metabolites’ causal effects on infections 
via diverse MR methods.

In order to reinforce the strength and credibility of 
the selected metabolites, we replicated the IVW analy-
ses using the GWAS data from the FinnGen consortium, 
employed the METAL [23] (version 201,103–25) to exe-
cute a meta-analysis of available GWAS data from the 
FinnGen Consortium and UK Biobank for each of the 
infection phenotypes. The meta-analysis was executed 
to identify a set of candidate metabolites for our subse-
quent multivariable Mendelian randomization analysis. 
We then performed a reverse Mendelian randomization 
analysis, utilizing the disease as the exposure and the 
metabolites as the outcome, to explore whether a reverse 
causal relationship exists between the identified metabo-
lites and the disease.

Statistical analysis
All statistical analyses were performed using R software 
(version 4.2.3). For the univariable Mendelian rand-
omization analysis, the “TwoSampleMR” package was 
employed, while the “Mendelian Randomization” and 
“MVMR” packages in R were utilized for multivariable 
MR analysis in this study. METAL [23] (version 2011–
03-25) was used to perform the meta-analyses of the 
outcomes.

Results
Based on preliminary instrument selection, the number 
of instrumental variables for metabolites ranged from 
3 to 148, with a median of 13. Using these instrumen-
tal variables, we initially evaluated the causal relation-
ships ranging from 452 metabolites to five infections and 
detected a total of 71 suggestive associations (P < 0.05; 
corresponding to 64 unique metabolites) by IVW analy-
sis, with 40 associations in 36 known metabolites and 31 
associations in 28 unknown metabolites (Supplement 
Table 1). Among them, 11, 7, 7, 9, and 6 associations were 
found for known metabolites, and 10, 5, 6, 6, and 4 asso-
ciations were found for unknown metabolites, respec-
tively related to sepsis, pneumonia, URTI, UTI, and SSTI. 
Importantly, the minimum F statistic was greater than 10 
(ranging from 18.55 to 1431.87), indicating a low likeli-
hood of weak instrument bias (Supplement Table  1). 
After the multiple-testing correction, we found 4, 2, 3, 
and 3 associations for known metabolites and 2, 1, 0, and 
2 associations for unknown metabolites, respectively sig-
nificant (FDR < 0.05) for sepsis, pneumonia, URTI, and 
UTI (Fig. 2). No metabolites significantly associated with 
SSTI were identified after multiple testing corrections. 
Specifically, the 7 metabolites associated with sepsis were 

https://r8.fnngen.f/pheno
https://r8.fnngen.f/pheno
http://www.phenoscanner.medschl.cam.ac.uk/
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glycerol (odds ratio [OR] = 1.88, 95% confidence inter-
vals [CIs]: 1.178–2.999, FDR = 0.043), 1-stearoylglycerol 
(1-SG) (OR = 0.563, 95%CI: 0.374–0.849, FDR = 0.039), 
3-carboxy-4-methyl-5-propyl-2-furanpropanoate 
(CMPF) (OR = 0.806, 95%CI: 0.690–0.942, FDR = 0.033), 
dihomo-linoleate (20:2n6) (OR = 2.283, 95%CI: 1.334–
3.908, FDR = 0.013), X-12407 (OR = 1.212, 95%CI: 
1.017–1.445, FDR = 0.047), X-12833 (OR = 1.071, 95%CI: 
1.017–1.127, FDR = 0.047), and X-12847 (OR = 1.330, 
95%CI: 1.096–1.613, FDR = 0.019).

The three metabolites causally related to pneumonia 
were ursodeoxycholate (UDCA) (OR = 0.833, 95%CI: 
0.726–0.957, FDR = 0.049), kynurenine (OR = 1.685, 
95%CI: 1.245–2.282, FDR = 0.004), and X-14588 
(OR = 6.202, 95%CI: 1.599–24.051, FDR = 0.042). The 
three metabolites causally related to URTI are tryptophan 
(OR = 4.642, 95%CI: 1.709–12.608, FDR = 0.013), histi-
dine (OR = 39.251, 95%CI: 2.640–583.549, FDR = 0.032), 
and serotonin (5HT) (OR = 0.322, 95%CI: 0.148–0.699, 
FDR = 0.021).

Fig. 2 Forest plot for the causal effect of identified metabolites on the risk of 4 types of infection phenotypes (sepsis, pneumonia, URTI, and UTI) 
derived from inverse variance weighted (IVW). SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; FDR, false discovery rate; 
URTI, upper respiratory tract infection; UTI, urinary tract infection
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The five metabolites causally related to UTI are phe-
nylacetate (PA) (OR = 1.476, 95%CI: 1.114–1.956, 
FDR = 0.033), cysteine (OR = 1.601, 95%CI: 1.207–2.214, 
FDR = 0.005), eicosenoate (20:1n9 or 11) (OR = 1.544, 
95%CI: 1.152–2.070, FDR = 0.018), X-11483 (OR = 1.176, 
95%CI: 1.049–1.318, FDR = 0.027), and X-11491 
(OR = 1.283, 95%CI: 1.106–1.488, FDR = 0.005).

Sensitivity analysis
A series of sensitivity analyses were conducted to evalu-
ate the robustness of our main analytical approach. Using 
the IVW analysis as the basis, we applied MR-Egger 
regression, weighted median method, and MR-PRESSO 
to comprehensively evaluate the causal effects between 
blood metabolites and the infections. The results showed 
that the analysis results of 12 known metabolites and 5 
unknown metabolites were robust. Specifically, the con-
sistent direction and magnitude among the three MR 
analysis methods are presented in Supplement Table  2 
and Supplement Figure 1. After conducting tests for mul-
tiple effects and heterogeneity, the P-values derived from 
the Cochran’s Q test and  I2 indicated no heterogeneity. In 
addition, we observed a negligible impact of horizontal 
pleiotropy as evidenced by the small intercept term in the 
MR-Egger analysis (Table  2). Furthermore, the absence 
of horizontal pleiotropy or instrumental outliers is sup-
ported by MR-PRESSO analysis  (Poutlier > 0.05). Moreover, 

the leave-one-out analysis did not reveal any high-influ-
ence SNPs that affected the estimate of the combined 
effect (Supplement Figure  2). Therefore, we identified 
these 17 metabolites as potential candidate metabolites 
for further analysis, and specific results are shown in 
Table  2 and Fig.  2. Furthermore, to confirm the direc-
tion of the effect from metabolites to infections, we per-
formed Steiger testing, which revealed that the identified 
causal relationships were not biased by reverse causation 
(Supplement Table 2).

Confounding analysis
Although sensitivity analyses did not reveal any evidence 
of bias that would render the MR estimates invalid, we 
conducted further manual investigations into the second 
trait (body mass index, body fat percentage, total cho-
lesterol levels, and low-density lipoprotein cholesterol) 
of the metabolite-associated SNPs. Using Phenoscan-
ner, we removed one SNP (rs3741298) from 1-SG, which 
was associated with total cholesterol levels, and three 
SNPs (rs1260326, rs1412972, rs603446) from tryptophan, 
which were associated with body fat percentage and 
total cholesterol levels. After performing IVW analysis 
again, the causal connection ranging from the metabo-
lites to infections remained significant. Specifically, 1-SG 
(IVW OR = 0.573, 95%CI: 0.380–0.863, FDR = 0.015) 
and tryptophan (IVW OR = 4.968, 95%CI: 1.789–13.790, 

Table 2 Sensitivity analysis for the causal association between blood metabolites and infection phenotypes

Abbreviations: IVW inverse variance weighted, MR Mendelian randomization, FDR false discovery rate, URTI upper respiratory tract infection, UTI urinary tract infection, 
SSTI skin and subcutaneous tissue infection

Metabolite Phenotype Subcategory IVW MR-Egger FDRIVW correct 
causal 
direction

steiger_pval

Q(I2) Q_pval Intercept P

Glycerol Sepsis Lipid 17.248 (1.44%) 0.438 0.013 0.172 0.043 TRUE 8.267E-108

1-stearoylglycerol Sepsis Lipid 22.401 (0.00%) 0.555 0.014 0.154 0.039 TRUE 3.133E-155

3-carboxy-4-methyl-5-pro-
pyl-2-furanpropanoate

Sepsis Lipid 6.795 (0.00%) 0.871 0.014 0.314 0.033 TRUE 2.379E-98

Dihomo-linoleate (20:2n6) Sepsis Fatty acid 7.125 (1.76%) 0.416 0.014 0.520 0.013 TRUE 8.532E-49

X-12407 Sepsis Unknown metabolite 1.697 (0.00%) 0.989 0.002 0.893 0.047 TRUE 2.597E-93

X-12847 Sepsis Unknown metabolite 10.864 (17.16%) 0.285 0.009 0.539 0.019 TRUE 3.728E-79

Ursodeoxycholate Pneumonia Lipid 9.275 (0.00%) 0.506 0.001 0.890 0.049 TRUE 1.300E-92

Kynurenine Pneumonia Amino acid 30.277 (0.00%) 0.651 0.001 0.861 0.004 TRUE 2.497E-263

X-14588 Pneumonia Unknown metabolite 3.226 (0.00%) 0.919 0.002 0.834 0.042 TRUE 3.242E-69

Tryptophan URTI Amino acid 158.647 (5.45%) 0.299 0.018 0.117 0.013 TRUE 0.000E+00

Histidine URTI Amino acid 1.301 (0.00%) 0.935 0.003 0.910 0.032 TRUE 3.502E-53

Serotonin (5HT) URTI Amino acid 13.247 (0.00%) 0.507 0.009 0.633 0.021 TRUE 5.679E-86

Cysteine UTI Amino acid 13.757 (0.00%) 0.684 0.007 0.222 0.005 TRUE 8.899E-120

Phenylacetate UTI Amino acid 8.667 (19.23%) 0.277 0.002 0.836 0.033 TRUE 5.894E-58

Eicosenoate (20:1n9 or 11) UTI Fatty acid 11.253 (2.25%) 0.422 0.001 0.947 0.018 TRUE 4.033E-76

X-11483 UTI Unknown metabolite 12.323 (18.85%) 0.264 0.002 0.756 0.027 TRUE 3.474E-122

X-11491 UTI Unknown metabolite 6.888 (0.00%) 0.908 0.004 0.553 0.005 TRUE 3.973E-129
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FDR = 0.006) were significantly associated with sepsis 
and URTI, respectively.

Replication and meta-analysis
In order to reinforce the robustness of our findings, we 
performed replication analyses by utilizing four GWAS 
datasets from FinnGen R8, which revealed comparable 
tendencies for some metabolites. with known metabo-
lites, 2, 1, and 2, being respectively linked to the trends 
of sepsis, pneumonia, and UTI. Additionally, two uni-
dentified metabolites, X-12407 and X-12847, were found 
to correlate with an elevated risk of sepsis. As shown 
in Fig.  3, specifically, joint analysis of the UK Biobank 
and FinnGen datasets further confirmed that high lev-
els of 1-SG (OR = 0.746, 95%CI: 0.573–0.998, P = 0.049) 
and CMPF (OR = 0.875, 95%CI: 0.785–0.976, P = 0.017) 
were protective factors for sepsis, X-12407 (OR = 1.172, 
95%CI:1.028–1.336, P = 0.018) and X-12847 (OR = 1.183, 
95%CI: 1.028–1.360, P = 0.019) are risk factors for sep-
sis. UDCA (OR = 0.906, 95%CI: 0.829–0.990, P = 0.029) 
was a protective factor for pneumonia. High levels of PA 
(OR = 1.287, 95%CI: 1.048–1.579, P = 0.016) and cysteine 
(OR = 1.310, 95%CI: 1.082–1.586, P = 0.006) predicted a 
higher risk of UTI.

We observed null estimates in tryptophan, serotonin 
(5HT), dihomo-linoleate (20:2n6), glycerol, kynurenine, 
histidine, eicosenoate (20:1n9 or 11), X-14588, X-11483, 
and X-11491 in the meta-analysis. Moreover, replication 
analyses using the GWAS summary data from FinnGen 
database revealed divergent directions. Details can be 
found in Supplement Figure 3.

Multivariable and reverse MR Analysis
Additionally, the Meta-analysis findings suggest that 
several metabolites may affect both sepsis and pneumo-
nia. To explore the unique effects of each metabolite on 
sepsis or pneumonia, we performed a multivariable MR 
analysis. Interestingly, we found that the causal effect of 
each metabolite was consistent in direction and magni-
tude with the unadjusted results obtained through the 
IVW method (Table  3). Sepcifically the four metabo-
lites that had independent causal effects on sepsis were 
1-SG (OR = 0.561, 95%CI: 0.403–0.780, P < 0.001), CMPF 
(OR = 0.780, 95%CI: 0.6899–0.883, P < 0.001), X-12407 
(OR = 1.294, 95%CI: 1.131–1.481, P < 0.001), and X-12847 
(OR = 1.344, 95%CI: 1.152–1.568, P < 0.001). In addi-
tion, significant causal effects were observed for PA 

Fig. 3 Meta-analysis of the causal associations between metabolites and 3 types of infection phenotypes (sepsis, pneumonia, and UTI). OR, odds 
ratio; CI, confidence interval; UTI, urinary tract infection
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(OR = 1.426, 95%CI: 1.152–1.765, P = 0.001) and cysteine 
(OR = 1.522, 95%CI: 1.170–1.980, P = 0.002) on UTI.

Finally, to further investigate the causality between 
metabolites and infection phenotypes, we conducted a 
reverse MR analysis using instrumental variables that 
represent sepsis, pneumonia, and UTI, respectively. By 
selecting top independent SNPs with a significance level 
of P < 1 × 10–5 as instrumental variables and performing 
MR estimation, we sought to determine if there was any 
evidence of a reverse causal correlation from the 7 iden-
tified metabolites to the four infections. However, our 
analysis revealed limited support for such a relationship, 
as demonstrated by Supplement Table 3.

Discussion
In this study, we conducted a comprehensive two-
sample MR analysis using GWAS summary statistics 
to assess potential associations between 452 metab-
olites and five types of infection phenotypes (sep-
sis, pneumonia, URTI, UTI, and SSTI). The inferred 
causal relationships were robust. Our findings revealed 
7 metabolites with statistically significant associa-
tions, even after multiple testing corrections, includ-
ing 2 previously unknown metabolites. We eliminated 
the potential for reverse causation and validated that 
the identified metabolites are precursors, rather than 
consequences, of infection phenotypes. Specifically, a 
genetically determined higher level of 1-SG and CMPF 
in the blood is causally linked to a lower risk of sepsis, 
while higher levels of phenylacetate and cysteine pre-
dict a higher risk of UTI, and UDCA is a protective 
factor for pneumonia. We did not identify any blood 
metabolites with clear associations with URTI and 
SSTI. This information has practical implications for 
healthcare providers who can use it to identify at-risk 
patients and intervene early to prevent or treat these 

infections. By understanding which metabolites are 
involved in the development and progression of these 
diseases, healthcare providers can develop effective 
screening and prevention strategies for these infectious 
diseases in clinical practice. As far as we are aware, this 
was the first systematic evaluation of the causal effects 
of human metabolites on five infections using MR 
analysis.

Sepsis is a disease caused by infections that can lead 
to organ dysfunction and death. It is one of the leading 
causes of mortality worldwide, with nearly 6 million peo-
ple dying from sepsis annually [24]. Early diagnosis and 
treatment of sepsis are crucial for patients who may be 
at risk. However, traditional observational studies are 
challenged by small sample sizes and confounding fac-
tors, making the early prediction of sepsis outcomes diffi-
cult. By using MR studies with little reverse causality and 
confounding, we found that there was a causal connec-
tion from high levels of blood 1-SG and CMPF to a lower 
risk of sepsis among known metabolites. Additionally, 
genetic susceptibility to sepsis development was found 
to be promoted by increased levels of unknown metabo-
lites X-12407 and X-12847. However, there have been few 
studies investigating the role of 1-stearoylglycerol and 
CMPF in sepsis. 1-SG is a lipid metabolite that is primar-
ily converted to free fatty acids for further metabolism 
by monoacylglycerol lipase (MAGL). Elevated levels of 
MAGL are usually positively correlated with the body’s 
inflammatory state. Studies have shown that inhibiting 
MAGL with inhibitors can exert anti-inflammatory prop-
erties and protective effects in experimental models of 
neuroinflammation [25] and traumatic brain injury [26]. 
In addition, compared to the control group, the MAGL 
inhibition group significantly reduced the production of 
the pro-inflammatory cytokine IL-6 and increases the 
production of the anti-inflammatory cytokine IL-10 [27]. 
These finding suggests that 1-SG may have exert anti-
inflammatory properties to prevent sepsis occurrence 
through MAGL. However, these results were derived 
from experimental models and further research is needed 
to determine the potential roles of 1-SG and MAGL 
inhibitors in the treatment of human diseases. CMPF, a 
major furan fatty acid metabolite, has been controversial 
in its role in disease. Some studies have identified CMPF 
as a uremic toxin [28] that increases reactive oxygen spe-
cies production and induces renal injury in human kid-
ney cells [29]. However, other studies have suggested 
that higher CMPF levels are associated with reduced risk 
of all-cause mortality [30] and periodontitis [31]. These 
equivocal findings may be due to methodological defects 
such as residual confounding. By utilizing the MR study 
without reverse causality and confounding, we provide 
causal genetic evidence that CMPF has a protective effect 

Table 3 Estimated causal effects of metabolites on sepsis/UTI by 
the multivariable Mendelian randomization analysis

Abbreviations: MR Mendelian randomization, OR odds ratio, CI confidence 
interval, UTI urinary tract infection

Metabolite Infections Nsnp Multivariable MR

OR (95% CI) P

1-stearoylglycerol Sepsis 228 0.561 (0.403–0.780) 5.859E-04

3-carboxy-
4-methyl-5-propyl-
2-furanpropanoate

Sepsis 228 0.780 (0.689–0.883) 9.070E-05

X-12407 Sepsis 228 1.294 (1.131–1.481) 1.745E-04

X-12847 Sepsis 228 1.344 (1.152–1.568) 1.706E-04

Phenylacetate UTI 54 1.426 (1.152–1.765) 1.098E-03

Cysteine UTI 54 1.522 (1.170–1.980) 1.743E-03
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on sepsis, offering new insights into the role of CMPF in 
the field of infection and providing theoretical support 
for further research on sepsis.

Furthermore, two other unknown metabolites, 
X-12407 and X-12847, were also confirmed to be caus-
ally correlated with sepsis. However, due to their elusive 
structural and functional characteristics, extracting fur-
ther interesting insights from them proves challenging. 
Nevertheless, our MR study provides new avenues for 
exploring these enigmatic metabolites, and their success-
ful identification promises to greatly facilitate the discov-
ery of biomarkers and the study of infectious diseases.

Pneumonia has always been acknowledged as a formi-
dable disease. Data from the Organization for Economic 
Co-operation and Development (OECD) countries 
reveals that despite enhanced healthcare access and 
sophisticated life support systems, including the utiliza-
tion of extracorporeal membrane oxygenation (ECMO), 
pneumonia still contributes to 30% of all respiratory 
deaths [32]. Therefore, finding some modifiable factors 
for early diagnosis and treatment of pneumonia may be 
crucial for patients with pneumonia. Our MR study has 
identified UDCA as a protective factor against Pneu-
monia, which may have important practical implica-
tions. UDCA is a secondary bile acid commonly used 
for the treatment of chronic hepatitis, cholestatic liver 
disease [33], and primary biliary cholangitis [34]. Recent 
research has also suggested that UDCA can downregu-
late angiotensin converting enzyme 2 (ACE) in human 
lung, intestinal, and biliary organoids in vitro [35], poten-
tially preventing SARS-CoV-2 infection and improving 
clinical outcomes following COVID-19 infection [35]. 
These findings suggest that UDCA may have the poten-
tial in preventing infections and reducing the severity 
of COVID-19, consistent with our research findings. An 
animal experiment may explain the mechanism behind 
this, as UDCA has been shown to suppress the produc-
tion of pro-inflammatory cytokines such as TNF-α, 
IL-1β, IL-2, IL-4, and IL-6 at the mRNA and protein lev-
els [36]. However, the specific biological pathways linking 
UDCA to the pathophysiology of Pneumonia are yet to 
be fully illuminated. Further investigation is necessary to 
confirm its potential mechanisms of action, and the pre-
cise mechanisms will require extensive clinical trials to 
establish.

Our study also revealed that elevated levels of two 
metabolites, Cysteine and Phenylacetate (PA), have det-
rimental effects on the occurrence of UTI. While the 
majority of UTIs are usually not severe, neglecting proper 
care can give rise to critical complications like acute renal 
failure and sepsis [37]. Hence, the early identification of 
risk factors for the occurrence of UTI and intervention 
becomes particularly crucial.

Although no previous research had explored their asso-
ciation with UTI, some observational studies and cel-
lular experiments partially support the unfavorable role 
of cysteine in disease onset. Cysteine, a semi-essential 
amino acid and a precursor to biothiols homocysteine 
and glutathione, has been observed to cause neurotoxic-
ity, adverse pregnancy outcomes, and rheumatoid arthri-
tis in observational studies [38]. In  vitro experiments 
have also revealed that cysteine promotes survival and 
invasiveness of ovarian cancer cells, leading to poorer 
disease prognosis [39]. On the other hand, PA, a com-
mon metabolite of phenylalanine, is widely present in 
organisms and controls growth and differentiation [and 
controls growth and differentiation in a wide spectrum of 
organisms, but its relationship with UTI has rarely been 
studied. Previous observational studies have shown that 
elevated levels of Phenylacetate are often associated with 
overgrowth of urine microbiota, indicating urinary dys-
biosis [40]. Additionally, some studies have found that 
PA synergizes with bird’s amino acid to treat hyperam-
monemia associated with urea cycle disorders [41], pro-
moting the excretion of waste nitrogen. These ambiguous 
results make it difficult to draw any causal inference since 
the association may be confounded by various factors. In 
contrast, MR studies inherently possess the advantage of 
excluding confounding factors. Our MR analysis indeed 
suggests a causal role of PA and cysteine in UTI onset, 
indicating that they could be promising therapeutic tar-
gets and providing valuable clues for novel UTI treat-
ments. However, further clinical research is needed to 
validate these findings.

There are several positive aspects of our investiga-
tion, including the usage of a Mendelian randomization 
design, integration of data from different sources, and 
bidirectional MR analysis to explore the causal relation-
ship between the exposure and risk of infections, which 
has strong clinical implications. Moreover, our study 
employed rigorous quality assurance standards and mul-
tiple analytical approaches to ensure the reliability of the 
MR analysis. However, there are some limitations to our 
study. Firstly, due to the limited number of SNPs reach-
ing genome-wide significance, we relaxed the threshold, 
although each SNP’s F-statistic was greater than 10, indi-
cating the exclusion of weak instrumental variables, there 
may still be some bias. Secondly, the data are derived 
from European populations, this may hamper the appli-
cability of our findings to a broader population, although 
it also has the advantage of reducing population structure 
bias. Lastly, the conclusion drawn from this Mendelian 
study has yet to be validated by molecular biology or bio-
chemistry experiments, so further randomized controlled 
trials with a larger population are needed to confirm the 
causal relationship.
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Conclusions
This study has uncovered causal relationships from 
blood metabolites to various infections. Specifically, 
the elevation of 1-SG, CMPF, and UDCA plays a causal 
impact in reducing the risk of sepsis and pneumonia, 
while the elevation of PA and cysteine has a causal 
relationship with the occurrence of UTI. This discov-
ery may have profound implications for understand-
ing these diseases’ etiology and clinical prevention and 
treatment.
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