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Abstract
Background  Antibiotic usage and antibiotic resistance (ABR) patterns changed during the COVID-19 pandemic. 
Inadequate empiric antibiotic therapy (IET) is a significant public health problem and contributes to ABR. We 
evaluated factors associated with IET before and during the COVID-19 pandemic to determine the impact of the 
pandemic on antibiotic management.

Methods  This multicenter, retrospective cohort analysis included hospitalized US adults who had a positive bacterial 
culture (specified gram-positive or gram-negative bacteria) from July 2019 to October 2021 in the BD Insights 
Research Database. IET was defined as antibacterial therapy within 48 h that was not active against the bacteria. ABR 
results were based on susceptibility testing and reports from local facilities. Multivariate analysis was used to identify 
risk factors associated with IET in patients with any positive bacterial culture and ABR-positive cultures, including 
multidrug-resistant (MDR) bacteria.

Results  Of 278,344 eligible patients in 269 hospitals, 56,733 (20.4%) received IET; rates were higher in patients 
with ABR-positive (n = 93,252) or MDR-positive (n = 39,000) cultures (34.9% and 45.0%, respectively). Severe acute 
respiratory syndrome-coronavirus-2 (SARS-CoV-2)-positive patients had significantly higher rates of IET (25.9%) 
compared with SARS-CoV-2-negative (20.3%) or not tested (19.7%) patients overall and in the ABR and MDR 
subgroups. Patients with ABR- or MDR-positive cultures had more days of therapy and longer lengths of stay. In 
multivariate analyses, ABR, MDR, SARS-CoV-2-positive status, respiratory source, and prior admissions were identified 
as key IET risk factors.

Conclusions  IET remained a persistent problem during the COVID-19 pandemic and occurred at higher rates in 
patients with ABR/MDR bacteria or a co-SARS-CoV-2 infection.
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Background
Patients with signs and symptoms of bacterial infections 
are typically treated with empiric antibiotic therapy prior 
to the availability of information on the specific patho-
gen and antimicrobial susceptibility. Choosing appropri-
ate empiric therapy thus poses a clinical challenge that 
can have important consequences. Inadequate empiric 
therapy (IET), defined as antibacterial therapy not active 
against the identified bacterial pathogen, is associated 
with increased mortality, hospitalization, and readmis-
sion rates, longer length of stay (LOS), additional anti-
biotic prescriptions, and higher costs [1–7]. Antibiotic 
resistance (ABR), particularly multi-drug resistance 
(MDR), is a key driver of IET [6, 7], in part because ABR 
bacteria have fewer available therapeutic options to uti-
lize prior to diagnostic results.

Among hospitalized patients, approximately 8–20% 
of patients who test positive for severe acute respira-
tory syndrome-coronavirus-2 (SARS-CoV-2) have posi-
tive cultures for a bacterial co-pathogen, yet 68–76% are 
treated with antibiotics [8–11]. These high rates of anti-
biotic use during the COVID-19 pandemic have been 
observed in hospitalized patients with influenza as well 
[12]. There are likely multiple reasons for this pattern, 
including the desire to prevent bacterial pneumonia and 
secondary infections, reduced diagnostic and antibiotic 
susceptibility testing in over-taxed healthcare systems, 
and uncertainty on how best to manage complex patients 
with a potentially severe respiratory disease [8, 9, 13]. 
Increased antibiotic use contributes to ABR, thus poten-
tially compounding challenges involved in patient care 
[14–16]. In one recent study, overall ABR rates per 1000 
admissions did not increase in the pandemic compared 
with pre-pandemic period, but ABR rates were higher 
in hospitalized SARS-CoV-2-positive patients compared 
with SARS-CoV-2-negative patients or those not tested 
for SARS-CoV-2. The largest increase in ABR rates was 
observed in hospital-onset bacterial cultures [17].

The COVID-19 pandemic has influenced antibiotic 
usage and ABR, which can lead to changes in IET rates 
and patient outcomes. We conducted a study of hospital-
ized US patients prior to and during the COVID-19 pan-
demic (July 2019 to October 2021) to identify patient and 
hospital factors associated with IET by ABR status and 
time period.

Methods
Study design
We conducted a multicenter, retrospective cohort analy-
sis of all hospitalized adults aged ≥ 18 years from 269 US 
facilities in the BD Insights Research Database (Becton, 

Dickinson and Company, Franklin Lakes, NJ), which 
includes both small and large medical care facilities in 
rural and urban areas throughout the United States. This 
electronic surveillance system and clinical research data-
base has been previously described and encompasses 
pharmacy, laboratory, administrative data, patient demo-
graphics, and admission, discharge, and transfer data 
feeds [1, 8, 18, 19]. The retrospective, de-identified data 
set was approved and informed consent requirements 
were waived by the New England Institutional Review 
Board (Wellesley, MA, USA; IRB No. 120,180,023).

Eligible patients included subjects with 1 to 365 days 
inpatient stay, a record of discharge or death between July 
1, 2019, and October 30, 2021, a positive bacterial cul-
ture, and a record of antibiotic therapy. The pre-SARS-
CoV-2 period was defined as July 1, 2019 to February 29, 
2020. A culture-positive potential bacterial pathogen was 
defined as a non-contaminant first positive culture for a 
specified gram-negative or gram-positive bacteria from 
respiratory, blood, urine, skin/wound, intraabdominal or 
other source. Microbiology results likely associated with 
a contaminant or surveillance culture were excluded by 
a previously described methodology that uses source, 
time of collection, microorganism type, and number of 
microorganisms in a culture to flag likely contaminated 
samples [20].

The major outcome of interest was identification of risk 
factors contributing to IET, defined as antibiotic therapy 
prescribed within 48 h from a positive culture collection 
that did not cover the bacteria or to which the bacteria 
was subsequently reported as nonsusceptible (NS; labo-
ratory result of intermediate resistance [I] or resistant 
[R]). For the purposes of this study, the designation of 
IET was restricted to patients with no adequate antibi-
otic agent prescribed within 48  h of a positive culture; 
a patient who received multiple antibiotics with at least 
one active therapy was NOT categorized as IET. Days 
of therapy (DOT) included all days of antibiotic therapy 
(both active or inactive drugs) associated with the index 
bacteria hospital admission, either before or after the first 
positive culture.

For the purposes of comparison, patients were cat-
egorized into 3 subgroups: (1) patients with any culture 
positive for a specified gram-negative or gram-positive 
bacteria; (2) the subset of culture-positive patients with 
an ABR-positive culture (as defined below); and (3) the 
subset of ABR-culture positive patients with an MDR-
positive culture (as defined below).
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Antibiotic susceptibility assessments
Gram-negative bacteria included in these analyses were 
Enterobacterales (Citrobacter freundii, Escherichia coli, 
Enterobacter cloacae complex, Klebsiella pneumoniae, 
Klebsiella oxytoca, Klebsiella aerogenes, Morganella mor-
ganii, Proteus mirabilis, Providencia stuartii, Serratia 
marcescens), Pseudomonas aeruginosa, Acinetobacter 
complex, and Stenotrophomonas maltophilia. Gram-
positive bacteria included in the analyses were Entero-
coccus spp., Staphylococcus aureus, and Streptococcus 
pneumoniae.

Antibiotic susceptibility analyses are detailed in Sup-
plementary Section S1. Briefly, ABR in gram-negative 
bacteria was defined as NS to extended-spectrum cepha-
losporins (ESC), piperacillin-tazobactam, carbapenems, 
or fluroquinolones (FQ). MDR in gram-negative bacteria 
was defined as carbapenem NS, extended-spectrum beta-
lactamase producing phenotype, pan-beta-lactam NS, 
or NS to at least 1 drug in 3 of the following 5 classes: 
ESC; FQ; carbapenems; aminoglycosides; piperacillin, 
or piperacillin-tazobactam. For gram-positive bacteria, 
ABR was defined as Enterococcus resistant to vancomy-
cin (VRE), S. aureus resistant to methicillin (MRSA), and 
S. pneumoniae NS to penicillin, macrolides, FQ, ESC, or 
tetracyclines. MDR in gram-positive bacteria was defined 
as VRE or MRSA. Bacteria defined as MDR were also 
included in the ABR category.

ABR was identified at the admission level as the first 
positive culture with any of the ABR bacteria described 
above. ABR was considered to be community-onset if 
the first positive ABR event culture was collected ≤ 2 days 
from admission (with day 1 as day of admission) and was 
defined as hospital-onset if the culture was collected > 2 
days from admission. For patients with an ABR culture, 
previous susceptible cultures and subsequent ABR or 
non-ABR cultures with the same or a different pathogen 
were not evaluated. All results from microbiology testing 
were obtained from analyses performed by local micro-
biology labs in the cohort of hospitals included in the BD 
Insights Research Database. A central laboratory was not 
used for these analyses.

Statistical analysis
The potential risk factors for IET considered in the study 
included: ABR to evaluated antibiotics as described 
above, MDR, COVID-19 time period (pre-SARS-CoV-2, 
SARS-CoV-2), SARS-CoV-2 testing status (positive, neg-
ative, or not tested), pathogen category (gram-positive, 
gram-negative, both gram-positive and gram-negative), 
specific bacteria, clinical factors and characteristics asso-
ciated with the index bacteria hospital admission includ-
ing the time before and after culture collection (culture 
source [respiratory, blood, urine, skin/wound, intraab-
dominal or other]; onset (community or hospital-onset); 

DOT; LOS; intensive care unit [ICU] admission; venti-
lated status; and prior 30- or 90-day admission), under-
lying clinical condition (sepsis/severe sepsis, renal 
insufficiency/failure, liver dysfunction, myocardial injury, 
and cytokine dysregulation syndrome) [1, 21], patient 
demographics (sex and age), facility characteristics (bed 
size, urban/rural location, teaching status, and geo-
graphic region [US census region]).

In the exploratory phase of the analysis, we performed 
descriptive analyses of IET for three subgroups based on 
ABR status (all positive cultures, ABR-positive cultures, 
and MDR-positive cultures) to explore risk factors that 
potentially influenced IET and their association with 
ABR. Chi-square tests were used to evaluate the bivari-
ate association between IET and each potential risk fac-
tor. In the multivariate analysis phase, which included 
all the above-specified variables in all analyses, random 
intercept logistic regression models were used to identify 
IET risk factors. Risk was reported as odds ratios (OR). 
The analyses were stratified by ABR and MDR to examine 
risk factors that significantly predicted IET for resistant 
bacteria. All statistical tests were performed using a pre-
specified two-tailed alpha level of 0.05. Analyses were 
conducted using R (R Ver. 4.1.2, R Foundation for Statis-
tical Computing, Vienna, Austria), with RStudio (Boston, 
MA).

Results
The majority (65.1%) of the 269 hospitals included in 
the study database were in urban locations and 66.9% 
were non-teaching hospitals (Table  1). Overall, 278,344 
patients with a positive bacterial culture were evalu-
ated. For most patients, positive cultures were due to 
gram-negative bacteria (n = 226,725; 81.5%) and Entero-
bacterales was the most common bacterial pathogen 
(n = 180,450; 64.8%). Gram-positive bacteria were iden-
tified in 71,269 patients (25.6%). There were 19,650 
patients (7.1%) with both gram-negative and gram-
positive bacteria included in the previous case counts. 
Amongst patient admissions, 93,252 (33.5%) and 39,000 
(14.0%) met the criteria for ABR and MDR, respectively. 
Gram-negative bacteria accounted for 84,398 (90.5%) 
ABR admissions and 25,360 (65.0%) MDR admissions.

IET by ABR status and clinical characteristics
A total of 56,733 (20.4%) patient admissions with a posi-
tive culture received IET. IET occurred in 32,561 (34.9%) 
and 17,554 (45.0%) of ABR and MDR positive cultures, 
respectively. Compared with the full cohort, ABR and 
MDR positive cultures were significantly associated with 
IET (P < 0.001) (Table 2).

Evaluations of the association between bacterial patho-
gen source and incidence of IET found that respiratory 
or intraabdominal sources had the highest rates of IET. 
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This pattern was consistent across ABR and MDR cul-
tures. Hospital-onset bacterial cultures had a significantly 
higher rate of IET compared with community-onset 
cultures overall and for ABR isolates (both P < 0.001), 
but not for MDR isolates, which had high rates of IET 
for both community-onset (44.8%) and hospital-onset 
(45.8%) cultures (P = 0.084).

For all bacterial pathogens, IET occurred at higher rates 
in the ABR and MDR subgroups compared with the over-
all patient cohort. IET rates were higher for gram-positive 
versus gram-negative bacteria, and highest in patients 
with both gram-positive and gram-negative positive cul-
tures (Table  2). Although S. maltophilia/Acinetobacter 
complex accounted for < 1% of positive cultures, the IET 
rate for this combined bacterial pathogen group was 
65.0% in the overall patient cohort. High IET rates were 
also observed in patients with multiple bacterial bacte-
ria (44.9%), P. aeruginosa (36.8%), and Enterococcus spp 
(42.0%). The largest disparities in IET rates based on 
resistance status were observed for Enterobacterales spp. 
(14.1% overall, 27.8% for ABR, and 40.0% for MDR) and 
S. aureus/S. pneumoniae (7.5% overall, 30.3% for ABR, 
and 29.7% for MDR).

IET by SARS-CoV-2 status and time period
IET rates were slightly, but significantly, higher in 
the SARS-CoV-2 period (20.5%) compared with the 

pre-SARS-CoV-2 time period (20.2%; P = 0.044) (Fig.  1). 
This difference was retained in patients with ABR-pos-
itive cultures (35.1% vs. 34.4%; P = 0.034), but did not 
reach statistical significance in patients with MDR-pos-
itive cultures (45.3% vs. 44.3%; P = 0.055). During the 
SARS-CoV-2 period, significantly higher IET rates com-
pared with the pre-pandemic period were observed in 
SARS-CoV-2 positive patients, and significantly lower 
rates were observed in patients not tested for SARS-
CoV-2; there was no significant difference in IET rates 
in SARS-CoV-2-negative patients compared with pre-
pandemic rates. For ABR positive cultures, IET rates for 
all three SARS-CoV-2 testing statuses (positive, negative, 
and not tested) were significantly higher compared with 
the pre-pandemic period. For MDR positive cultures, 
only SARS-CoV-2-positive patients had significantly 
higher IET rates compared with the pre-pandemic period 
(Fig. 1).

Impact of IET on DOT and LOS
Patients who received IET had a significantly longer dura-
tion of therapy (mean DOT of 8.86 [standard deviation 
(SD) 9.03]) compared with patients who received ade-
quate empiric therapy (6.79 [6.29]; P < 0.001). Duration 
of therapy was longer for IET patients with positive cul-
tures for ABR (9.95 DOT [10.36]) or MDR (10.49 DOT 
[10.80]; P < 0.001 for both) compared with overall posi-
tive cultures (Table 3). More DOT for IET vs. AET was 
observed for all drug classes for all positive cultures and 
ABR-positive cultures. In patients with MDR-positive 
cultures, more DOT with IET vs. AET were observed for 
FQ, beta-lactamase inhibitor combinations, and macro-
lides, but not for ESC, carbapenems, and glycopeptides. 
Patients who received IET, including those with ABR- or 
MDR-positive cultures, also had significantly increased 
hospital LOS and ICU LOS compared with those receiv-
ing adequate empiric therapy (Table 3).

Risk factors for IET in multivariate analyses
A multivariate analysis was performed to determine risk 
factors associated with IET. Significant increases in the 
risk of IET were observed for ABR-positive cultures vs. all 
positive cultures (OR 2.59 [95% CI 2.52–2.65]; P < 0.001) 
and for MDR-positive cultures vs. all positive cultures 
(OR 1.84 [95% CI 1.78–1.89]; P < 0.001) (Table 4). MDR-
positive cultures were also associated with an increased 
risk of IET relative to ABR-positive cultures (OR 1.86 
[95% CI 1.81–1.92]; P < 0.001). Patients positive for 
SARS-CoV-2 had a significantly increased risk for IET in 
the overall cohort (OR 1.20 [95% CI 1.15–1.26]; P < 0.001) 
and in subgroups with an ABR-positive culture (OR 1.07 
[95% CI 1.02–1.12]; P = 0.005) or MDR-positive culture 
(OR 1.13 [95% CI 1.03–1.25]; P = 0.013).

Table 1  Facility demographics
Hospital demographics N %
Total 269 100%
Bed size

  < 100 96 35.69%

  100–300 108 40.15%

  > 300 65 24.16%

Location

  Urban 175 65.06%

  Rural 94 34.94%

Teaching status

  Teaching 89 33.09%

  Non-teaching 180 66.91%

Census regionz

  East North Central 42 15.61%

  East South Central 36 13.38%

  Middle Atlantic 38 14.13%

  Mountain 11 4.09%

  New England 5 1.86%

  Pacific 25 9.29%

  South Atlantic 41 15.24%

  West North Central 16 5.95%

  West South Central 55 20.45%
aStates included in census regions were East North Central: IL, IN, MI, OH, WI; 
East South Central: AL, KY, MS, TN; Middle Atlantic: NJ, NY, PA; Mountain: AZ, CO, 
ID, MT, NM, NV, UT, WY; New England: CT, MA, ME, NH, RI, VT; Pacific: AK, CA, OR, 
WA; South Atlantic: DE, DC, FL, GA, MD, NC, SC, VA, WV; West North Central: IA, 
KS, MN, MO, ND, NE, SD; West South Central: AR, LA, OK, TX
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Additional risk factors for increased IET in patients 
with a positive bacterial culture included respiratory 
source, hospital onset, gram-positive or combined gram-
positive/gram-negative culture, Enterococcus spp., P. 
aeruginosa or S. maltophilia/Acinetobacter complex, 
multiple bacterial pathogens, heart failure/myocardial 
injury, liver dysfunction, renal failure/insufficiency, older 
age (> 54 years), female sex, more antibiotic DOT, longer 
hospital LOS, and prior 30-day or 90-day admissions 
(Table 4). Most of the risk factors for increased IET were 
retained in subgroup analyses of ABR and MDR (Table 4, 
Table S1).

Discussion
Our study spanning 8 months prior to the COVID-19 
pandemic through October 2021 and encompassing 
almost 300,000 hospital admissions with positive bacte-
rial cultures found that SARS-CoV-2-positive patients 
had significantly higher rates of antibiotic IET compared 
with the overall patient population during the pre-pan-
demic period and with SARS-CoV-2-negative and not 
tested patients during the pandemic period. We further 
observed elevated IET rates in patients with ABR- or 
MDR-positive cultures; the IET rate for MDR bacteria 

in this study (45% for evaluated bacteria across all cul-
ture sources) was similar to rates recently reported for 
patients with bloodstream infections caused by carbape-
nem-resistant Enterobacterales (44.7%) or VRE (39.6%) 
[7], providing further confirmation of these data. Our 
finding that IET was associated with additional DOT and 
longer hospital and ICU stays is consistent with other 
studies[1–3, 5, 6, 22] and documents the substantial bur-
den not only for patients receiving IET, but also for hos-
pital facilities, particularly during surge capacity periods.

It is clear from our data that ABR is closely connected 
with IET. We found a 2.59-fold increased risk of IET 
with ABR-positive cultures and an MDR-positive cul-
ture was associated with an additional 1.86-fold increase 
in IET compared with ABR-positive cultures. Over one-
third (34.9%) of patients with ABR-positive cultures and 
45.0% of patients with MDR-positive cultures received 
IET upon hospital admission, a finding that highlights 
difficulties in choosing empiric therapy for patients with 
potentially resistant bacterial pathogens. Of the many 
factors we assessed in multivariate analyses, including 
age, comorbidities, isolate source, and ventilator/ICU 
status, only specific, highly-resistant bacteria (Entero-
coccus and S. maltophilia/Acinetobacter complex) were 

Table 2  IET in patients with positive bacterial cultures by ABR status. Observed data are presented as n IET admissions/N admissions 
with positive cultures (%). P values compare the bivariate statistical difference among IET rates across ABR groups (all, ABR, and MDR)
Characteristic All positive cultures ABR-positive cultures MDR-positive cultures P 

value 
across 
groups

Overall IET 56,733/278,344 (20.4%) 32,561/93,252 (34.9%) 17,554/39,000 (45.0%) < 0.001

Source
  Respiratory 6,400/20,598 (31.1%) 4,111/9,217 (44.6%) 2,238/4,439 (50.4%) < 0.001

  Intraabdominal 936/3,021 (31.0%) 444/996 (44.6%) 219/411 (53.3%) < 0.001

  Other 1,258/4,490 (28.0%) 678/1,656 (40.9%) 321/692 (46.4%) < 0.001

  Skin 10,117/39,014 (25.9%) 5,624/13,120 (42.9%) 2,900/6,404 (45.3%) < 0.001

  Multiple 701/2,900 (24.2%) 629/1,723 (36.5%) 334/788 (42.4%) < 0.001

  Urine 31,453/161,874 (19.4%) 17,981/54,502 (33.0%) 9,343/19,588 (47.7%) < 0.001

  Blood 5,868/46,447 (12.6%) 3,094/12,038 (25.7%) 2,199/6,678 (32.9%) < 0.001

Onset
  Hospital 11,679/42,344 (27.6%) 6,716/15,224 (44.1%) 4,353/9,509 (45.8%) < 0.001

  Community 45,054/236,000 (19.1%) 25,845/78,028 (33.1%) 13,201/29,491 (44.8%) < 0.001

Pathogen type
  Both gram negative and gram positive 8,835/19,650 (45.0%) 5,468/11,101 (49.3%) 2,861/5,912 (48.4%) < 0.001

  Gram positive 20,177/71,269 (28.3%) 9,455/19,955 (47.4%) 3,536/7,728 (45.8%) < 0.001

  Gram negative 45,391/226,725 (20.0%) 28,574/84,398 (33.9%) 11,157/25,360 (44.0%) < 0.001

Specific pathogen
  S. maltophilia or Acinetobacter complex 1,502/2,311 (65.0%) 780/1,124 (69.4%) 573/834 (68.7%) < 0.001

  Multiple bacterial pathogens 12,086/26,904 (44.9%) 7,697/15,470 (49.8%) 4,039/8,126 (49.7%) < 0.001

  Enterococcus spp. 8,740/20,821 (42.0%) 2,595/4,346 (59.7%) 2,406/3,956 (60.8%) < 0.001

  P. aeruginosa 6,795/18,446 (36.8%) 3,224/6,922 (46.6%) 1,448/2,538 (57.1%) < 0.001

  Enterobacterales 25,415/180,450 (14.1%) 17,151/61,709 (27.8%) 8,164/20,432 (40.0%) < 0.001

   S.aureus or S. pneumoniae 2,195/29,412 (7.5%) 1,114/3,681 (30.3%) 924/3,114 (29.7%) < 0.001
Definitions: ABR = antibiotic resistant; IET = inadequate empiric therapy; MDR = multidrug resistant
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associated with a higher risk of IET than ABR. Other 
factors with significant contributions to high IET rates 
included respiratory source, hospital-onset infections, 
and certain underlying conditions (heart failure/myo-
cardial injury, liver dysfunction, and renal failure/insuf-
ficiency), older age, and prior admissions. It should be 
noted that although we identified multiple significant 
risk factors for IET, the magnitude of their effects varied 
substantially. IET risk factors identified in our study may 

serve as predictors of patients in need of aggressive initial 
antibiotic treatment and as candidates for future studies 
aimed at optimizing initial therapy choices in high-risk 
patients.

The SARS-CoV-2 pandemic has further exacerbated 
challenges with ABR and IET. We previously reported 
that ABR rates for hospital-onset bacterial infections dur-
ing the first 20 months of the COVID-19 pandemic were 
significantly higher than in the preceding pre-pandemic 

Fig. 1  Inadequate empiric therapy (IET) in patients with positive bacterial cultures by SARS-CoV-2 status. for (A) All positive cultures; (B) Antibiotic-
resistant positive cultures; and (C) Multi-drug-resistant positive cultures. Observed data are presented as n IET admissions/N admissions with positive 
cultures (%). “Positive” and “negative” refer to SARS-COV-2-positive and -negative. P values compare the statistical difference in IET rates vs. the pre-SARS-
CoV-2 time period
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period, particularly in SARS-CoV-2-positive patients, 
but overall ABR rates were significantly lower in hos-
pitalized patients due to decreased rates in commu-
nity-onset infections [17]. Although overall IET rates 
remained similar in the pre-pandemic and pandemic 
periods, during the SARS-CoV-2 period we observed 
significant increases in IET over pre-pandemic rates in 
patients with ABR-positive cultures and those who were 
SARS-CoV-2 positive; hospital-onset infections were a 
key contributing factor. Patients with SARS-CoV-2 and 
bacterial infections are at higher risk for mortality than 
SARS-CoV-2-negative patients [1, 23] and have more 
antibiotic usage and longer hospital and ICU LOS [8, 17]. 
IET, which is associated with increased LOS and mortal-
ity [1, 7], likely contributes to these impaired outcomes in 
SARS-CoV-2-positive patients.

The strong association between ABR and IET was 
retained during both the pre-pandemic and pandemic 
periods. A recent report estimated that bacterial ABR 
was associated with an estimated 4.95  million deaths 
worldwide in 2019 [24]. There is evidence that the 
COVID-19 pandemic may have contributed to increases 
in bacterial ABR in hospitalized patients [17, 25]. Dur-
ing peak capacity periods associated with the COVID-
19 pandemic, hospital systems were forced to decrease 
diagnostic and antibiotic susceptibility testing and 
reallocate staff from antimicrobial stewardship activi-
ties to COVID-related priorities while at the same time 
increasing antibiotic consumption [13]. The increased 

ABR rates we have observed in hospitalized SARS-CoV-
2-positive patients may reflect these factors, particu-
larly the increased antibiotic exposure and LOS in this 
patient population [17]. Future longitudinal studies will 
be needed to explore ongoing changes in IET and ABR 
in US hospitals. A study of 38 Michigan hospitals found 
that early increases in antibiotic consumption diminished 
over time as more experience was gained with managing 
SARS-CoV-2 infections [26], perhaps augmented by the 
less severe disease observed later in the pandemic [27]. 
Lag times of approximately 3 to 6 months have been 
reported between antibiotic changes and resistance levels 
in a pre-pandemic study [28], so reductions in ABR may 
not be immediately apparent.

Irrespective of pandemic-related factors, however, IET 
remains an important challenge in the treatment of hos-
pitalized patients. Although one option to address this 
problem is expanded use of broad-spectrum antibiotics, 
these antibiotics are associated with increased ABR and 
therefore have the potential to actually compound IET 
challenges. In addition, broad-spectrum drugs can have 
negative clinical consequences, including increased risk 
of Clostridioides difficile infection [29, 30] and higher 
rates of severe sepsis following hospital discharge [31]. 
Accordingly, the solution to IET does not appear to be 
indiscriminate broad-spectrum antibiotic use, but rather 
a tailored therapy approach based on risk factor assess-
ment, diagnostic testing, and antimicrobial steward-
ship efforts, including vaccination programs to reduce 

Table 3  Antibacterial duration and hospital/ICU LOS by AET and IET. DOT and LOS data are presented as mean ± standard deviation 
(interquartile range; median)
Outcome All positive cultures

(N = 278,344 patients)
P value ABR-positive cultures

(N = 93,252 patients)
P value MDR-positive cultures

(N = 39,000 patients)
P 
value

AET IET AET IET AET IET
Overall DOT 6.79 ± 6.29

(3–8; 5)
8.86 ± 9.03
(4–11; 6)

< 0.001 8.10 ± 8.04
(4–10; 6)

9.95 ± 10.36
(4–12; 7)

< 0.001 9.89 ± 9.52
(4–12; 7)

10.49 ± 10.80
(4–13; 7)

< 0.001

DOT by antibiotic

  ESC 3.91 ± 3.86
(2–5; 3)

4.33 ± 5.13
(2–5; 3)

< 0.001 4.28 ± 4.81
(2–5; 3)

4.48 ± 5.77
(2–5; 3)

< 0.001 4.52 ± 6.22
(1–6; 3)

4.49 ± 6.12
(2–5; 3)

0.212

  Carbapenem 5.04 ± 5.44
(2–6; 3)

5.78 ± 6.77
(2–7; 4)

< 0.001 5.70 ± 5.87
(2–7; 4)

5.88 ± 6.82
(2–7; 4)

< 0.001 6.07 ± 6.17
(3–7; 5)

5.88 ± 7.04
(2–7; 4)

0.423

  FQ 3.25 ± 3.75
(1–4; 2)

3.65 ± 4.89
(1–5; 2)

< 0.001 3.72 ± 4.97
(1–5; 2)

3.93 ± 5.41
(1–5; 2)

< 0.001 4.10 ± 5.18
(1–5; 3)

4.29 ± 6.15
(1–5; 3)

0.007

  BLI combination 4.06 ± 4.37
(2–5; 3)

5.06 ± 6.19
(2–6; 3)

< 0.001 4.42 ± 5.14
(2–6; 3)

5.21 ± 6.60
(2–7; 3)

< 0.001 4.57 ± 5.56
(2–6; 3)

5.36 ± 6.86
(2–7; 3)

< 0.001

  Glyco-peptides 3.19 ± 4.09
(1–4; 2)

4.05 ± 5.01
(1–5; 3)

< 0.001 4.16 ± 5.63
(1–5; 3)

4.48 ± 5.55
(1–6; 3)

0.005 4.98 ± 6.52
(1–6; 3)

4.74 ± 5.79
(1–6; 3)

0.365

  Macrolides 2.93 ± 3.61
(1–4; 2)

3.59 ± 4.94
(2–4; 3)

< 0.001 3.27 ± 4.48
(1–4; 3)

3.93 ± 5.74
(1–4; 3)

< 0.001 3.55 ± 5.62
(1–4; 3)

4.18 ± 6.35
(1–5; 3)

< 0.001

LOS days 9.04 ± 10.36
(4–10; 6)

12.24 ± 15.28
(4–14; 7)

< 0.001 10.72 ± 12.99
(4–12; 6)

13.69 ± 17.62
(5–16; 8)

< 0.001 13.06 ± 14.94
(5–15; 8)

14.40 ± 17.83
(5–17; 9)

< 0.001

ICU LOS Days 6.99 ± 8.77
(2–8; 4)

9.39 ± 12.11
(2–12; 5)

< 0.001 8.50 ± 10.95
(2–11; 4)

10.62 ± 13.77
(2–14; 5)

< 0.001 9.95 ± 12.24
(2–13; 5)

11.00 ± 13.58
(3–14; 6)

< 0.001

Definitions: AET = adequate empiric therapy; ABR = antibiotic resistant; DOT = days of therapy; ESC = extended-spectrum cephalosporins; FQ = fluoroquinolones; 
BLI = Beta-lactamase inhibitor; ICU = intensive care unit; IET = inadequate empiric therapy; LOS = length of stay; MDR = multidrug resistant
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infectious diseases [32–35]. Although the study reported 
here focused on IET in culture-positive patients, it is 
important to note that a substantial proportion of cul-
ture-negative or not tested hospitalized patients receive 
prolonged antibiotic therapy (> 3 days) [17]. This patient 
population would benefit from antimicrobial stewardship 
programs as well.

Study limitations include the use of facility reports 
rather than a central laboratory for SARS-CoV-2 and 
antibiotic susceptibility tests. Different laboratories may 
have used different testing systems and breakpoints for 
determination of resistance, thereby potentially affect-
ing the ABR and MDR rates reported here. Analyses were 
based on positive SARS-CoV-2 tests and not on symp-
tomatic infection, so asymptomatic patients admitted for 
other causes may have been included. Similarly, patients 
with positive bacterial cultures did not necessarily have a 
confirmed bacterial infection. Our testing algorithm was 
designed to remove admissions with contaminating bac-
teria [20], but it is possible that some bacteria included in 
our analyses were colonizers. Due to database limitations, 
information on outpatient antibiotic exposure was not 
available and antibiotics prescribed in prior admissions 
were not evaluated, although we did evaluate whether 
patients were admitted in the prior 30 and 90 days. Selec-
tion bias (e.g., a greater likelihood of collecting bacterial 
culture data on more severely ill patients) may have influ-
enced reported resistance rates. Certain geographic areas 
and smaller hospitals may have been underrepresented in 
our database.

Conclusion
Our study documents elevated rates of IET in patients 
with ABR- or MDR-positive cultures and in patients pos-
itive for SARS-CoV-2. IET rates appear to be inextricably 
linked to ABR, and improvements in both are likely to 
require expanded use of rapid diagnostic tests, intensified 
vaccination programs, and a renewed commitment to 
antimicrobial stewardship programs. The data from our 
study may be of use in focusing future research efforts 
aimed at improving the adequacy of empiric therapy and 
reducing ABR in hospitalized patients.
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