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Abstract 

Background Pulmonary Tuberculosis is a major public health problem endangering people’s health, a scientifi-
cally accurate predictive model is of great practical significance for the prevention and treatment of pulmonary 
tuberculosis.

Methods The reported incidence data of pulmonary tuberculosis were from the National Public Health Science Data 
Center (https:// www. phsci enced ata. cn/). The ARIMA, LSTM, EMD-SARIMA, EMD-LSTM, EMD-ARMA-LSTM models were 
established using the reported monthly incidence of tuberculosis reported in China from January 2008 to December 
2018. The MSE, MAE, RMSE and MAPE were used to evaluate the performance of the models to determine the best 
model.

Results Comparing decomposition-based single model with undecomposed single model, it was found that: 
when predicting the incidence trend in the next year, compared with SARIMA model, the MSE, MAE, RMSE and MAPE 
of EMD-SARIMA decreased by 39.3%, 19.0%, 22.1% and 19.8%, respectively. The MSE, MAE, RMSE and MAPE of EMD-
LSTM were reduced by 40.5%, 12.8%, 22.9% and 12.7%, respectively, compared with the LSTM model; Comparing 
the decomposition-based hybrid model with the decomposition-based single model, it was found that: when pre-
dicting the incidence trend in the next year, compared with EMD-SARIMA model, the MSE, MAE, RMSE and MAPE 
of EMD-ARMA-LSTM model decreased by 21.7%, 10.6%, 11.5% and 11.2%, respectively. The MSE, MAE, RMSE and MAPE 
of EMD-ARMA-LSTM were reduced by 16.7%, 9.6%, 8.7% and 12.3%, respectively, compared with EMD-LSTM model. 
Furthermore, the performance of the model were consistent when predicting the incidence trend in the next 
3 months, 6 months and 9 months.

Conclusion The prediction performance of the decomposition-based single model is better than that of the unde-
composed single model, and the prediction performance of the combined model using the advantages of different 
models is better than that of the decomposition-based single model, so the EMD-ARMA-LSTM combination model 
can improve the prediction accuracy better than other models, which can provide a theoretical basis for predicting 
the epidemic trend of pulmonary tuberculosis and formulating prevention and control policies.
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Introduction
Tuberculosis (TB) is a contagious disease caused by 
infection with the bacterium Mycobacterium tubercu-
losis [1], which is spread when people who are sick with 
TB expel bacteria into the air (e.g. by coughing). TB 
typically affects the lungs (pulmonary TB) but can also 
affect other sites (extrapulmonary TB). China is one of 
the 30 countries with a high burden of TB in the World. 
The World Health Organization (WHO) estimated in its 
Global Tuberculosis Report 2021 that the number of new 
TB cases in China in 2020 would be 842,000 (833,000 in 
2019). The TB incidence rate was 59 cases per 100,000 
population per year (58/100,000 in 2019), accounting 
for 8.5% (8.4% in 2019) of the global total and the second 
highest after India [2]. In our country, pulmonary tuber-
culosis belongs to class B legal reportable infectious dis-
eases, and its reported incidence number always ranks 
in the forefront of class A and B notifiable infectious 
diseases nationwide. Actually, in recent years, Since the 
extensive use of anti-tuberculosis drugs such as isoniazid 
and rifampin and the government-led mobilization of the 
whole society, pulmonary tuberculosis has been effec-
tively controlled to a certain extent, and the incidence of 
tuberculosis has also shown a trend of decreasing year by 
year. Nevertheless the spread of Drug-Resistant Tubercu-
losis bacilli makes the situation of drug-resistant tubercu-
losis (DR-TB) not optimistic [3], which further aggravates 
the public health threat to tuberculosis control. With 
more and more challenges in the prevention and treat-
ment of pulmonary tuberculosis, the prediction of its 
incidence has become a hot topic. It is of great practical 
significance to explore the trend and regularity of pulmo-
nary tuberculosis and establish a scientifically accurate 
predictive model for the prevention and treatment of pul-
monary tuberculosis.

The data of infectious diseases changing over time are 
random, but generally show an upward or downward 
trend, which makes it possible to predict the incidence 
trend, but it is still difficult to make accurate prediction 
[4]. Many scholars have predicted the trend of infec-
tious diseases based on historical data, The relatively 
perfect and accurate algorithms for the analysis and 
prediction of time series data mainly include Autore-
gressive Integrated Moving Average (ARIMA) model 
based on traditional statistical method and Long-Short 
term Memory neural network (LSTM) model based 
on neural network method. Both ARIMA model and 
LSTM model can well predict the future data according 
to the laws extracted from the original data. However, 

The ARIMA model can only extract the linear informa-
tion in the data, but the valuable nonlinear information 
in the data is not processed, while the LSTM model can 
extract the nonlinear components in the data. This sug-
gests that, ARIMA model is suitable for relatively sta-
ble series, while LSTM model is suitable for relatively 
unstable series [5].

However, in practical application, a single prediction 
model or method has different emphasis on extracting 
time series data information, so its prediction accu-
racy is still insufficient when dealing with complex and 
dynamic time series. Compared with a single predic-
tion model, combined prediction model can effectively 
reduce system risks while ensuring better prediction 
performance, thus becoming the mainstream trend in 
time series prediction research [6].

In recent years, the combinatorial model con-
structed based on the idea of decomposition and inte-
gration decomposes the original sequence to reduce 
the sequence complexity and obtain sequences with 
simpler structure, more stable changes and stronger 
regularity. The accuracy of time series prediction is 
improved by modeling the decomposed sequence. 
Empirical Mode Decomposition (EMD) is an adaptive 
decomposition method for nonlinear and non-station-
ary signals proposed by Huang and his co-authors in 
1998 [7]. It decomposes the original time series into 
multiple Intrinsic mode functions (IMF) in different 
time scales and a residual signal (RES). Not only can 
it be directly applied to nonlinear and non-stationary 
time series, but also can reveal the changes of different 
time scales contained in time series [8]. In 2022, An [9] 
used the Back-Propagation Neural Network (BPNN) 
model based on EMD to predict incidence of Acquired 
Immune Deficiency Syndrome (AIDS). First, EMD 
method was used to decompose the original sequence 
into four relatively stable IMFs and a residual signal, 
and then all the decomposition results were respec-
tively established BPNN models and summed to obtain 
the EMD-BPNN predicted value. Compared with the 
prediction results of single BPNN and ARIMA, it was 
found that the prediction effect of EMD-BPNN hybrid 
model is superior to the above models, that was, the 
hybrid model improved the prediction accuracy. In 
2021, Wang [10] proposed a short-term generation 
combination forecasting model based on EMD-LSTM-
ARMA. Firstly, the normalized IMF1 and IMF2 are 
input into the designed LSTM network to model and 
predict, then the IMF3 is modeled and predicted by the 
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ARMA model, and then a low-frequency component 
is reconstructed from IMF4, IMF5 and residual com-
ponents. The empirical results show that EMD-LSTM-
ARMA combined forecasting model can produce 
higher forecasting accuracy than single model.

In order to further improve the prediction perfor-
mance, this paper used EMD to break down the origi-
nal sequence into several subsequences, and chose the 
sequences meeting the stationarity requirements to build 
an ARMA model and the unstable sequences to build an 
LSTM model after judging the stationarity of the decom-
posed sequences. On this basis, the EMD-ARMA-LSTM 
hybrid prediction model was constructed to provide a 
theoretical foundation for forecasting the epidemic trend 
of tuberculosis and developing prevention and control 
programs.

Material and methods
Data sources
The reported incidence data of pulmonary tuberculosis 
used in this study were from the National Public Health 
Science Data Center (https:// www. phsci enced ata. cn/), 
and a total of 132 months of reported incidence data of 
tuberculosis (per 100 000) from 2008 to 2018 were down-
loaded, the reported incidence rates of tuberculosis in 
China from January 2008 to December 2017 were used as 
the training set to predict the reported incidence of pul-
monary tuberculosis in the next 3 months, 6 months, 9 
months and 12 months.

Empirical modal decomposition (EMD)
EMD is a new signal decomposition method. Compared 
with traditional signal decomposition methods, it com-
pletely gets rid of the restriction of basis function and 
can decompose any signal (time series) in theory [11]. 
The core idea of this algorithm is to decompose complex 
original data into a finite number of IMFs with different 
scales, stationarity and periodic volatility characteristics 
and a residual signal representing the overall trend of 
the original signal. Therefore, it has good adaptability to 
nonlinear and non-stationary sequences. The IMF should 
meet the following two conditions: (1) The number of 
extremes does not differ from the number of zeros by 
more than 1. (2) At any point in an envelope represented 
by a local maximum and an envelope represented by a 
local minimum, the average of both is zero. The decom-
position steps are as follows [12]:

(1) All maximum points and minimum points on the 
original tuberculosis sequence are calculated;

(2) By cubic spline interpolation method, the local max-
imum and local minimum points are constructed into the 
upper and lower envelope(et(min)、et(max) ), and then the 
average value of the two envelope lines is calculated:

Subtract mt from the original signal:

Determine whether dt meets the conditions of IMF, if 
so, dt at this time is the first IMF component obtained by 
decomposition, denoted as IMF1

t = dt ; If it is not satis-
fied, we need to take dt as the new original signal Xt and 
repeat steps (1) and (2) until it is satisfied.

(3) The original sequence and the newly obtained 
intrinsic mode function component are calculated 
to obtain the residual components after the first 
decomposition.

Repeat step (1) until the loop stops. The original 
sequence at this point can be expressed as:

where IMFi
t is the ith intrinsic mode function compo-

nent, and rn(t) represents the nth residual sequence.

Seasonal Autoregressive Integrated Moving Average 
(SARIMA)
ARIMA is a time series forecasting method proposed by 
Box, an American statistician, and Jenkins, a British stat-
istician. The basic idea is to regard the data formed by 
the predicted object as a random sequence, use the cor-
responding mathematical model to describe the autocor-
relation in the sequence and predict future values from 
potential relationships between past and present val-
ues of a sequence [13]. It has two forms: non-seasonal 
ARIMA model and seasonal ARIMA model, and its 
expressions are ARIMA (p, d, q) and ARIMA (p, d, q) 
(P, D, Q) s. Where, p and P represent the autoregressive 
order and seasonal autoregressive order respectively. d 
and D are difference order and seasonal difference order 
respectively. q and Q are the moving average order and 
seasonal moving average order, and s is the cycle length 
[14]. The specific modeling process of ARIMA model is 
as follows: (1) Stationarity test: Autocorrelation Func-
tion (ACF) plot, and Augmented Dickey-fuller (ADF) test 
were used to comprehensively judge whether the time 
series data was stable. If it was non-stable, d or D-order 
difference processing was required. (2) Ljung-Box test: 
Ljung-Box test was performed on the sequence, if the p 
value was less than the signifcance level, the sequence 
had no randomness. Modeling can be continued if the 
sequence was non-random. (3) Model identification and 

(1)mt= et(min) + et(max) /2

(2)dt=Xt −mt

(3)rt = Xt − IMF1
t

(4)Xt =
N∑

i=1

IMFi
t + rn(t)

https://www.phsciencedata.cn/
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order determination: Python Grid Search was used to 
automatically fit the SARIMA model. (4) Model selec-
tion: according to the minimum Akaike information cri-
terion (AIC), the optimal model was selected. (5) Model 
test: the success of model fitting was judged by the resid-
ual white noise test. If the residual sequence was random, 
the model is fitted successfully. (6) Prediction: use the 
constructed model to make predictions.

Long‑short term memory (LSTM) model
LSTM network is a kind of Recurrent Neural Networks 
(RNN) with special network structure proposed by 
Sepp Hochreiter and Jurgen Schmidhuber in 1997 for 
the gradient dispersion problem of RNN model [15]. It 
is characterized by introducing memory unit in each 
neuron of the hidden layer and solving the contradic-
tion problem of input and output weights through 
input and output gates, so that it can make more effec-
tive use of long-distance time series data. Thus, the 
long-term dependence problem in traditional RNN 
model training was overcome [16]. LSTM unit struc-
ture is also known as memory unit (A). Its structure 
was shown in Fig.  1, including three gated structures 
[17], namely "forget Gates( ft)", " input Gates(it )" and 
"output Gates(ot)", these three gating structures can 

selectively control passage of information [18], and also 
include the cell state Ct representing long-term mem-
ory, and the candidate state mt waiting to be deposited 
in long-term memory [19]. The calculation formula of 
each calculation gate is as follows [20]:

In the above equation, W  is the weight matrix connect-
ing the two layers, σ is the sigmoid activation function, 
b is the corresponding offset item and the tanh function 
represents the feed-forward network layer of the hyper-
bolic tangent function. ht−1 represents the output at time 
t − 1 , and Xt represents the input at time t.

(5)ft = σ
(
Wfhht−1 +Wfxxt + bf

)

(6)it = σ(Wihht−1 +Wixxt + bi)

(7)ot = σ(Wohht−1 +Woxxt + bo)

(8)mt = tanh(Wmhht−1 +Wmxxt + bm)

(9)Ct = ftCt−1 + itmt

(10)ht = ot tanh(Ct)

Fig. 1 LSTM network unit structure



Page 5 of 12Zhao et al. BMC Infectious Diseases          (2023) 23:665  

The construction process of LSTM model is as follows 
[14]:

(1) Data preprocessing, including normalization and 
reconstruction of data;

(2) The original sequence is transformed into three-
dimensional data;

(3) The original sequence was divided into training set 
and test set;

(4) Adjust model parameters.

EMD‑SARIMA combined model
The pulmonary tuberculosis sequence was decomposed 
by EMD method to obtain a group of IMFs and a residual 
signal. The decomposed IMF components contain partial 
characteristic signals of different time scales of the origi-
nal signals, and the EMD method completely throw away 
the constraint of the basis function, and has good com-
patibility for various signals. EMD-SARIMA model is a 
combination model based on the idea of "decomposition 
before integration" [21]. The specific steps are as follows:

(1) The original pulmonary tuberculosis signal was 
decomposed into multiple IMFs and a residual sig-
nal using the EMD method;

(2) Each IMF component and residual signal were pre-
dicted by the corresponding SARIMA model;

(3) According to the completeness of EMD and the 
orthogonality of IMF, the predicted values of the 
above parts are summed and reconstructed [22] to 
get the final results.

EMD‑LSTM combined model
Due to the characteristics of its internal structure, LSTM 
model can realize long-term learning of dependent infor-
mation [11]. The specific steps of EMD-LSTM are as 
follows:

(1) The original pulmonary tuberculosis signal was 
decomposed by EMD method to obtain finite IMFs 
and a residual signal representing the overall trend 
of the original signal;

(2) Each IMF component and residual signal were pre-
dicted by the corresponding LSTM;

(3) The predicted value of the original signal was 
obtained by superposition of the predicted value of 
each decomposition sequence.

EMD‑ARMA‑LSTM Combined Model
The results of single prediction model based on decom-
position show that the subsequences obtained by EMD 
method all have stationary and non-stationary sequences. 
In view of the shortage of direct modeling without feature 

analysis after the decomposition of the above model, the 
stationarity of the decomposed sequences was judged, 
and, and then chose the sequences meeting the stationar-
ity requirements to build an ARMA model and the unsta-
ble sequences to build an LSTM model. On this basis, the 
EMD-ARMA-LSTM hybrid prediction model was con-
structed. The modeling process was shown in Fig. 2:

Model effect evaluation
The model performance evaluation of continuous data 
mainly depends on the difference between the predicted 
value and the real value. The smaller the value is, the bet-
ter the model prediction effect will be. Mean Squared 
Error (MSE), Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE) and Mean Absolute Percentage 
Error (MAPE) were used to compare the predictive per-
formance of each model.

where, Xk represents the real value at the moment k , X̂k 
represents the predicted value of each model, and N  rep-
resents the sample size during the test.

Statistical analysis
Excel software version 2021 was used for data collection 
and collation, Anaconda software version 4.10.3 was used 
to establish the SARIMA model and the LSTM model. 
MATLAB software version 2022 was used for EMD.

Results
Time distribution of pulmonary tuberculosis in China
The time series of the reported incidence of pulmonary 
tuberculosis in China from January 2008 to December 
2018 was shown in Fig. 3. It can be seen that the reported 
incidence of pulmonary tuberculosis in China presents a 
decreasing trend year by year and has obvious seasonal-
ity, with two apparent epidemic peaks in January and 
March of each year, which were close to the results of 
previous research [23].

(11)MAE =
1

N

N∑

k=1

∣∣∣Xk − X̂k

∣∣∣

(12)MSE =
1

N

N∑

k=1

(
Xk − X̂k

)2

(13)RMSE =

√√√√ 1

N

N∑

k=1

(
Xk − X̂k
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100%

n
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Fig. 2 EMD-ARMA-LSTM modeling process

Fig. 3 Time series of tuberculosis incidence from 2008 to 2018
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EMD
The original sequence of tuberculosis was decomposed 
by EMD, and three IMFs and a residual signal were 
obtained, among which IMF1 had the highest frequency 
and represented the high frequency component of tuber-
culosis signal, residual signal is the lowest frequency 
signal and represents the trend in the pulmonary tuber-
culosis signal. The original signal of pulmonary tuber-
culosis and each decomposition sequence after EMD 
decomposition were shown in Fig. 4.

SARIMA Model
The SARIMA model was constructed for the original 
sequence, three IMFs and a residual signal respectively. 
The original sequence, IMF1, IMF3 and residual sig-
nal were non-stationary sequences, so difference pro-
cessing was carried out to make them stationary, all the 
sequences became stationary after d or D-order differ-
ence. IMF2 was a stationary sequence. Taking the origi-
nal sequence as an example, the ACF/PACF figure before 
and after difference is shown in Fig.  5. All the adjusted 
sequences and IMF2 were non-white noise (Table  1). 
The d and D of the original sequence, IMF3 and residual 
signal were determined by the number of differences in 
the sequence. According to previous literature experi-
ence, the values of p, q, P and Q ranged from 0 to 2, and 
the SARIMA model was automatically fitted by Python 
grid search [24]. According to AIC minimum principle, 

the optimal models were determined as follows: Origi-
nal sequence: SARIMA (2,1,0) (1,1,2) 12; IMF1: SARIMA 
(2,0,2) (0,1,2) 12; IMF2: ARMA (2,2); IMF3: SARIMA 
(2,1,1) (0,0,1) 12; Residual signal: ARIMA (2,2,1). Ljung-
Box test was performed on the residual sequence of the 
models, the results showed that the p value was more 
than the significance level and the sequences were ran-
dom (Table 2). The above models were used to predict the 
corresponding IMF and residual signal, and the predicted 
values were integrated in the form of direct summation 
to obtain the final forecast results of the EMD-SARIMA 
model.

LSTM Model
Since appropriate model parameters have a great impact 
on the prediction performance, the last 12 data of the 
training set were used as verification sets to adjust the 
model parameters. Due to the obvious periodicity of the 
original sequence of pulmonary tuberculosis, the window 
length of the LSTM network was set to 12, that was, the 
number of nodes in the input layer was set to 12. The fol-
lowing one-month data was used as the output for pre-
diction, and the number of nodes in the output layer was 
set to 1. Since the number of hidden layer nodes has a 
great impact on the model accuracy, the empirical for-
mula M =

√
m+ n+ a(a = 1 ∼ 10)  [25] was used to 

determine the range of node number M. In this paper, the 
number of hidden layer nodes was first determined under 

Fig. 4 Primary signal of pulmonary tuberculosis and decomposition of EMD
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the condition that the number of hidden layers was fixed 
as 1. The M calculated by the experimental formula was 
5–13. When the number of hidden layer nodes was set to 
13, the LSTM had the smallest error value (Table 3).

When the number of hidden layer nodes was fixed at 
13, the experiment was carried out with the number of 
hidden layer layers 1–4, when the number of hidden lay-
ers was set to 1, the error value of LSTM was the lowest 
(Table 4).

To sum up, this paper finally set the window length as 
12, the number of hidden layers as 1, and the number of 
hidden layer nodes as 13, and fixed the number of seeds 
of the model, selected 1000 iterations, set batch size as 
32, and used Adam optimizer to predict the model.

Comparative analysis of models
In this paper, the pulmonary tuberculosis sequence 
was transformed into a series of relatively stable subse-
quences by EMD decomposition. Then, the decomposi-
tion-based single model and the decomposition-based 
hybrid model were established respectively to predict the 
incidence trend in the next year, and compared with the 
prediction results of the undecomposed single model, as 

Fig. 5 Autocorrelation and partial autocorrelation plots of original sequence: (A) is before difference and (B) is after difference

Table 1 Unit root test and white noise test results after 
difference of each sequence

Sequence ADF Box‑Ljung

t P χ2 P

Original sequence -5.690  < 0.001 12.250 0.006

IMF1 -3.581 0.006 9.778 0.021

IMF2 -4.003 0.001 95.781  < 0.001

IMF3 -4.013 0.001 190.242  < 0.001

Res -4.077  < 0.001 195.374  < 0.001

Table 2 Residual white noise test results of each prediction 
model

Model Box‑Ljung

χ2 P

Original sequence—SARIMA(2,1,0)(1,1,2)12 0.030 0.860

IMF1—SARIMA(2,0,2)(0,1,2)12 0.240 0.630

IMF2—ARMA(2,2) 0.010 0.930

IMF3—SARIMA(2,1,1)(0,0,1)12 0.050 0.820

Res—ARIMA(2,2,1) 1.740 0.190
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shown in Fig. 6. Additionally, we built corresponding pre-
diction models using the next 3 months, 6 months, and 9 
months as the test period in order to assess the robust-
ness of the results.

(1) Comparing decomposition-based single model 
with undecomposed single model, it was found 
that: when predicting the incidence trend in the 
next year, compared with SARIMA model, the 
MSE, MAE, RMSE and MAPE of EMD-SARIMA 
decreased by 39.3%, 19.0%, 22.1% and 19.8%, 
respectively. The MSE, MAE, RMSE and MAPE of 
EMD-LSTM were reduced by 40.5%, 12.8%, 22.9% 
and 12.7%, respectively, compared with the LSTM 
model. Furthermore, the performance of the model 
were consistent when predicting the incidence 
trend in the next 3 months, 6 months and 9 months 
(Table 5).

(2) Comparing the decomposition-based hybrid model 
with the decomposition-based single model, it was 
found that: when predicting the incidence trend 
in the next year, compared with EMD-SARIMA 
model, the MSE, MAE, RMSE and MAPE of EMD-
ARMA-LSTM model decreased by 21.7%, 10.6%, 
11.5% and 11.2%, respectively. The MSE, MAE, 
RMSE and MAPE of EMD-ARMA-LSTM were 
reduced by 16.7%, 9.6%, 8.7% and 12.3%, respec-
tively, compared with EMD-LSTM model. Further-
more, the performance of the model were consist-
ent when predicting the incidence trend in the next 
3 months, 6 months and 9 months (Table 6).

Discussion
In the past two decades, great progress had been made 
in the prevention and control of pulmonary tubercu-
losis, but pulmonary tuberculosis is still a major public 
health problem endangering people’s health [26], and 
"precise prevention" is the key to the current prevention 
and control of tuberculosis [27]. Therefore, the timely 
understanding of tuberculosis epidemic trend and the 
establishment of accurate tuberculosis prediction model 
can provide scientific basis for the formulation of disease 
prevention and control policies.

In recent years, most predictions of infectious dis-
eases are based on the original time series model. Stud-
ies have shown that, compared with a single prediction 
model, the combination model built based on the decom-
position and integration idea can reduce the complexity 
of the sequence and effectively improve the prediction 
performance of the model by decomposing the original 
sequence. Comparing the decomposition-based sin-
gle model with the undecomposed single model, it was 
found that the prediction performance of the decom-
position-based single model was better than that of the 
undecomposed single model, which was mainly due to 
the decomposition of the initial sequence, so as to obtain 
relatively simple, stable and regular subsequence, which 
reduced the difficulty of model and improved the accu-
racy of prediction. Secondly, in view of the limitation of 
using only a single model for prediction in the analysis 
process, this paper attempted to use SARIMA model for 
stationary series and LSTM model for non-stationary 
series to establish a decomposition-based hybrid model. 
Compared with the decomposition-based correspond-
ing single model, it was found that constructing the 
combined model can improve prediction performance 
of the model, indicating that selecting the appropriate 
model according to the subsequence characteristics was 
beneficial to improve the performance of the model. In 
conclusion, compared with other models, the combined 
model of EMD-ARMA-LSTM adopted in this study can 
improve the prediction accuracy more effectively, make 
a more accurate and reasonable prediction of pulmonary 
tuberculosis, and provide a theoretical basis for the pre-
diction of tuberculosis epidemic trend and the formula-
tion of prevention and control policies.

Table 3 Influence of the number of hidden layer nodes on the fitting performance of the model

Nodes number 5 6 7 8 9 10 11 12 13

MSE 0.022 0.023 0.029 0.017 0.020 0.231 0.020 0.029 0.017
MAE 0.116 0.129 0.142 0.117 0.116 0.125 0.118 0.141 0.104
RMSE 0.150 0.151 0.169 0.132 0.140 0.152 0.143 0.171 0.130
MAPE 0.022 0.025 0.028 0.023 0.022 0.024 0.023 0.027 0.020

Table 4 Influence of the number of hidden layers on the fitting 
performance of the model

Layers number 1 2 3 4

MSE 0.017 0.023 0.027 0.027

MAE 0.104 0.122 0.136 0.127

RMSE 0.130 0.152 0.163 0.163

MAPE 0.020 0.023 0.026 0.024
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The innovation of this paper is to build an EMD-
ARMA-LSTM hybrid model based on the idea of decom-
position before integration, and use the existing incidence 
data of tuberculosis to predict the incidence trend of this 
infectious disease in the next year, and achieve good 
results. In addition, we ensured the robustness of the 
model by changes in results over the next 3 months, 6 
months, and 9 months as test period. The model is not 
only suitable for predicting an infectious disease such 
as tuberculosis, but can also be extended to other data-
sets such as hand, foot and mouth disease and influenza. 
Therefore, this study has certain applicability in the field 

of epidemiology, which can not only improve people’s 
attention to infectious diseases through the prediction of 
future incidence, but also help relevant departments to 
formulate relevant prevention and control policies.

Conclusion

(1) The reported incidence of tuberculosis in China 
from 2008 to 2018 showed a decreasing trend year 
by year, with obvious seasonality, with two obvious 
epidemic peaks in January and March each year.

Fig. 6 Comparative chart for predicting the incidence of tuberculosis in the next year. A was the fitting period, and (B) was the test period
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(2) The prediction performance of EMD-SARIMA 
model was better than that of SARIMA model, and 
that of EMD-LSTM model was better than that 
of LSTM model. This suggested that the predic-
tion performance of single model based on EMD 
decomposition was better than that of undecom-
posed single model.

(3) The predictive performance of EMD-ARMA-LSTM 
model was better than that of EMD-SARIMA 
model and EMD-LSTM model. This suggested that 
the prediction performance of the combined model 
using the advantages of different models was better 
than that of decomposition-based single model.

Table 5 Comparison of the decomposition-based single model and undecomposed single model

Time Model MSE MAE RMSE MAPE

value rate(%) value rate(%) value rate(%) value rate(%)

3 months SARIMA 0.1615 - 0.3489 - 0.4018 - 0.0692 -

EMD-SARIMA 0.0912 43.5 0.2439 30.1 0.3019 24.9 0.0439 36.6
LSTM 0.1553 - 0.3273 - 0.3940 - 0.0614 -

EMD-LSTM 0.0804 48.2 0.2579 21.2 0.2835 28.0 0.0501 18.4
6 months SARIMA 0.1261 - 0.3250 - 0.3551 - 0.0636 -

EMD-SARIMA 0.0465 63.1 0.1413 56.5 0.2156 39.3 0.0256 59.7
LSTM 0.1039 - 0.2312 - 0.3223 - 0.0440 -

EMD-LSTM 0.0390 62.5 0.1509 34.7 0.1975 38.7 0.0288 34.5
9 months SARIMA 0.0858 - 0.2334 - 0.2929 - 0.0458 -

EMD-SARIMA 0.0488 43.1 0.1674 28.3 0.2208 24.6 0.0320 30.1
LSTM 0.0763 - 0.1820 - 0.2763 - 0.0347 -

EMD-LSTM 0.0422 44.7 0.1735 4.7 0.2055 25.6 0.0336 3.2
12 months SARIMA 0.0682 - 0.1976 - 0.2612 - 0.0399 -

EMD-SARIMA 0.0414 39.3 0.1600 19.0 0.2035 22.1 0.0320 19.8
LSTM 0.0654 - 0.1813 - 0.2558 - 0.0371 -

EMD-LSTM 0.0389 40.5 0.1581 12.8 0.1972 22.9 0.0324 12.7

Table 6 Comparison of the decomposition-based hybrid model and the decomposition-based single model

Time Model MSE MAE RMSE MAPE

value rate(%) value rate(%) value rate(%) value rate(%)

3 months EMD-SARIMA 0.0912 - 0.2439 - 0.3019 - 0.0439 -

EMD-ARMA-LSTM 0.0700 23.2 0.2406 1.4 0.2645 12.4 0.0447 ‑1.8
EMD-LSTM 0.0804 - 0.2579 - 0.2835 - 0.0501 -

EMD-ARMA-LSTM 0.0700 12.9 0.2406 6.7 0.2645 6.7 0.0447 10.8
6 months EMD-SARIMA 0.0465 - 0.1413 - 0.2156 - 0.0256 -

EMD-ARMA-LSTM 0.0355 23.7 0.1283 9.2 0.1885 12.6 0.0239 6.6
EMD-LSTM 0.0390 - 0.1509 - 0.1975 - 0.0288 -

EMD-ARMA-LSTM 0.0355 9.0 0.1283 15.0 0.1885 4.6 0.0239 17.0
9 months EMD-SARIMA 0.0488 - 0.1674 - 0.2208 - 0.0320 -

EMD-ARMA-LSTM 0.0321 34.2 0.1438 14.1 0.1792 18.8 0.0275 14.1
EMD-LSTM 0.0422 - 0.1735 - 0.2055 - 0.0336 -

EMD-ARMA-LSTM 0.0321 23.9 0.1438 17.1 0.1792 12.8 0.0275 18.2
12 months EMD-SARIMA 0.0414 - 0.1600 - 0.2035 - 0.0320 -

EMD-ARMA-LSTM 0.0324 21.7 0.1430 10.6 0.1800 11.5 0.0284 11.2
EMD-LSTM 0.0389 - 0.1581 - 0.1972 - 0.0324 -

EMD-ARMA-LSTM 0.0324 16.7 0.1430 9.6 0.1800 8.7 0.0284 12.3
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