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Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is identified as the cause 
of coronavirus disease 2019 (COVID-19) pandemic. Acute kidney injury (AKI), one of serious complications of COVID-
19 infection, is the leading contributor to renal failure, associating with high mortality of the patients. This study 
aimed to identify the shared gene signatures and construct the gene regulatory network between COVID-19 and AKI, 
contributing to exploring the potential pathogenesis.

Methods Utilizing the machine learning approach, the candidate gene signatures were derived from the 
common differentially expressed genes (DEGs) obtained from COVID-19 and AKI. Subsequently, receiver operating 
characteristic (ROC), consensus clustering and functional enrichment analyses were performed. Finally, protein-
protein interaction (PPI) network, transcription factor (TF)-gene interaction, gene-miRNA interaction, and TF-miRNA 
coregulatory network were systematically undertaken.

Results We successfully identified the shared 6 candidate gene signatures (RRM2, EGF, TMEM252, RARRES1, COL6A3, 
CUBN) between COVID-19 and AKI. ROC analysis showed that the model constructed by 6 gene signatures had a high 
predictive efficacy in COVID-19 (AUC = 0.965) and AKI (AUC = 0.962) cohorts, which had the potential to be the shared 
diagnostic biomarkers for COVID-19 and AKI. Additionally, the comprehensive gene regulatory networks, including 
PPI, TF-gene interaction, gene-miRNA interaction, and TF-miRNA coregulatory networks were displayed utilizing 
NetworkAnalyst platform.
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Introduction
Currently, the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) is identified as the cause of the 
massive outbreak of coronavirus disease 2019 (COVID-
19), which is rapidly evolving and expanding worldwide 
leading to the infection of many patients present with 
severe symptoms [1]. Since the World Health Organiza-
tion (WHO) proclaimed that COVID-19 entered a period 
of global epidemic on March 11, 2020, which has posed 
significant challenges to society and healthcare sys-
tems [2]. According to the report from WHO, the num-
ber of the patients already infected COVID-19 exceeds 
600 million and the fatal cases reaches 6.5 million as of 
1 October 2022. Although the infection of SARS-CoV-2 
virus mainly causes an acute respiratory symptom, grow-
ing evidence substantiates that many other organs apart 
from the lung have been affected by different degrees of 
virus injury [3]. Significant efforts have been devoted to 
explore the pathogenesis of COVID-19, of which viral 
destruction, inflammatory storm, and the activation of 
coagulation and complement systems may be regarded as 
the critical factors in disease development and progres-
sion [4].

Acute kidney injury (AKI), the prevalent clinical path-
ological syndrome, is characterized by high morbidity 
and mortality [5–7]. AKI occurs frequently in patients 
with critically ill conditions with renal replacement 
therapy (RRT), leading to poor prognosis [8]. Among 
the COVID-19 patients, renal impairment is frequent, of 
which more than 40% cases present with abnormal pro-
teinuria [9]. Moreover, AKI commonly occurs in severe 
cases with COVID-19, which is recognized as a marker 
predicting the severity of current disease associated with 
unfavorable outcomes [10]. Studies have found a high 
incidence of AKI in patients with COVID-19. According 
to the study from 13 hospitals in New York, AKI occurred 
in 1993 (36.6%) of 5449 COVID-19 patients [11]. Cur-
rently, no effective therapeutic intervention is available 
for COVID-19-related AKI. Moreover, AKI occurrence is 
significantly correlated with the odds of deaths in hospi-
talized patients with COVID-19 [12–14]. Therefore, it is 
urgent to early recognize patients with AKI risk, and to 
guide preventive and therapeutic strategies for avoiding 
and arresting the occurrence and progression of AKI in 
patients with COVID-19.

In this viewpoint, we concentrated on investigating 
the shared key gene signatures between COVID-19 and 
AKI, and understanding the potential pathogenesis. Gene 

Expression Omnibus (GEO) is an international pub-
lic repository of microarray chips, second-generation 
sequencing, and other forms of high-throughput genomic 
data uploaded by researchers worldwide. The dataset 
can be obtained from GEO database [15]. The COVID-
19 dataset GSE157103 and AKI dataset GSE30718 were 
utilized to identify COVID-19-DEGs and AKI-DEGs, 
respectively. By taking the intersection of COVID-19-
DEGs and AKI-DEGs, 14 shared DEGs were successfully 
determined between COVID-19 and AKI. Furthermore, 
we ultimately screened out 6 key gene signatures from 
the 14 shared DEGs for the model construction via the 
least absolute shrinkage and selection operator (LASSO) 
method. Then, receiver operating characteristic (ROC) 
analysis [16] was utilized to assess the predictive effi-
ciency in COVID-19 and AKI cohorts, respectively.

The concept of precision medicine promotes the sub-
groups analysis in a single study, with different subgroups 
having different pathogenic mechanisms and clinical 
prognostic characteristics. Similar subgroup analyses 
had performed in the previous studies [17]. We inves-
tigated the COVID-19 subgroups divided by these key 
gene signatures and clarified the individual difference in 
COVID-19 patients. Finally, we conducted the compre-
hensive gene regulatory networks analyses, such as PPI, 
transcription factor (TF)-gene interaction, gene-miRNA 
interaction, and TF-miRNA coregulatory networks uti-
lizing NetworkAnalyst platform for systematically inves-
tigating the potential gene regulatory mechanisms. This 
study identifies the shared gene signatures and explored 
the gene regulatory networks between COVID-19 and 
AKI, which may contribute to better predicting the risk 
of AKI and developing a series of strategies for clinical 
management in the patients with COVID-19 and AKI.

Materials and methods
Data retrieval
To explore the common genetic interrelations between 
COVID-19 and AKI, two datasets GSE157103 and 
GSE30718 were retrieved from GEO database (http://
www.ncbi.nlm.nih.gov/geo/). The processing platform 
for GSE157103 was GPL24676 (Illumina NovaSeq 6000), 
which provided 100 COVID-19 samples and 26 con-
trol samples. The processing platform for GSE30718 
was GPL570 (Affymetrix Human Genome U133 Plus 
2.0 Array), which provided 28 AKI samples and 19 con-
trol samples. The data were conducted the standardized 
processing of log2-transformation for further analysis. 

Conclusions This study successfully identified the shared gene signatures and constructed the comprehensive gene 
regulatory network between COVID-19 and AKI, which contributed to predicting patients’ prognosis and providing 
new ideas for developing therapeutic targets for COVID-19 and AKI.
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Data normalization was performed using the R software 
package.

Recognition of COVID-19 and AKI related DEGs
For exploring the shared gene signatures between 
COVID-19 and AKI, the assessment of differential gene 
expression was first carried out between disease sam-
ples and control samples via “Limma” package [18]. The 
“adjusted P < 0.05 and Fold Change > 2” were determined 
as the filter criteria for the differential expression of 
mRNAs. Subsequently, volcano plot and heatmap were 
employed to exhibit the screening DEGs in COVID-19 
and AKI cohorts, respectively. Finally, the common DEGs 
between COVID-19 and AKI cohorts were determined 
by the intersection using Venn diagram [19].

Function enrichment analysis
The GO and KEGG analyses were carried out utilizing 
the “ggplot2” and “Cluster Profiler” packages. Moreover, 
GO analysis, such as the biological process (BP), cellular 
component (CC), and molecular function (MF), of the 
common DEGs between COVID-19 and AKI cohorts 
were also conducted using the same method. To fur-
ther confirm the potential function of the differential 
expression genes, the data was analyzed through func-
tional enrichment method. For the enrichment results, 
FDR < 0.05 was considered to be enriched to the mean-
ingful pathway.

Identification of the key gene signatures between COVID-
19 and AKI
LASSO regression algorithm can be utilized to estab-
lish the optimal model based on the selected genes for 
disease diagnosis and the prediction of prognosis [20]. 
LASSO algorithm is the most common method for the 
selection of key gene signatures, and 10-fold cross-valida-
tion was used. The key gene signatures between COVID-
19 and AKI were obtained from the common DEGs using 
LASSO method via the “glmnet” package [21]. The coeffi-
cients of selected features are shown by lambda parame-
ter. Additionally, receiver operating characteristic (ROC) 
analysis was conducted to evaluate the predictive ability 
of these key gene signatures and the model by calculating 
the area under the curve (AUC) value [22].

Subgroup analysis in COVID-19 based on the key gene 
signatures
Owing to individual differences in different patients with 
COVID-19, we further carried out the subgroup analysis 
in COVID-19 patients based on the key gene signatures 
using the consensus clustering analysis [16]. The consis-
tency analysis was conducted by using the “Consensus-
ClusterPlus” R package. According to the relative change 
of the area under the cumulative distribution function 

(CDF) curve, the optimal k value can be determined. The 
COVID-19 patients were ultimately classified into two 
different subgroups (C1 and C2). Subsequently, we iden-
tified the DEGs between C1 and C2 subgroups, and then 
the function analysis of DEGs was conducted.

Protein–protein interaction (PPI) network analysis
The interactive proteins to the key gene signatures 
were further explored via PPI network analysis. As the 
shared gene signatures were input in the NetworkAna-
lyst 3.0 platform, the PPI network was created by select-
ing “STRING Interactome” database and setting the 
parameters “the confidence score cutoff (900)”. Then, the 
network was needed to be visualized using Cytoscape 
(Version: 3.8.0).

Regulatory networks analysis of gene signature, 
transcription factor (TF), and miRNA
The systematic regulatory networks analysis, including 
TF-gene interaction network, gene-miRNA interaction 
network, and TF-miRNA coregulatory network, were 
conducted via NetworkAnalyst 3.0 platform (https://
www.networkanalyst.ca). Specifically, we selected the 
ENCODE ChIP-seq database for TF-gene interaction 
network analysis. For gene-miRNA interaction network, 
we selected the miRTarBase v8.0 database, containing 
comprehensive experimentally validated miRNA-gene 
interaction data. Finally, we constructed TF-miRNA 
coregulatory network via the RegNetwork repository.

Statistics analysis
All R packages mentioned in this study were performed 
via R v4.0.3 software. The statistical P value less than 0.05 
was acknowledged statistically significant.

Results
Recognition of the shared DEGs between COVID-19 and 
AKI
The overall study strategy was displayed through a 
flow diagram (Fig.  1). In order to identify the relevance 
between COVID-19 and AKI in terms of gene expres-
sion, we analyzed the COVID-19 RNA-seq data using 
GSE157103 dataset and AKI microarray data using 
GSE30718 dataset. Through differential gene expression 
analysis with the filter criteria “adjusted P < 0.05 and Fold 
Change > 2”, we identified 1364 DEGs (1259 up-regulation 
and 105 down-regulation) in COVID-19 dataset (Fig. 2A) 
and 55 DEGs (32 up-regulation and 23 down-regula-
tion) in AKI dataset (Fig. 2B). The detail information of 
DEGs in both COVID-19 cohort and AKI cohort could 
be acquired from Supplementary Material-Data. Mean-
while, hierarchical clustering analysis was employed to 
display the expression of DEGs by heatmap (Fig. 2C and 
D). We further conducted the intersection analysis using 

https://www.networkanalyst.ca
https://www.networkanalyst.ca
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Venn, and 14 common DEGs (RRM2, OLFM4, LTF, EGF, 
PTX3, NNMT, SLC23A1, LCN2, FAM151A, RALYL, 
TMEM252, RARRES1, COL6A3, CUBN) were ultimately 
determined from COVID-19 and AKI datasets (Fig. 2E). 
Finally, GO enrichment analysis of the 14 common DEGs 
were conducted, and the Top5 pathway of BP, CC, and 
MF were exhibited via circle graph (Fig. 3A–C).

Identification of the key gene signatures between COVID-
19 and AKI
Based on 14 common DEGs, the LASSO algorithm was 
applied to determine the key gene signatures between 
COVID-19 and AKI. The results revealed that 6 key 
gene signatures (RRM2, EGF, TMEM252, RARRES1, 
COL6A3, CUBN) were recognized to have great influ-
ences on COVID-19 and AKI (Fig. 4A, B). Based on the 
coefficients of 6 gene signatures, the model score was 
determined by summing of each gene multiplying with 
the corresponding coefficient. The calculation formula 
was as follows: Model Score = 0.015*RRM2 + 0.017*EGF + 
0.016*TMEM252 + 0.181*RARRES1 + 0.011*COL6A3 + 0.
313*CUBN. Then, we evaluated the diagnostic efficiency 
of these key gene signatures, and ROC analysis revealed 
that these key gene signatures had certain predictive 
value in COVID-19 (RRM2 (AUC: 0.953), EGF (AUC: 
0.853), TMEM252 (AUC: 0.676), RARRES1 (AUC: 0.757), 
COL6A3 (AUC: 0.747), CUBN (AUC: 0.709), Fig. 4C) and 

AKI (RRM2 (AUC: 0.849), EGF (AUC: 0.839), TMEM252 
(AUC: 0.788), RARRES1 (AUC: 0.796), COL6A3 (AUC: 
0.775), CUBN (AUC: 0.887), Fig. 4D), respectively. Nota-
bly, the model constructed by 6 key gene signatures 
presented a considerable diagnostic efficiency in both 
COVID-19 (AUC: 0.965, Fig. 4E) and AKI (AUC: 0.962, 
Fig. 4F).

Identification of key gene signatures-associated subgroups 
in COVID-19 cohort
Owing to individual differences in COVID-19 patients, 
we further performed the subgroups analysis in COVID-
19 cohort based on these key gene signatures utilizing 
the consensus clustering tool. Then, 100 COVID-19 sam-
ples were divided into two distinct subgroups, including 
cluster 1 (C1, n = 48) and cluster 2 (C2, n = 52) (Figure 
S1 A-C, Supplementary Material). We further identified 
441 DEGs (430 up-regulation and 11 down-regulation) 
between C1 and C2 subgroups (Figure S1 D, Supplemen-
tary Material). The detail information of DEGs between 
C1 and C2 subgroups could be acquired from Supple-
mentary Material-Data. Moreover, hierarchical cluster-
ing analysis was employed to display the expression of 
DEGs by heatmap (Figure S1 E, Supplementary Material). 
Finally, enrichment analyses indicated that the GO anal-
ysis of DEGs mainly concentrated in organelle fission, 
nuclear division, chromosomal region, ATPase activity, 

Fig. 1 Flow diagram displaying the overall study protocol. Through differential gene expression analysis of GSE157103 dataset in COVID-19 and GSE30718 
dataset in acute kidney injury (AKI), the differentially expressed genes (DEGs) were identified and then subsequent analyses including function enrich-
ment, LASSO, ROC, subgroup analysis, PPI network, and gene regulatory network were performed
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and so on (Figure S1 F, Supplementary Material). The 
KEGG analysis [23] of DEGs mainly concentrated in cell 
cycle, oocyte meiosis, cellular senescence, and so on (Fig-
ure S1 G, Supplementary Material).

Identification of protein–protein interaction (PPI) network
We constructed PPI network using the STRING inter-
actome [24] model in NetworkAnalyst 3.0 platform. As 
shown in Fig.  5, there presented three PPI networks, of 
which EGF-COL6A3 network contained 51 nodes and 50 
edges, RRM2 network contained 17 nodes and 16 edges, 
and CUBN network contained 5 nodes and 4 edges. The 
detail information of nodes in PPI network could be 
acquired from Table S1 (Supplementary Material).

Regulatory networks analysis of gene signature, 
transcription factor (TF), and miRNA
We first analyzed the association between gene signa-
ture and transcription factor using NetworkAnalyst 3.0 

platform. As shown in Fig. 6, there presented three TF–
gene interaction networks, of which RRM2 was regu-
lated by 64 TF genes, RARRES1 was regulated by 4 TF 
genes, and EGF was regulated by 3 TF genes. The detail 
information of gene signatures and TF genes in TF–gene 
interaction networks could be acquired from Table S2 
(Supplementary Material). These results demonstrated 
that there had high interaction between TF genes and the 
key gene signatures. Meanwhile, the regulatory network 
of gene signature and miRNA was investigated. As shown 
in Fig. 7, two gene-miRNA networks were constructed, of 
which RRM2-EGF-miRNA network included 122 nodes 
(2 gene signatures and 120 miRNAs) and 124 edges, 
CUBN-miRNA network included 12 nodes (1 gene sig-
nature and 11 miRNAs) and 11 edges. The detail infor-
mation of gene signatures and miRNAs in gene-miRNA 
interaction network could be acquired from Table S3 
(Supplementary Material). These results suggested there 
had the complex regulatory networks between gene 

Fig. 2 Identification of the common differentially expressed genes (DEGs) between COVID-19 and acute kidney injury (AKI). (A, B) Volcano plots dis-
playing DEGs of (A) COVID-19 and (B) AKI. Red triangle denotes up-regulated gene, and green triangle denotes down-regulated gene. (C, D) Heatmap 
displaying the DEGs expression (adjusted P < 0.05 and Fold Change > 2) of (C) COVID-19 and (D) AKI. (E) Venn diagram displaying 14 common DEGs from 
the intersection between COVID-19 and AKI
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signatures and miRNAs. Finally, we carried out TF-
miRNA coregulatory network analysis to explore the cor-
relation of miRNA and TF with the key gene signatures 
using NetworkAnalyst 3.0 platform. As shown in Figure 
S2 (Supplementary Material), two TF-miRNA coregu-
latory networks were constructed, of which COL6A3 
network included 35 nodes (3 TF genes and 31 miR-
NAs) and 34 edges, and RRM2-EGF-RARRES1 network 
included 34 nodes (23 TF genes and 8 miRNAs) and 
33 edges. The detail information of gene signatures, TF 
genes and miRNAs in TF-miRNA coregulatory network 
could be acquired from Table S4 (Supplementary Mate-
rial). These results showed that gene signatures, TF genes 
and miRNAs formed the complex gene expression regu-
latory network.

Discussion
Many studies have found that spike protein of SARS-
CoV-2 can specifically act on angiotensin-converting 
enzyme 2 (ACE2) receptor, leading to COVID-19 infec-
tion [25, 26]. According to research findings, SARS-
CoV-2 infection can directly result in cardiovascular 
and renal disease owing to the pathogenic mechanism 
of SARS-CoV-2 interacting with ACE2 protein [27]. In 
fact, ACE2 is widely expressed in multiple organs, includ-
ing kidney, and COVID-19 affects human kidney organ-
oids by direct invasion [28, 29]. Moreover, an analysis 
in 85 COVID-19 patients reveals that ACE2 receptor 
is expressed on human renal tubules and SARS-CoV-2 
directly participates in the infection of human renal 
tubules [30]. According to the examination of kidney 

Fig. 3 Gene ontology (GO) analysis of 14 common DEGs. (A-C) Circle graph displaying the top5 pathway of (A) BP (biological process), (B) CC (cellular 
component), and (C) MF (molecular function) in GO analysis
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Fig. 4 Identification of the shared gene signatures between COVID-19 and AKI. (A, B) Screening of the shared gene signatures from the 14 common 
DEGs of COVID-19 and AKI using the LASSO algorithm. A total of 6 candidate gene signatures (RRM2, EGF, TMEM252, RARRES1, COL6A3, CUBN) were de-
termined. (C, D) Receiver operating characteristic (ROC) curve displaying the prediction efficiency of the 6 gene signatures in (C) COVID-19 and (D) AKI. 
(E, F) ROC curve displaying the prediction efficiency of the model in (E) COVID-19 and (F) AKI
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tissues in died COVID-19 patients, the virus presents a 
certain propensity to renal invasion and induces its dam-
age, which is closely related to high AKI incidence and 
poor prognosis [31]. Based on the current studies, AKI 
appears to increase the incidence of severe and death in 
patients with COVID-19.

On the one hand, SARS-CoV-2 can directly act on 
renal cells inducing cells injury accompanied by subse-
quent fibrosis. On the other hand, the immune system 
recognizes viral particles and initiates an inflammatory 
response, causing the damage of healthy tissues. There-
fore, one of the most important issues that researchers 
must urgently address is whether there is some way to 
recognize and decrease the incidence of AKI in COVID-
19 patients. Many rigorous and diverse studies have been 
conducted for exploring meaningful and broadly appli-
cable data. A recent study of COVID-19 patients in Afri-
can reveals that there presents the correlation of APOL1 
kidney risk variants with high AKI incidence [32]. From a 
multi-center study in COVID-19 patients, cytokine storm 
and secondary bacterial infections perform a vital role in 

the development of AKI [33]. Therefore, exploration of 
the potential molecular pathogenesis between AKI and 
COVID-19 has become extremely important. The shared 
gene signatures and gene regulatory network between 
COVID-19 and AKI has not been well understood. The 
investigations of gene signatures and regulatory network 
contribute to revealing the potential mechanism of the 
development of AKI in COVID-19 patients.

Our study focused on exploring the shared gene signa-
tures and gene regulatory network between COVID-19 
and AKI from gene expression and regulation aspects. 
We first screened out the DEGs in COVID-19 and AKI 
cohorts, respectively. Through taking the intersection, 
the shared DEGs between COVID-19 and AKI were 
obtained. Then, the most representative gene signatures 
were ultimately determined by machine learning method. 
The model constructed by these key gene signatures had 
a high predictive efficacy in both COVID-19 and AKI 
cohorts. The results suggested that these gene signatures 
could be considered as the key shared genes in the patho-
genesis between COVID-19 and AKI. These candidate 

Fig. 5 Protein-protein interaction (PPI) network of the key gene signatures. Red circles represent the proteins corresponding to the candidate gene 
signatures, and blue circles represent the interrelated proteins
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gene signatures may contribute to predicting the risk of 
AKI, understanding of the pathogenesis of renal injury, 
and guiding the pertinent treatment in COVID-19 
patients.

Based on these key gene signatures, two different sub-
groups in COVID-19 cohort were identified, and the 
DEGs between the two subgroups concentrated in cell 
division and cell cycle. These results suggested that the 
COVID-19 patients exhibited individual differences. In 
addition, according to these gene signatures, we con-
structed the comprehensive gene regulatory networks, 
including PPI, transcription factor (TF)-gene interaction, 
gene-miRNA interaction, and TF-miRNA coregulatory 
networks. Through the system biology analyses, involved 
in transcription factor, miRNA, target gene, and protein, 
the comprehensive gene regulatory networks were cre-
ated, contributing to uncovering the internal connection 
of the expression regulation of these key gene signatures.

This study had some limitations. Despite many samples 
of COVID-19 and AKI had been collected in this study, 
the sample size was still inadequate. Thus, it is neces-
sary to collect enough samples for further validation. 
Moreover, the significant value of these gene signatures 
for predicting clinical outcomes and offering new thera-
peutic targets in COVID-19 patients are needed to be 
explored further. We hope that adequate clinical evi-
dence will be obtained to support this finding in future 
research.

Conclusions
In conclusion, this study explored and determined the 
share gene signatures between COVID-19 and AKI, and 
constructed the comprehensive gene regulatory network, 
which contributed to better identifying the common 
pathogenesis and providing the potential therapeutic tar-
gets for clinical management for COVID-19 and AKI.

Fig. 6 The construction of transcription factor (TF)-gene interaction network. Red circles represent the candidate gene signatures, and green rhombuses 
represent the interrelated transcription factors to gene signatures
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