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Abstract 

Background Cholera in Kolkata remains endemic and the Indian city is burdened with a high number of annual 
cases. Climate change is widely considered to exacerbate cholera, however the precise relationship between climate 
and cholera is highly heterogeneous in space and considerable variation can be observed even within the Indian 
subcontinent. To date, relatively few studies have been conducted regarding the influence of climate on cholera 
in Kolkata.

Methods We considered 21 years of confirmed cholera cases from the Infectious Disease Hospital in Kolkata dur-
ing the period of 1999–2019. We used Generalised Additive Modelling (GAM) to extract the non-linear relationship 
between cholera and different climatic factors; temperature, rainfall and sea surface temperature (SST). Peak associ-
ated lag times were identified using cross-correlation lag analysis.

Results Our findings revealed a bi-annual pattern of cholera cases with two peaks coinciding with the increase 
in temperature in summer and the onset of monsoon rains. Variables selected as explanatory variables in the GAM 
model were temperature and rainfall. Temperature was the only significant factor associated with summer cholera 
(mean temperature of 30.3 °C associated with RR of 3.8) while rainfall was found to be the main driver of monsoon 
cholera (550 mm total monthly rainfall associated with RR of 3.38). Lag time analysis revealed that the association 
between temperature and cholera cases in the summer had a longer peak lag time compared to that between rainfall 
and cholera during the monsoon. We propose several mechanisms by which these relationships are mediated.

Conclusions Kolkata exhibits a dual-peak phenomenon with independent mediating factors. We suggest 
that the summer peak is due to increased bacterial concentration in urban water bodies, while the monsoon peak 
is driven by contaminated flood waters. Our results underscore the potential utility of preventative strategies tailored 
to these seasonal and climatic patterns, including efforts to reduce direct contact with urban water bodies in summer 
and to protect residents from flood waters during monsoon.
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Background
Cholera is an infectious diarrheal disease caused by con-
tamination with pathogenic strains (O1 or O139) of the 
bacteria Vibrio cholerae. While the disease has been suc-
cessfully eradicated in many parts of the world thanks to 
major improvements to drinking water and sanitation 
infrastructure, the seventh global cholera pandemic per-
sists in many others such as India. Bordering the Bay of 
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Bengal, often considered to be the ‘homeland’ of cholera, 
the Indian State of West Bengal experiences the highest 
cholera burden in the country [1], much of which is con-
centrated in the densely populated state capital Kolkata.

Cholera is highly climate-sensitive and is broadly 
considered to be exacerbated by the effects of climate 
change [2–4]. This is particularly true with regards to the 
endemic cholera which persists across the Bengal Delta, a 
vast river delta surrounding the Bay of Bengal consisting 
of Bangladesh in the East, and West Bengal in the West. 
Transmission in this region occurs predominately due to 
contact with contaminated water sources in the environ-
ment [5]. Within Bangladesh, the relationship between 
cholera and climate has been studied intensively [6]. An 
interesting, and potentially unique phenomenon with 
endemic cholera in this region is the dual-peak seasonal-
ity of cases. This is well documented in Bangladesh which 
experiences peaks both pre- and post-monsoon with a 
marked abated occurrence of cases during the monsoon 
itself [7–9]. Within the context of Bangladesh, association 
between climate and cholera appears to differ between 
peaks. With regards to rainfall, while the post-monsoon 
peak has been demonstrated to hold a strong positive 
association with rainfall [7, 9, 10], during the summer 
the inverse is true with drier years tending to lead to 
stronger early peaks [7, 11]. An even more complex rela-
tionship appears to exist between cholera and sea surface 
temperature (SST) in the Bay of Bengal. While evidence 
gathered from historical cholera mortality records 
(1891–1940) across the Bengal Delta found coastal SST 
was positively associated with pre-monsoon cholera, no 
relationship was found with post-monsoon cholera [8]. In 
contrast a more recent study in Bangladesh [10] found a 
weak association coastal SST pre-monsoon, but a much 
stronger association post-monsoon. The effects of air 
temperature in this region have been less well considered, 
but a 2018 study found a significant increase in cholera 
risk following a heatwave on wet days, but not dry days 
[12]. Research in other regions has suggested that non-
linear relationships may be present between cholera and 
climate variables. For example, non-linear relationships 
have been found between rainfall and cholera in Yemen 
[13], and between Vibrio Cholerae abundance and SST in 
the North Atlantic [14].

Compared with the rich epidemiological research back-
ground of cholera in Bangladesh however, research into 
the environmental influencers of Kolkata is much more 
limited despite the presence of endemicity in the region. 
Geographically, the city of Kolkata is similar to the Bang-
ladesh capital Dhaka where much of the research has 
been focussed. At a distance of 250  km apart, both are 
dense urban centres north of the Bay of Bengal with large 
slum populations who share the same language and many 

similar cultural practices. However, a study by de Magny 
et  al. [15] has shown that despite their similarities and 
physical proximity, the influence of climate on cholera in 
Bangladesh and Kolkata is markedly different.

To date, research conducted into the relationship 
between cholera and climate in Kolkata has largely been 
limited to case studies describing particular outbreaks 
[16], or communities [17]. De Magny et  al. [15] used a 
generalized linear model to assess the effects of rainfall 
and ocean temperature and chlorophyll levels on cholera 
in Kolkata. They found a significant influence of rainfall 
and ocean chlorophyll however only five years of data 
were used due to limited data available at the time. Sig-
nificant research gaps remain in clarifying this relation-
ship. Within the Bengal region, the potential presence of 
nonlinearity in cholera-climate associations has not been 
ascertained. Within the more specific context of Kolkata, 
no studies have yet considered the influence of ambient 
temperature, nor have individual relationships by season 
have not been considered.

In this study, we aim to fill these gaps by using Gener-
alized Additive Modelling (GAM) to analyse the poten-
tially nonlinear relationships between cholera and three 
environmental variables: temperature, rainfall, and sea 
surface temperature (SST) during the period 1999–2019. 
We also take a closer look at lag times with cross-corre-
lational lag analysis. An additional novel aspect in this 
study is comparing the use of rainfall runoff with rainfall 
as a variable. By considering runoff explicitly, we aim to 
consider the role of contamination of water sources via 
rainfall runoff in transmission. Finally, we will consider 
the influence of climate variables on both seasons sepa-
rately to capture any season-specific relationships.

Methods
Study area
The city of Kolkata lies on the east bank of the Hooghly 
River, a major Ganges distributary, around 160 km North 
of its origin into the Bay of Bengal (Fig. 1). It has a total 
population of around 45  million residents, including 
many who live in tightly crowded urban slums. The city 
has an average population density of 24,306 persons per 
 km2.

Epidemiological data
A dataset of stool samples from diarrhoeal patients 
reporting to the Infectious Disease Hospital (IDH) in 
Kolkata under their diarrhoeal surveillance system dur-
ing the 21-year period 1999–2019 was obtained from the 
Indian Council of Medical Research - National Institute 
of Cholera and Enteric Diseases (ICMR-NICED). In the 
surveillance system, every fifth patient on two randomly 
selected days of the week (representing around 6% of 
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total patients) was tested for several pathogens including 
O1 and O139 Vibrio cholerae. We extracted the number 
of samples which tested positive for either O1 or O139 
Vibrio cholerae where the patient was registered as resid-
ing within the Kolkata Municipal Corporation (KMC) 
region. The dataset from 1999 to 2007 was un-digitized 
and pre-aggregated at a monthly resolution. We therefore 
considered two datasets: a 21-year monthly dataset from 
1999 to 2019, and a 12-year dataset (2008–2019) aggre-
gated weekly. The monthly dataset was normalised to a 
30-day month to account for differences in month length 
(Eq. 1).

The decadal census populations of Kolkata were 
recorded as 4,399,819, 4,572,876, and 4,496,694 dur-
ing the years 1991, 2001, and 2011 respectively (data 
were unavailable for 2021) [18]. We therefore consid-
ered the population of Kolkata to be relatively stable, and 

(1)case snormalized,month = case sraw,month ·
30

days.in.month

therefore ignored any marginal fluctuations in population 
in our analysis.

Climate data
Monthly mean daytime temperature (°C) and total rain-
fall (mm/month) from were obtained from satellite esti-
mations produced by the Climate Research Unit (CRU) 
at the University of East Anglia from the CRU TS 4.04 
dataset [19] (available at http:// www. cru. uea. ac. uk/ cru/ 
data/ hrg/). Rainfall runoff (kg  m−2   s−1) was estimated 
using the mean monthly output of the following five 
land-surface models: DLEM [20], ISAM Trendy [21], 
JULES 1.0 [22], LPX-BERN [23], and ORCHIDEE [24]. 
We further estimated weekly mean daytime temperature 
(°C) and total precipitation (mm/day) by extracting daily 
estimations provided by the CRU Japanese Reanalysis 
(CRU JRA – available at https:// catal ogue. ceda. ac. uk/) 
[25] and aggregating weekly. Each dataset was available 
at a 0.5 × 0.5 degree spatial resolution and the cell with 
centroid longitude = 88.25°E, latitude = 22.75°N was cho-
sen since it covered the majority of the KMC area (BB1 in 

Fig. 1 Map of study area showing regions where environmental data were obtained. Bounding box 1 (BB1) shows the 0.5 × 0.5 degree grid cell 
centred on (88.25E, 22.75 N), bounding box 2 (BB2) denotes the 1 × 1 degree grid cell centred on (88.5E, 21.5 N)

http://www.cru.uea.ac.uk/cru/data/hrg/
http://www.cru.uea.ac.uk/cru/data/hrg/
https://catalogue.ceda.ac.uk/
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Fig. 1). Monthly SST data (°C) at a 1°x1° resolution were 
extracted from the Hadley Centre Global Sea Ice and Sea 
Surface Temperature (HadISST) dataset [26] which com-
bines in-situ and adjusted satellite measurements. We 
use the grid cell centred at 88.5°E, 21.5°N which refers to 
the area where the Bay of Bengal meets the mouth of the 
Hooghly River (BB2 in Fig. 1).

Statistical analysis
Identification of seasonality
A box plot of monthly cholera cases, temperature, and 
rainfall was produced for visual inspection of seasonal-
ity within the monthly dataset. Two distinct ‘cholera sea-
sons’ are demarcated through visual inspection, where 
the season period is defined according to patterns in 
cholera cases rather than meteorological patterns.

Nonlinear climate relationships
To allow for the potential presence of non-linear associa-
tions in the data, we explored the association between 
cholera cases and environmental variables using Gen-
eralized Additive Models (GAMs) [27] applied to the 
1999–2019 monthly dataset [27]. The GAM analysis was 
conducted using the R package mgcv [28]. A more in-
depth explanation of GAM models is given in the Supple-
mentary materials and is briefly summarized here. GAMs 
can be considered as an extension to generalized linear 
models (GLMs) which relaxes the linearity assump-
tion and allows for significantly more flexible model fit-
ting. Here, we model the cholera case data as sampled 
from a negative binomial distribution (due to the count 
nature and presence of over-dispersion) where the mean 
(count) is characterized as the sum of smooth functions 
of the environmental variables. We considered the vari-
ables rainfall, modelled rainfall-runoff, temperature and 
coastal SST as environmental inputs to the model.

The smooth functions in our model were constructed 
using penalized cubic regression splines. The flexibility 
of the smooths can be tuned by increasing the number 
of knots (k) where a greater number of knots permits a 
more flexible smooth. Since overfitting is prevented by 
a smoothing penalization term, we set k to the mini-
mum value above which the influence on the results 
was negligible to allow sufficient degrees of freedom 
to describe the true relationship within a manageable 
computational cost.

In our model, we include the season as a factor within 
each smooth of an environmental variable which permits 

the smooths to ‘interact’ with the season factors and 
produce a particular smooth for each environmental 
variable in each cholera season. Here, to prevent any 
potential misinterpretation of environmental correlations 
as incidental seasonal patterns such as those that may be 
caused by seasonal migration or major annual festivals, 
we include a smooth for month using a cyclic penalized 
cubic regression spline. Similarly, to account for long-
term trends not caused by environmental changes (e.g., 
due to improvements to sanitation or changes in health 
seeking behaviour) we include a smooth function of date.

To reduce bias linked with assumptions about lags in 
the connection between environmental variables and 
cholera, we analysed five different lag configurations for 
each of the four climate variables, as well as the option 
of omitting each variable. These configurations were as 
follows: variable omitted, in sync with the cholera occur-
rence month, delayed by one month, delayed by two 
months, mean average of concurrent and one-month lag, 
mean average of a one-month and a two-month lag. This 
examination led to a total of N = 64 − 1 = 1296 model 
variations. The general formula for each GAM model is 
given in Eq. 2.

Where E(Ym) represents the expected monthly con-
firmed cholera cases in month m , β0 represents the inter-
cept, and sseason() represents the smooth functions within 
a particular cholera season.

The strength of each model was assessed by calculating 
the Akaike Information Criterion (AIC) [29] which meas-
ures goodness-of-fit while penalizing additional model 
complexity. The model with the lowest AIC score was 
selected as the final model.

We anticipated temporal autocorrelation in the counts, 
and after exploratory analysis of the autocorrelation func-
tion (ACF) and the partial ACF (PACF) of the residuals of 
the chosen model (Figure S1), an AR(1) process was indi-
cated. We therefore included an additional one-month 
lagged term of the response variable (as a linear covari-
ate with its own associated Beta coefficient) in the final 
model (Eq. 3). This inclusion of an autoregressive term to 
deal with autocorrelation in the data is a well-established 
approach [30]. An ACF plot of the final model (Figure S2) 
confirmed this to be a reasonable assumption.

(2)
log[E(Ym)] = β0 + sseason(temperaturem,lag )+ sseason(rainfallm,lag )

+ sseason(runoffm,lag )+ sseason(SSTm,lag )+ s(date)

+ s(month)+ season

(3)
log[E(Ym)] = β0 + sseason temperaturem,lag + sseason rainfallm,lag + sseason runoffm,lag

+ sseason SSTm,lag + s(month) + s month− of − year + season+ log[ym−1]
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Lag analysis
We next used cross-correlation analysis to identify the 
lags associated with the strongest relationship between 
climate variables and cholera cases. Specifically, we meas-
ured the Pearson’s correlation between climate and chol-
era time series at lag periods from 0 to 25 weeks stratified 
by season. We utilised the 12-year weekly aggregate data-
sets from 2008 to 2019 to assess the effect of lag times at 
a finer temporal resolution.

Limitations
In our study we conclude that the relationship observed 
between rainfall and cholera during the monsoon season 
is due to urban flooding. However, measuring rainfall-
induced flooding using monthly averages does not fully 
capture tropical cyclones and short periods of highly 
intense rainfalls responsible for the flash flooding which 
frequently occurs in Kolkata [31]. It is therefore possible 
that the associations with rainfall found in this study are 
underestimated. Another issue in this study is the uncer-

tainty in the cholera case data. Only cholera patients 
who report to the ID hospital in Eastern Kolkata may 
be included in the confirmed cases. Therefore, reported 
case numbers are highly sensitive to changes in health-
seeking behaviour. It is possible, for example, that dur-
ing periods of heavy rains typically associated with high 
cholera risk, residents may be more encouraged to seek 
hospital treatment. Further, as only around 6% of ID hos-
pital patients are selected for testing, the total number of 
confirmed cases is low, with an average of only around 
10 per month. This makes the data highly susceptible to 
random noise which could potentially mask statistically 
significant relationships.

Results
Descriptive statistics
A total of 2479 confirmed cases of cholera were recorded 
between 1999 and 2019, the time series is given in Fig-
ure S4. To detect the presence of seasonality within chol-
era cases, we plotted a boxplot of total cholera cases per 
month from 1999 to 2019 (Fig.  2A). A subtle but dis-
tinct bi-annual pattern can be witnessed in the monthly 
data, the first peaking in April/May with a slight lull in 
June, followed by a larger peak around September. It 
can further be seen from that the first peak coincides 

with an increase in temperature as summer approaches 
(Fig.  2B), and the second after the onset of Monsoon 
rains (Fig. 2C). We therefore demarcated summer cholera 
as cases reported during the four-month period March-
June, and monsoon cholera as cases reported during the 
six-month period July-December. January and February 
are considered as ‘non-cholera’ seasons. Summary sta-
tistics for cholera cases, temperature and rainfall are dis-
played in Table 1.

GAM analysis
The model variation with the lowest AIC score 
(AIC = 1312.3) and selected for analysis retained tempera-
ture and rainfall as explanatory variables but omitted SST 
and rainfall runoff (Eq. 4). The selected lag for tempera-
ture was the mean average of the concurrent and previous 
month, no lag was chosen for rainfall and its concurrent 
value was selected. The model was able to explain 55.5% 
of the deviance in the data and residual analysis (Figure 
S3) suggests model assumptions are reasonable.

The partial effect curves for each variable-season com-
bination are shown in Fig.  3. These represent the com-
ponent effect of each environmental term in the model 
which, when combined with the long-term and seasonal 
partial effects (Figure S5), autoregressive terms and inter-
cept β0 , sum to the overall prediction of the model. The 
y-axis denotes the logged relative risk and can be inter-
preted as the logged relative expected cholera case count 
with respect to the seasonal mean.

During the summer season the influence of increased 
temperature appears greatest at mean temperatures 
above 29  °C, with a maximum relative risk (RR) of 3.8 
(95%CI 2.35–6.13) occurring at 30.3  °C. Temperatures 
below 25 °C were also associated with reduced risk where 
a mean temperature of 24.4  °C has an estimated RR of 
0.16 (95%CI 0.06–0.45). From 3  C it appears there is a 
slightly negative association between monthly rainfall 
and cholera cases, however this relationship is not statis-
tically significant.

During monsoon season, the influence of temperature 
was considerably less pronounced with only tempera-
tures below 22.7  °C being significantly associated with 
reduced RR, where RR is estimated at 0.37 (95%CI 0.16–
0.82) at 21.4 °C. However, the effect of rainfall was much 
more influential. A total monthly rainfall of 550 mm was 

(4)
log[E(t)] = β0+sseason

(

temperaturem,lag=mean(0,1)

)

+sseason
(

rainfallm,lag=0

)

+s(month)+s
(

month− of − year
)

+season+log[yt−1]
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associated with an RR of 3.38 (95%CI 1.37–7.86). It can 
be seen from Fig. 3 that all three signficant relationships 
are considerably non-linear.

An overall linearly decreasing trend beginning from 
2010 can be witnessed in the smooth for long-term 
trends (Figure S5A). Interestingly the model has esti-
mated a null seasonal trend (Figure S5B) which suggests 
that the seasonal patterns observed in the data were fully 
explained by the environmental smooths.

Lag times
We computed the strength of the correlation between rain-
fall and temperature time series with the weekly cholera case 
time series at lags from 0 to 25 weeks (Fig. 4 ). We found that 
the rainfall was significantly and positively correlated with 
cholera cases during the monsoon season at lags from 0 to 
8 weeks with the strongest association occurring at 3 weeks 
lag. Interestingly a smaller but still significant negative cor-
relation is witnessed from lags 16–21 weeks. Rainfall was 

Fig. 2 Variation in monthly values between 1999–2019 for A confirmed cholera cases in Kolkata, B mean daytime temperature in the Kolkata 
area, C total precipitation in the Kolkata area. Each line represents values for one year. Boxplots are overlaid to display mean and interquartile 
ranges for each month. Background colour represents cholera season demarcation, non-cholera season is shown as grey, red as summer, and blue 
as monsoon
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not correlated with cholera cases during summer at any of 
the lags considered. Conversely, temperature was positively 
associated with cholera cases during the summer season 
from lags 1–13 weeks, peaking at 7 weeks.

Discussion
In this study, we explored the relationship between cli-
mate and cholera in Kolkata. We determined that chol-
era in Kolkata demonstrates bi-annual seasonality with 
distinct summer and monsoon peaks. Further, we found 
that there is a difference in the factors which influence 
the magnitude of summer and monsoon cholera peaks; 
while temperature is the main driver of summer cholera, 
rainfall dominates the relationship with monsoon chol-
era. The model which best fit the data did not include 
SST or rainfall runoff, suggesting that neither variable 
is helpful in explaining the relationship between climate 
and cholera. We also found the peak associated lag time 
between temperature and cholera cases in the summer 
was more than double that of peak lag time between rain-
fall and cholera during monsoon.

The seasonal cholera pattern we found in Kolkata is 
similar to that found in Bangladesh, though with a less 
pronounced inter-peak period with the secondary peak 

beginning during the monsoon rather than following it 
[7]. However, the pattern is markedly different to that 
recorded in a historical dataset of the region (then known 
as Calcutta) during 1891–1940. During that period, the 
city experienced a single large peak occurring during the 
summer [8]. We suggest the following explanation for 
the change in single summer peak cholera in the early 
1900s to the dual-peak pattern with maximum during 
the monsoon observed in our study. A reported 100% of 
residents of modern (2020) Kolkata have some form of 
access to a treated municipal water supply [32] meaning 
that their exposure to the multiplying Vibrio cholerae in 
urban water bodies is likely to be considerably reduced 
compared with the period 1890–1941, and thereby less-
ening the potency of this mechanism and reducing the 
magnitude of the summer peak. While access to sanita-
tion in the region is likely to have increased significantly 
over the past 100 years, the proportion of households 
with an improved sanitation facility was only 60.9% and 
48.4% in 2019 and 2015 respectively [32] indicating that 
residents remain vulnerable to the effects of flood water 
mixing with raw sewage during the monsoon. We pro-
pose that a combination of lower immunity levels (due 
to the lessened summer peak) and greater vulnerability 
to flood waters due to higher population density (around 
4x greater in 1991 compared with 1911 [33]) could have 
introduced the presence of a monsoon peak.

The difference in associated climate factors between 
summer and monsoon cholera suggests distinct mecha-
nisms mediating cholera transmission in each season. A 
potential explanation for the strong association between 
temperature and summer cholera witnessed in our study 
is that urban surface water is an important transmission 
route early in the year. Kolkata residents often come into 
contact with urban water sources such as ponds, rivers 
and lakes for the purposes of washing, bathing and swim-
ming [34–36].

We consider that there are two potential explanations 
for the association with temperature. The first, as posited 
by Akanda et al. [7] among others, is that the preference 
of V.cholerae for warmer waters leads to proliferation 
of the bacteria during hot periods. This is in line with 
laboratory studies which found that V.cholerae O1 cells 
multiply most effectively when incubated at warmer tem-
peratures up to 30  °C [37, 38]. Thus, increased temper-
atures could lead to an increase in concentration of the 
pathogenic bacteria and thereby, due to the dose depend-
ent nature of cholera infections [39], increase the prob-
ability of cholera infection at a given interaction with 
urban surface water bodies. A second, alternative expla-
nation for the association between temperature and sum-
mer cholera cases is increased contact with water bodies 
such as ponds, canals and the Hooghly River as one of the 

Table 1 Descriptive summary of seasonal cholera cases, 
temperature, rainfall and runoff during the years 1999–2019 
using monthly dataset

Season Mean Min Max Standard 
Deviation

Monthly Cases total 9.84 0 63 10.54

monsoon 13.71 0 63 11.68

summer 8.11 0 40 8.04

non-cholera 1.69 0 16 3.61

Temperature (°C) total 27.20 18.60 32.50 3.83

monsoon 27.00 19.00 30.40 3.31

summer 30.20 26.00 32.50 1.48

non-cholera 21.80 18.60 25.90 1.89

SST (°C) total 27.64 22.02 30.87 2.29

monsoon 28.20 23.92 30.11 1.76

summer 28.73 25.82 30.87 1.27

non-cholera 23.76 22.02 25.63 0.81

Rainfall (mm/month) total 126.8 0.00 551.6 132.6

monsoon 175.3 0.00 551.6 150.2

summer 110.2 0.00 491.8 93.7

non-cholera 14.4 0.00 74.1 18.9

Runoff (kg  m−2  s−1) total 16.92 0.66 119.04 23.66

monsoon 29.11 1.81 119.04 27.86

summer 6.19 0.66 59.09 8.12

non-cholera 1.83 1.02 4.67 0.80
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few available methods of ‘cooling off’ during heatwaves 
available to the urban poor. The results of our lag anal-
ysis support the former hypothesis as a longer lag time 
would be expected under such as scenario to allow for a 
build-up of bacteria in urban water bodies before reach-
ing a critical threshold capable of causing cholera infec-
tion. The latter hypothesis would predict a much shorter 
associated lag time, namely the length the time between a 
given hot day, and the time taken for cholera to take hold 
enough for the patient to be admitted to hospital and the 
stool sample to be taken – a time likely to be no longer 
than 2–3 weeks.

A further interesting finding with regards to the relation-
ship between cholera and temperature is its marked non-
linearity, echoing findings previously reported in Azerbaijan 
where cholera cases peaked at an air temperature of 25 °C 
[40]. Similarly, our results show a linear correlation up until 
approximately 26 °C, after which the trend weakens.

The positive association with rainfall only witnessed 
in the monsoon season in our study is highly consist-
ent with results from Bangladesh [12, 14]. One poten-
tial explanation for the positive association with rainfall, 
also suggested by Akanda et al. [10] among others, is that 
rainfall induced floods lead to mixing between flood and 
sewage waters, as well as an increased contact between 
residents and contaminated flood waters. An alternative 
explanation which has been suggested to explain cholera 
outbreaks in Central India [41] involves the role of rain-
fall runoff. In areas where open defecation remains an 
issue, including Kolkata [42], rainfall can wash human 
faecal matter from these open defecation sites into acces-
sible water sources, leading to contamination and poten-
tial cholera outbreaks. However, this second explanation 
would suggest that modelled rainfall runoff would be a 
better predictor variable for cholera than rainfall, which 
was not supported in our study. Further a significant role 

Fig. 3 Partial effect curves for relationship between reported cholera cases with average temperature across 0- and 1-month lag (A, B) and rainfall 
in concurrent month (C, D) in summer(left) and monsoon (right) seasons after controlling for seasonal and long-term trends and the inclusion 
of a linear autoregressive covariate. The 95% confidence interval is shown with the lighter band. The null hypothesis of no effect is shown 
by the horizontal black line; significant relationships can be inferred in regions where the confidence interval does intersect the black line. The rug 
plot at the bottom of each plot displays the observed values for each covariate within each season. The y-axis represents the (logged) relative risk 
of cholera incidence with respect to the (logged) mean of the response variable
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of contaminated runoff would imply a positive associa-
tion with rainfall during both dry and wet seasons, which 
is also inconsistent with our findings. A lack of positive 
association between cholera and rainfall in the summer 
remains consistent with the flooding hypothesis, as the 
rainfall which occurs during the summer generally does 
not lead to flood events [43]. We therefore suggest that 
the flooding hypothesis is likely the primary mechanism 
mediating the monsoon rainfall-cholera relationship.

Increases in SST in the Bay of Bengal have been sug-
gested to be linked to cholera cases in the Bengal Delta by 
an associated increase in phytoplankton. This is suggested 
to increase both zooplankton populations and pH levels, 
both of which are considered to promote Vibrio Cholerae 
populations in local estuaries [6]. Coastal intrusion, espe-
cially during the summer, then leads to greater Vibrio 
Cholerae concentrations in the rivers upon which many 
urban areas are built upon. That our study found SST was 
not a useful indicator of cholera, highlights the spatial het-
erogeneity in SST-cholera relationships across the Bengal 
Delta. The reasons for these discrepancies remain unclear, 
especially given Kolkata’s proximity to the Hooghly River, 
which is highly estuarine in Kolkata with a tidal oscillation 
of ~ 3 m [44], however this could indicate a decreased role 
of the river in cholera transmission in place of ponds and 
canals compared with Dhaka.

Our results suggest a mediating role of increased 
pathogenic V.cholerae in urban water bodies and as such 
efforts to reduce direct contact with urban water bodies, 
such as through public health campaigns or improved 
washing facilities preceding and during the summer sea-
son could be effective at reducing cholera cases. Con-
versely, our results suggest a mediating role of contact 
with contaminated flood waters during the monsoon 
cholera season, and therefore interventions focussing 

on protecting residents from flood waters could be most 
effective in the short-term – and in the long-term, uni-
versal safe sanitation to prevent initial contamination of 
flood waters.

Our findings suggest that hotter summers and wet-
ter monsoons are conducive to high numbers of chol-
era cases in Kolkata. This is concerning due to a widely 
projected increase in the volume of rain falling during 
the monsoon season in the South Asian region a result 
of greenhouse-gas forcing [45]. In addition summer heat-
waves are predicted to become frequent, intense, and 
prolonged across South Asia with maximum exposure 
occurring in the Indo-Gangetic Plain [46]. This suggests 
that, from a climate standpoint, the vulnerability of Kolk-
ata to cholera is likely to increase over time. It is therefore 
vital to remain vigilant in efforts to improve sanitation in 
the region.

Conclusions
Our results find significant non-linear relationships 
between climate factors and cholera in Kolkata, with 
temperature driving summer cholera and rainfall driv-
ing monsoon cholera. We suggest the summer outbreak 
is mediated by increased pathogenic Vibrio concentra-
tion in urban water bodies, and the monsoon outbreak 
by contaminated rainfall-runoff. In this sense, we find 
that the relationship with climate in Kolkata is similar 
to that in Bangladesh. However, important differences 
were found including a lack of association with SST 
in Kolkata and a diminished early-monsoon lull. With 
regards to intervention strategies, we suggest that sum-
mer and monsoon peaks are considered separately with 
an increased emphasis on separation from urban water 
bodies during the summer season, and protection from 
flood waters in the monsoon.

Fig. 4 Correlation between aggregated seasonal cholera and concurrent/lagged seasonal rainfall (A) and temperature (B) during summer (red) 
and monsoon (blue) for lags 0–25 weeks. Lighter band represents the 95% confidence interval
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