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Abstract 

Background Bloodstream infections (BSIs) are a significant burden on the global population and represent a key 
area of focus in the hospital environment. Blood culture (BC) testing is the standard diagnostic test utilised to confirm 
the presence of a BSI. However, current BC testing practices result in low positive yields and overuse of the diagnostic 
test. Diagnostic stewardship research regarding BC testing is increasing, and becoming more important to reduce 
unnecessary resource expenditure and antimicrobial use, especially as antimicrobial resistance continues to rise. This 
study aims to establish a machine learning (ML) pipeline for BC outcome prediction using data obtained from rou-
tinely analysed blood samples, including complete blood count (CBC), white blood cell differential (DIFF), and cell 
population data (CPD) produced by Sysmex XN-2000 analysers.

Methods ML models were trained using retrospective data produced between 2018 and 2019, from patients at Sir 
Charles Gairdner hospital, Nedlands, Western Australia, and processed at Pathwest Laboratory Medicine, Nedlands. 
Trained ML models were evaluated using stratified 10-fold cross validation.

Results Two ML models, an XGBoost model using CBC/DIFF/CPD features with boruta feature selection (BFS) , 
and a random forest model trained using CBC/DIFF features with BFS were selected for further validation after obtain-
ing AUC scores of 0.76± 0.04 and 0.75± 0.04 respectively using stratified 10-fold cross validation. The XGBoost model 
obtained an AUC score of 0.76 on a internal validation set. The random forest model obtained AUC scores of 0.82 
and 0.76 on internal and external validation datasets respectively.

Conclusions We have demonstrated the utility of using an ML pipeline combined with CBC/DIFF, and CBC/DIFF/
CPD feature spaces for BC outcome prediction. This builds on the growing body of research in the area of BC outcome 
prediction, and provides opportunity for further research.
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Introduction
Bloodstream infections (BSIs) are becoming an increas-
ingly significant burden on the global population. At the 
local level, BSIs have significant costs to healthcare sys-
tems and patients. This is represented by both the eco-
nomic impact as a result of diagnosis and treatment, and 
the damage to patients as a result of a BSI. Untreated BSIs 
can lead to serious health consequences. Sepsis, which is 
currently defined as a life threatening organ dysfunction 
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due to a dysregulated immune response to infection [1], 
is one potential result of a BSI. BSIs are the result of infec-
tions with pathogenic organisms including bacteria and 
fungi. The detection of a BSI requires blood culture (BC) 
testing to identify infections in the bloodstream. The test 
uses a blood sample from the patient, placed in a medium 
to promote growth of microorganisms. This is incubated in 
the laboratory and observed for growth. BC testing is con-
sidered the current “gold standard” for diagnosis of BSIs, 
however, BC testing is generally overused and results in low 
positive yields [2, 3]. This can lead to longer hospital stays, 
additional unnecessary patient tests, increased costs and 
resource expenditure, and the unnecessary application of 
antimicrobials [3–6]. This, in turn, contributes to the pro-
liferation of antimicrobial resistance (AMR), an increasing 
burden on the global population with an estimated 1 · 27 
million (0·911-1·71) deaths directly attributable to drug 
resistance in 2019 [7]. Implementing diagnostic steward-
ship regarding BC tests has therefore become a significant 
clinical priority. The aim of diagnostic stewardship is to 
“select the right test for the right patient, generating accu-
rate, clinically relevant results at the right time to opti-
mally influence clinical care and to conserve health care 
resources” [8]. In the case of BC testing, it is important to 
identify when BC tests are unnecessary, in order to sup-
port clinicians deciding whether to order BCs [9]. With 
the increasing amount of data being produced and stored 
in the clinical laboratory environment, machine learning 
(ML) algorithms can be utilised for diagnostic stewardship 
of BSIs. ML solutions are increasingly applied for problems 
in infection science. In the hospital, ML models are used to 
assist in the patient diagnosis, treatment, and management; 
and in the clinical laboratory, ML is providing solutions 
for problems relating to laboratory workflows and testing 
methodologies. In particular, the analysis of large, multidi-
mensional datasets that are difficult for humans to analyse 
provides the opportunity for ML based approaches. This 
paper introduces a ML pipeline for BC outcome prediction 
using blood sample data produced by Sysmex-XN 2000 
hematology analysers (Sysmex, Kobe, Japan). The ML mod-
els within this pipeline have been trained on retrospective 
data, in addition to being validated on retrospectively col-
lected, internal, and external datasets. The purpose of this 
pipeline is to reduce the number of unnecessary BCs, and 
improve diagnostic stewardship practices of BC testing.

Method
Machine learning lifecycle
We present a ML pipeline for BC outcome prediction 
which includes data processing, and model develop-
ment and evaluation. Each of these components are 
discussed in following sections.

Data collection and processing
We trained ML models using complete blood count 
(CBC), white blood cell differential (DIFF), and cell 
population data (CPD) produced by the Sysmex 
XN-2000 hematology analysers. CBC and DIFF fea-
tures are routinely reported in the laboratory environ-
ment, while CPD features are not routinely reported, 
as they are currently only used for research purposes. 
Three separate datasets were utilised, including train-
ing, internal validation, and external validation data-
sets, all obtained retrospectively. Properties of these 
datasets are discussed in the following sections. The 
ML model development process is discussed in the 
section Machine learning model development. All data 
was produced between 1 January 2018 and 31 May 
2020. CBC, DIFF, and CPD test results were joined 
with respective microbiological outcome data from 
the laboratory information system (LIS). Test results 
and corresponding BC outcomes were included if the 
blood samples for CBC and BC testing were taken at 
the same time, therefore sharing a sample identifica-
tion number. Imputation of missing values was not 
required as all features that were included during the 
training phase were complete when tests were per-
formed. Data used throughout this study was managed 
appropriately based on local research procedures and 
guidelines. All data was provided in a de-identified 
form, and additional demographic or clinical outcome 
data from patients was not used. These datasets have 
been previously utilised in unpublished research [10]. 
The datasets are described in the following section, 
and in Table  1. Only samples from adult populations 
(age > 18) were included, and samples were excluded 
if the CBC test did not have a corresponding BC test 
with matching sample identification. Samples were 
also excluded if errors were present during CBC data 
generation. These samples were automatically flagged 
by the analyser. We were unable to determine which 
organisms were clinically significant or contaminated. 
Therefore, based on a previous study by Nannan Pan-
day et  al. [11], we considered Micrococcus species, 
Bacillus species, Coagulase-negative staphylococci 
(CoNS), Corynebacterium species, and Propionibac-
terium acnes as non-significant/contamination. CBC 
data which had a corresponding BC result with these 
microorganisms were not considered in our study. This 
was done to reduce the risk of including incorrectly 
labelled data into the training dataset.

Datasets
Retrospective training dataset
The retrospective training dataset includes results pro-
duced between 1 January 2018 and 31 December 2019. 
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Data was generated at Pathwest Laboratory Medicine, 
Nedlands, Western Australia from patients at Sir Charles 
Gairdner Hospital (SCGH), a teaching hospital in Ned-
lands, Western Australia. The training set contains 10965 
samples. 10134 of these blood samples were drawn with 
negative BC results (92.42%), and 831 were drawn with 
positive BC results (7.58%).

Retrospective internal validation dataset
The retrospective internal validation dataset includes 
results produced between 1 January 2020 and 31 May 
2020. Data was generated at Pathwest Laboratory Medi-
cine, Nedlands, Western Australia from patients at 
SCGH. This set contains 318 samples. 292 of these blood 
samples were drawn with negative BC results (91.82%), 
and 26 were drawn with positive BC results (8.18%).

Retrospective external validation dataset
The retrospective external validation dataset includes 
results produced between 1 January 2020 and 31 May 
2020. Data was generated at Pathwest Laboratory Medi-
cine centres in Western Australia outside of the Path-
west Laboratory Medicine, Nedlands centre. Data was 
extracted from the LIS. This set contains 1245 samples. 
1138 of these blood samples were drawn with negative 
BC results (91.41%), and 107 were drawn with positive 
BC results (8.59%). For this dataset, a model trained on 
CBC and DIFF data was evaluated due to the inability to 
obtain CPD from other centres.

Interpretation of features
Hematology data produced by the Sysmex XN-2000 
module analysers was used as the input for the ML mod-
els, including CBC, DIFF, and CPD features. A CBC is a 
regularly requested laboratory test that is used to analyse 
patient blood samples and reports information regarding 
the cells in the blood including white blood cells/leuko-
cytes (WBC), platelets/thrombocytes (PLT), and red blood 
cells/erythrocytes (RBC). In addition to a standard CBC, a 
DIFF which provides information about the different WBC 

types is also often performed. This includes analysis of 
neutrophils (NEUT), lymphocytes (LYMPH), monocytes 
(MONO), basophils (BASO), and eosinophils (EO). From 
DIFF information, it is also possible to derive additional 
features including neutrophil-to-lymphocyte ratio (NLR), 
and monocyte-to-lymphocyte ratio (MLR). CPD features 
are produced as a result of the fluorescent flow cytom-
etry method used by the Sysmex analysers. CPD provides 
numerical values for side scatter light (SSC), foward scat-
ter light (FSC), and fluorescent light intensity (SFL) . These 
values are often presented graphically on a scattergram 
along the x-axis, z-axis, and y-axis respectively. SSC rep-
resents cellular granularity, FSC represents cell volume 
and shape, and SFL represents the nucleic acid and protein 
content of cells [12, 13]. Lastly, the Sysmex XN-2000 also 
generates interpretive program messages (IP flags) based 
on the outcome of a CBC analysis, and provides warnings 
for hematological conditions or disorders [14]. The analys-
ers produce these flags for WBC, RBC, and PLT.

Feature spaces
Two feature spaces were created and used to train ML 
models. The CBC and DIFF feature space (CBC/DIFF), 
and the CBC/DIFF feature space with the addition of CPD 
(CBC/DIFF/CPD). Separate models were trained on each 
of these feature spaces with a ML model development 
pipeline including feature selection and stratified 10-fold  
cross validation. The CBC and DIFF, and CPD features are 
shown in Tables 2 and 3 respectively. NLR and MLR are 
included as part of the CBC and DIFF features.

Machine learning model development
Three different tree-based methods were evaluated; 
random forests (RF) [15], decision trees (DT) [16], and 

(1)Neutrophil-to-lymphocyte ratio (NLR) =
NEUT count

LYMPH count

(2)Monocyte-to-lymphocyte ratio (MLR) =
MONO count

LYMPH count

Table 1 Description and properties for each dataset

Dataset Time period Overview

Training Between 1 January 2018 and 31 December 2019 The training set contains 10965 samples. 10134 of these blood samples were 
taken with negative BC results (92.42%), and 831 were drawn with positive BC 
results (7.58%).

Internal validation Between 1 January 2020 and 31 May 2020 This set contains 318 samples. 292 of these blood samples were drawn 
with negative BC results (91.82%), and 26 were drawn with positive BC results 
(8.18%).

External validation Between 1 January 2020 and 31 May 2020 This set contains 1245 samples. 1138 of these blood samples were drawn 
with negative BC results (91.41%), and 107 were drawn with positive BC results 
(8.59%).
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XGBoost (extreme gradient boosting) [17]. Only tree-
based models were explored in this study as they pro-
vide the feature importance property after training the 

models. As the data is highly imbalanced, class weighting 
was implemented to manage this imbalance. The models 
were trained on each of the feature spaces, CBC/DIFF/
CPD and CBC/DIFF. For each model and feature space, 
a feature selection method was selected. The methods 
include none (all features in the space included), recur-
sive feature elimination (RFE) until 5 features, and the 
boruta feature selection method [18]. The boruta method 
was evaluated due to the effectiveness of the approach 
in previous studies in the medical domain [19–23]. The 
boruta method utilised RF and XGBoost models respec-
tively when they were being trained. However, when 
training the DT models, RF was used with boruta to per-
form feature selection before training. This approach of 
using boruta with DT models has been previously imple-
mented [24]. Stratified 10-fold cross validation of the 
training set was used to determine which models would 
be selected for further validation. The purpose of this 
study was to produce baseline ML models for BC out-
come prediction. Given this objective, hyperparameter 
optimisation was not utilised due to the  process being 
computationally expensive.

Machine learning model evaluation
Models were evaluated using several metrics including 
area under the receiver operating characteristic curve 
(AUC), sensitivity, specificity, and the J-statistic. These 
metrics were calculated for stratified 10-fold cross valida-
tion during model training; and validation on the internal 
and external datasets. Metrics are for models when the 
classification threshold is at 0.5 unless otherwise stated.

Software
The python programming language (version 3.10.5) was 
utilised for all software development in this study. Sev-
eral python libraries were used including numpy (version 
1.23.1) [25], pandas (version 1.4.3) [26, 27], scikit-learn 
(version 1.1.1) [28], XGBoost (version 1.6.1) [17], boruta_
py (version 0.3), imbalanced-learn (version 0.9.1) [29], 
seaborn (version 0.11.2) [30], and matplotlib ( version 
3.5.2) [31].

Results
Model training and cross validation
Results for the ML models after stratified 10-fold cross 
validation were sorted based on mean AUC, followed 
by the mean J statistic value, mean recall value, and 
mean diagnostic odds ratio at a classification threshold 
of 0.5. All of the ML models, feature selection meth-
ods, and class weight combinations performed simi-
larly on stratified 10-fold cross validation. The lowest 
and highest AUC scores obtained were 0.70± 0.05 
and 0.76± 0.04 respectively. Two models were 

Table 2 Complete blood count (CBC) and differential (DIFF) 
features

Feature Description

RDW-CV(%) red blood cell distribution width

PLT(109/L) Platelet count

MCHC(g/L) mean corpuscular haemoglobin concentration

MCH(pg) mean corpuscular haemoglobin

MCV(fL) mean corpuscular volume

HGB(g/L) haemoglobin

RBC(1012/L) Red blood cell count

WBC(109/L) white blood cell count

MONO%(%) monocyte differential relative percentage

BASO%(%) basophil differential relative percentage

EO%(%) Eosinophil differential relative percentage

LYMPH%(%) lymphocyte differential relative percentage

NEUT%(%) neutrophil differential relative percentage

BASO#(109/L) absolute basophil count

MONO#(109/L) absolute monocyte count

EO#(109/L) absolute eosinophil count

LYMPH#(109/L) absolute lymphocyte count

NEUT#(109/L) absolute neutrophil count

NLR neutrophil and lymphocyte ratio

MLR monocyte and lymphocyte ratio

Table 3 Cell population data (CPD) features

Feature Description

NE-SSC Neutrophil complexity

NE-SFL Neutrophil fluorescence intensity

NE-FSC Neutrophils forward scatter

NE-WX width of dispersion of neutrophil complexity

NE-WY width of dispersion of neutrophils fluoresence

NE-WZ width of dispersion of neutrophils size

LY-X Lymphocytes complexity

LY-WX Width of dispersion of lymphocytes complexity

LY-Y Lymphocytes fluorescence intensity

LY-WY Width of dispersion of lymphocytes fluorescence

LY-Z Lymphocytes size

LY-WZ Width of dispersion of lymphocytes size

MO-X Monocytes complexity

MO-WX Width of dispersion of monocytes complexity

MO-Y Monocytes fluorescence intensity

MO-WY Width of dispersion of monocytes fluorescence

MO-Z Monocytes size

MO-WZ Width of dispersion of Monocytes size
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subsequently selected for further evaluation. The first, 
which used the CBC/DIFF/CPD feature space was the 
XGBoost model with 1.5 class weights and utilising 
boruta for feature selection (XG/CBC/DIFF/CPD/1.5/
boruta). This was selected as it was the best perform-
ing model when sorted accordingly. This represented 
a model which was balanced, with the possibility of 
adjusting thresholds for prediction. For external vali-
dation where CPD parameters were unavailable, the 
RF model with CBC and DIFF parameters was selected 
with balanced class weights and the boruta feature 
selection method (RF/CBC/DIFF/1/boruta). Table  4 
shows the performance of these two models for strati-
fied 10-fold cross validation during model training. 
Additional file  2 contains results for all models eval-
uated during the model training and cross valida-
tion stage. The features used in the XG/CBC/DIFF/

CPD/1.5/boruta and RF/CBC/DIFF/1/boruta models 
are shown in Fig.  1. All feature importance’s for both 
models are shown in Tables 5 and 6.

Model validation: internal dataset
The XG/CBC/DIFF/CPD/1.5/boruta and RF/CBC/
DIFF/1/boruta models were evaluated on the internal 
validation set. The models achieved AUC scores of 0.76 
and 0.82 respectively. AUC curves for these models 
are shown in Fig.  2. At the classification threshold of 
0.5, the models achieved sensitivity scores of 0.81 and 
0.77, and specificity scores of 0.61 and 0.69 respectively 
(Additional file  1, Figs.  1 and 2 for confusion matri-
ces). At the classification threshold of 0.4, the models 
achieved sensitivity scores of 0.92 and 0.96, and speci-
ficity scores of 0.48 and 0.52 respectively (Additional 
file  1, Figs.  3 and 4 for confusion matrices). At the 

Fig. 1 Flowchart demonstrating the features used in the XG/CBC/DIFF/CPD/1.5/boruta and RF/CBC/DIFF/1/boruta models

Table 4 Performance of ML models for stratified 10-fold cross validation. Showing area under the receiver operating characteristic 
curve (AUC), J-statistic (J stat), sensitivity, and specificity at a classification threshold of 0.5

ML model AUC J stat at 0.5 threshold Sensitivity at 0.5 
threshold

Specificity at 
0.5 threshold

XG/CBC/DIFF/CPD/1.5/boruta 0.76± 0.04 0.39± 0.06 0.74± 0.07 0.65± 0.02

RF/CBC/DIFF/1/boruta 0.75± 0.04 0.34± 0.08 0.61± 0.08 0.73± 0.02
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classification threshold of 0.3, the models achieved sen-
sitivity scores of 0.96 and 1.0, and specificity scores of 
0.31 and 0.15 respectively (Additional file 1, Figs. 5 and 
6 for confusion matrices).

Model validation: external dataset
The RF/CBC/DIFF/1/boruta model was evaluated on the 
external validation dataset as CPD parameters were una-
vailable. The model achieved an AUC score of 0.76. The 
AUC curve is shown in Fig. 3. At the classification thresh-
old of 0.5, the model achieved sensitivity and specificity 
scores of 0.62, 0.70 respectively (Additional file 1, Fig. 7 
for confusion matrix). At the classification threshold of 
0.4, the model achieved sensitivity and specificity scores 
of 0.87 and 0.54 respectively (Additional file 1, Fig. 8 for 
confusion matrix). At the classification threshold of 0.3, 
the model achieved sensitivity and specificity scores of 
0.99, 0.24 respectively (Additional file 1, Fig. 9 for confu-
sion matrix).

Discussion
The ML pipeline established is this study performed con-
sistently on stratified 10-fold cross validation, internal, 
and external validation datasets utilising CBC, DIFF, and 
CPD features produced by the Sysmex XN-2000 analys-
ers. The pipeline is positioned to be validated in prospec-
tive studies for BC outcome prediction on patients who 
have BC and CBC samples drawn at the same time. This 
work adds to the existing body of literature, and presents, 
at the time of writing, the first use of CBC, DIFF, and 
CPD with ML for BC outcome prediction for the purpose 
of reducing the number of unnecessary BC tests. These 
results highlight the use of this approach for improve-
ments in diagnostic stewardship by reducing the number 
of unnecessary BCs that are processed after BC tests have 
been requested by clinicians. All trained models demon-
strated similar performance across all of the datasets. The 
XG/CBC/DIFF/CPD/1.5/boruta achieved an AUC score 
of 0.76 ± 0.04 on stratified 10-fold cross validation, and an 

Table 5 Feature importances for XG/CBC/DIFF/CPD/1.5/boruta. 
Features listed in table include width of dispersion of monocytes 
size ([MO-WZ]); absolute neutrophil count ( NEUT#(109/L)
); neutrophil fluorescence intensity ([NE-SFL(ch)]); absolute 
lymphocyte count ( LYMPH#(109/L)); suspected presence 
of immature neutrophils (IP SUS(WBC)Left Shift); width of 
dispersion of monocyte fluorescence ([MO-WY]); red blood cell 
distribution width (RDW-CV(%)); neutrophils forward scatter 
([NE-FSC(ch)]); relative percentage of lymphocytes (LYMPH%(%)); 
absolute monocyte count ( MONO#(109/L) ); relative percentage 
of monocytes (MONO%(%)); neutrophil lymphocyte ratio (NLR); 
relative percentage of eosinophils(EO%(%)); relative percentage 
of basophils (BASO%(%)); width of dispersion of neutrophils 
fluorescence ([NE-WY]); relative percentage of neutrophils 
(NEUT%(%))

Feature Importance

[MO-WZ] 0.036

NEUT#(109/L) 0.037

[NE-SFL(ch)] 0.038

LYMPH#(109/L) 0.038

IP SUS(WBC)Left Shift 0.041

[MO-WY] 0.044

RDW-CV(%) 0.044

[NE-FSC(ch)] 0.049

LYMPH%(%) 0.050

MONO#(109/L) 0.056

MONO%(%) 0.065

NLR 0.067

EO%(%) 0.068

BASO%(%) 0.071

[NE-WY] 0.084

NEUT%(%) 0.213

Table 6 Feature importances for RF/CBC/DIFF/1/boruta. 
Features listed in table include hemoglobin (HGB(g/L)); red blood 
cell count ( RBC(1012/L) ); absolute basophil count ( BASO#(109/L) ); 
platelet count ( PLT (109/L) ); red blood cell distribution width 
(RDW-CV(%)); white blood cell count ( WBC(109/L) ); absolute 
eosinophil count ( EO#(109/L) ); absolute neutrophil count 
( NEUT#(109/L) ); relative percentage of basophils (BASO%(%)); 
monocyte lymphocyte ratio (MLR); absolute monocyte count 
( MONO#(109/L) ); absolute lymphocyte count ( LYMPH#(109/L) ); 
relative percentage of eosinophils (EO%(%)); relative percentage 
of lymphocytes (LYMPH%(%)); relative percentage of monocytes 
(MONO%(%)); neutrophil lymphocyte ratio (NLR); relative 
percentage neutrophils (NEUT%(%))

Feature Importance

HGB(g/L) 0.003

RBC(1012/L) 0.003

BASO#(109/L) 0.008

PLT (109/L) 0.008

RDW-CV(%) 0.009

WBC(109/L) 0.015

EO#(109/L) 0.026

NEUT#(109/L) 0.028

BASO%(%) 0.030

MLR 0.036

MONO#(109/L) 0.058

LYMPH#(109/L) 0.063

EO%(%) 0.071

LYMPH%(%) 0.127

MONO%(%) 0.132

NLR 0.158

NEUT%(%) 0.224
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Fig. 2 AUC curve for the XG/CBC/DIFF/CPD/1.5/boruta and RF/CBC/DIFF/1/boruta models when tested on the internal validation dataset. 
A positive prediction represents a positive blood culture outcome

Fig. 3 AUC curve for RF/CBC/DIFF/1/boruta model when tested on the external dataset. A positive prediction represents a positive blood culture 
outcome
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AUC score of 0.76 on the internal test set. The RF/CBC/
DIFF/1/boruta model obtained an AUC score of 0.75 ± 
0.04 on 10-fold cross validation, and AUC scores of 0.82 
and 0.76 on the internal and external datasets respec-
tively. The feature importance scores for the two models 
supports previous findings in the literature. NEUT%(%) 
and NE-WY, both the first and second most important 
features for the XG/CBC/DIFF/CPD/1.5/boruta model, 
have been identified as important features in the identifi-
cation of BSI [32], in addition to the other CPD features, 
which have shown effectiveness for the identification of 
BSI, sepsis, and most recently, SARS-CoV-2 [12, 32–34]. 
NLR, which has been previously identified as useful for 
the identification of BSI in patients with fever, was the 
second most important feature for the RF/CBC/DIFF/1/
boruta model behind NEUT%(%) [35]. The application of 
ML for BC outcome prediction and identification of BSIs 
has also increased in recent years. Lien et al. [36] utilised 
ML for bacteremia detection utlising CBC and DIFF data 
but did not include NLR, MLR, or CPD. Boerman et al. 
[37] developed ML models for BC outcome prediction, 
where the patient population had already had BC tests 
requested by clinicians . The authors used hematological, 
biochemical, and physiological features to produce gradi-
ent boosted trees, and logistic regression models which 
obtained AUC scores of 0.77 and 0.78 respectively on test 
sets. Lastly, Schinkel et  al. [38] developed an XGBoost 
model that obtained AUC scores of 0.81, 0.80, and 0.76 
across testing, external, and prospective datasets, lead-
ing to a potential reduction of unnecessary BC tests by at 
least 30%. Typically, patient history, performing a physi-
cal assessment, and evaluating the results of laboratory 
tests are all considered when determining if and when a 

BC test should be performed [39]. In the proposed pipe-
line, only the results of routine blood tests are consid-
ered. A benefit of using only hematological data is that it 
simplifies the clinical integration process as the ML mod-
els do not rely on the production of data from multiple 
sources. Using a single source of data provides a simpli-
fied workflow for analysis and subsequent reduction in 
difficulty to integrate the approach within clinical labora-
tory workflows. Therefore, other features such as physio-
logical, and biochemical features have been purposefully 
excluded from this study. A proposed clinical integra-
tion workflow is shown in Fig. 4, positioned between the 
physician and the laboratory, after blood tests have been 
performed.

Restricting the pipeline from using other, non-routinely 
collected data means that the proposed ML workflow 
from training, testing, and deployment, can be intro-
duced more broadly as demonstrated by the performance 
of the pipeline on externally collected data. This study 
has limitations. Firstly, we utilised data produced from 
the Sysmex XN-2000 modules and did not take into con-
sideration other information regarding the patient. We 
also focused on the entire hospital population. ML mod-
els may perform better when trained exclusively for cer-
tain patient sub populations. We have limited this study 
to focusing on data processing, model development, and 
model evaluation. Therefore we have not included dis-
cussion on methods of interpretability and explainabilty, 
and leave this open for future research. Deployment and 
integration strategies were not investigated and should be 
the focus of future work, along with evaluation of the ML 
pipeline in prospective studies. Furthermore, alternative 
feature selection methods, hyperparameter optimisation, 

Fig. 4 A potential clinical integration workflow for the proposed BC outcome prediction ML model
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and additional ML methods should be explored. Lastly, 
future work should aim to address the limitations sur-
rounding the identification of clinically significant micro-
organisms and use a different method than the literature 
based approach we have chosen in this study.

Conclusion
We have demonstrated the utility of ML approaches for 
BC outcome prediction, using routinely available hema-
tology results produced by commonly used Sysmex 
XN-2000 analysers. Two ML models, one trained using 
CBC and DIFF features, and a model trained using CBC, 
DIFF, and CPD features demonstrated promising results. 
The ML pipeline established in this study provides a 
foundation for future clinical integration in the labora-
tory environment. Follow up research will evaluate this 
ML pipeline on a prospectively collected dataset. Future 
work will aim to further validate the findings presented 
in this paper and evaluate how the method could be 
implemented in practice. Particularly, it is important to 
determine if the method can be used  safely and reliably 
to improve diagnostic stewardship regarding BC use and 
reduce the number of unnecessary BC tests.
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