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Abstract
Background and Aim  Dengue fever, transmitted by Aedes mosquitoes, is a significant public health concern in 
tropical and subtropical regions. With the end of the COVID-19 pandemic and the reopening of the borders, dengue 
fever remains a threat to mainland China, Zhejiang province of China is facing a huge risk of importing the dengue 
virus. This study aims to analyze and predict the current and future potential risk regions for Aedes vectors distribution 
and dengue prevalence in Zhejiang province of China.

Method  We collected occurrence records of DENV and DENV vectors globally from 2010 to 2022, along with 
historical and future climate data and human population density data. In order to predict the probability of DENV 
distribution in Zhejiang province of China under future conditions, the ecological niche of Ae. aegypti and Ae. 
albopictus was first performed with historical climate data based on MaxEnt. Then, predicted results along with a set 
of bioclimatic variables, elevation and human population density were included in MaxEnt model to analyze the risk 
region of DENV in Zhejiang province. Finally, the established model was utilized to predict the spatial pattern of DENV 
risk in the current and future scenarios in Zhejiang province of China.

Results  Our findings indicated that approximately 89.2% (90,805.6 KM2) of Zhejiang province of China is under 
risk, within about 8.0% (8,144 KM2) classified as high risk area for DENV prevalence. Ae. albopictus were identified 
as the primary factor influencing the distribution of DENV. Future predictions suggest that sustainable and “green” 
development pathways may increase the risk of DENV prevalence in Zhejiang province of China. Conversely, Fossil-
fueled development pathways may reduce the risk due to the unsuitable environment for vectors.

Conclusions  The implications of this research highlight the need for effective vector control measures, community 
engagement, health education, and environmental initiatives to mitigate the potential spread of dengue fever in 
high-risk regions of Zhejiang province of China.
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Introduction
Dengue fever (DF), caused by Dengue virus (DENV) [1, 
2], is prevalent in tropical and subtropical regions world-
wide, particularly in urban and semi-urban areas. It has 
become a global public health concern [3]. Severe cases 
of DENV can lead to complications such as plasma leak-
age, fluid buildup, respiratory difficulties, severe bleed-
ing, or organ damage [4, 5]. The transmission of DENV 
occurs through Aedes mosquitoes, with Aedes aegypti 
and Aedes albopictus being the primary vectors in urban 
cycles of DENV transmission [6]. Initially identified in 
only nine countries in 1970, DENV has rapidly expanded 
to over 100 countries in the last decade due to socioeco-
nomic changes and global climate change [7].

Dengue fever occurs throughout mainland China 
except in Tibet Autonomous Region [8]. From 2005 
to 2020, DF cases significantly increased, with 12,701 
imported cases and 81,653 indigenous cases [8]. DENV 
outbreaks have spread from southern coastal areas such 
as Guangdong [9] and Hainan [10] to more northern and 
western regions, including Fujian [11], Zhejiang [12], 
Hunan [13], Jiangxi [14], Guangxi Zhuang Autonomous 
Region [15], and Yunnan [16]. Recent data indicated 
that indigenous cases were mainly found in Guangdong 
(74.0%) and Yunnan provinces (13.7%) which face a con-
tinuous risk of DENV importation [8]. Zhejiang province, 
located in the southeast of China, falls within the sub-
tropical zone with diverse landforms and a humid mon-
soon climate. Ae. albopictus is widely distributed in the 
urban and rural residential areas of Zhejiang, with high 
density in summer and autumn [17]. These conditions 
contribute to DENV vector living and DENV transmis-
sion. From 2015 to 2018, there were 1,584 reported cases 
in Zhejiang province of China [18]. The imported and 
indigenous dengue cases declined in 2020–2022 due to 
COVID-19 lockdown measures [8]. However, with the 
reopening of borders, dengue continues to pose a threat 
to mainland China. Thus, there is an urgent need to 
accesses the risk of DENV prevalence in Zhejiang prov-
ince and implement enhanced public health measures 
against dengue fever.

The maximum entropy (MaxEnt) model is extensively 
utilized for evaluating and predicting the habitat distribu-
tion of species due to its inherent stability and high level 
of accuracy [19]. Species distribution models require the 
use of ecologically relevant predictor variables specific to 
the species under investigation. MaxEnt has found wide-
spread application in biodiversity conservation and mod-
eling of invasive species [20–22]. Moreover, it has been 
extensively employed in the context of infectious diseases 
[23–25] and prediction of disease vectors [26, 27]. How-
ever, researchers have used MaxEnt to model a variety of 
viruses including the Zika virus [23], influenza virus [28], 
and West Nile virus [24], no prior study has focused on 

spatially predicting potential DENV prevalence area in 
Zhejiang province of China. DENV prevalence is intri-
cately linked to the interactions between hosts, vectors, 
viruses, and bioclimatic factors. Hence, this study aims to 
evaluate the relative importance of environmental vari-
ables and Aedes vectors in predicting DENV prevalence 
in Zhejiang province under the current conditions, as 
well as the potential prevalence under different develop-
mental trajectories and future climate models.

Methods
Species occurrence records of ae. Aegypti and ae. 
Albopictus, and occurrence records of DENV
The occurrence records of DENV vectors, specifically 
Ae. aegypti (15,402 records) and Ae. albopictus (40,193 
records), were obtained from the Global Biodiver-
sity Information Facility (GBIF) (https://www.gbif.org, 
accessed on 15 August 2022) [29, 30]. Additionally, a total 
of 39,806 DENV occurrence records from the period 
between 2010 and 2022 were collected from HealthMap 
(https://healthmap.org/) [31]. Prior to modeling, records 
with inaccurate geographic information were carefully 
filtered out.

Environmental variable screening and data processing
The future projection risk was estimated by using the 
MaxEnt model to predict the probability of DENV distri-
bution under future conditions. First, the ecological niche 
of Ae. aegypti and Ae. albopictus was first performed 
with historical climate data based on MaxEent. Then, 
predicted results along with a set of bioclimatic vari-
ables were included in MaxEnt model to analyze the risk 
region of DENV in Zhejiang province. Finally, the estab-
lished model was utilized to predict spatial pattern of 
DENV risk in the different current and future scenarios 
in Zhejiang province.

Historical climate data (2.5  min of spatial resolu-
tion) and future climate data (2.5  min of spatial reso-
lution predicted by various climate models including 
BCC-ACCESS-CM2, CMCC-ESM2, EC-Earth3-Veg, 
GISS-E2-1-G, INM-CM4-8, MIROC6, CNRM-CM6-1, 
and CNRM-ESM2-1) of 19 bioclimatic variables were 
obtained from WorldClim (https://www.worldclim.org/, 
released in January 2020) [32]. Elevation data was derived 
from the SRTM elevation data as well as downloaded 
from WorldClim.

The shared socioeconomic pathways (SSPs) have been 
specifically designed to encompass a diverse range of 
potential future scenarios, effectively capturing the var-
ied challenges and opportunities associated with mitigat-
ing and adapting to climate change. These pathways serve 
as valuable tools for examining the potential impacts that 
socio-economic trajectories can have on climate change, 
thereby enabling a comprehensive analysis of their 

https://www.gbif.org
https://healthmap.org/
https://www.worldclim.org/


Page 3 of 10Zhang et al. BMC Infectious Diseases          (2023) 23:473 

implications for policy-making and decision-making pro-
cesses. To ensure robustness in our study, we obtained 
human population density data and future projections 
based on the SSPs from the Socioeconomic Data and 
Applications Center (SEDAC, https://sedac.ciesin.colum-
bia.edu/) [33]. The datasets acquired included historical 
human population density data as well as future projec-
tions, utilizing a one-eighth global degree population-
based year and projection grids based on the SSPs.

All variables were resampled to 2.5  min resolution 
using R software (version 4.0.0). To reduce multicol-
linearity and minimize model overfitting, the variance 
inflation factors (VIFs) between variables used in the 
modeling of Ae. aegypti, Ae. albopictus and DENV were 
calculated, respectively. If VIF values exceed ten, the cor-
responding variables will be excluded. For Ae. aegypti 
and Ae. albopictus prediction, a total of 10 bioclimatic 
variables and elevation were used. These 10 bioclimatic 
variables were Bio_2 (Mean diurnal range), Bio_3 (Iso-
thermality), Bio_4 (Temperature seasonality), Bio_8 
(Mean temperature of wettest quarter), Bio_9 (Mean 
temperature of driest quarter), Bio_13 (Precipitation of 
wettest month), Bio_14 (Precipitation of driest month), 
Bio_15 (Precipitation seasonality), Bio_18 (Precipitation 
of warmest quarter) and Bio_19 (Precipitation of coldest 
quarter). In the case of DENV prediction, the anticipated 
distribution of Ae. aegypti and Ae. albopictus, along with 
the same set of 9 bioclimatic variables, elevation data, 
and human population data, were utilized. These 9 bio-
climatic variables included Bio_2 (Mean diurnal range), 
Bio_3 (Isothermality), Bio_8 (Mean temperature of wet-
test quarter), Bio_9 (Mean temperature of driest quarter), 
Bio_13 (Precipitation of wettest month), Bio_14 (Pre-
cipitation of driest month), Bio_15 (Precipitation sea-
sonality), Bio_18 (Precipitation of warmest quarter) and 
Bio_19 (Precipitation of coldest quarter).

In addition, in the future periods (2021–2040, 2041–
2060, 2061–2080, and 2081–2100) DENV potential prev-
alence in Zhejiang province were also predicted under 
four different shared socioeconomic pathway scenarios 
(SSP126, SSP245, SSP370, and SSP585) of 8 climate mod-
els (BCC-ACCESS-CM2, CMCC-ESM2, EC-Earth3-Veg, 
GISS-E2-1-G, INM-CM4-8, MIROC6, CNRM-CM6-1, 
and CNRM-ESM2-1).

Species distribution modeling of ae. Aegypti, ae. Albopictus 
and DENV
MaxEnt was employed to predict the distribution of Ae. 
aegypti, Ae. albopictus and DENV with 100 bootstrap 
replicates. 85% of the occurrence records were used as 
the training sample set, and the remaining 15% of the 
occurrence records were used as the test data set by 
using the ‘dismo’ package [34] and ‘raster’ [35] package 
within R software (version 4.0.0). Determined empirically 

regularization parameters were employed to control the 
model overfitting. In addition, MaxEnt generates suit-
able index estimating the risk of DENV. Finally, MaxEnt 
generates response curves and a jackknife test for indi-
vidual predictors. The performance of the MaxEnt model 
was measured by the receiver operating characteristic 
curve and the area under the ROC curve (AUC). The 
constructed model was then used for the future forecast. 
To enhance the assessment of model accuracy and preci-
sion [36], we employed the maximum True Skill Statis-
tics (TSS = sensitivity + specificity – 1) [37]. The TSS scale 
ranges from − 1 to 1, with − 1 to 0.4 indicating poor per-
formance, 0.4 to 0.5 representing fair performance, 0.5 
to 0.7 indicating good performance, 0.7 to 0.85 denoting 
very good performance, 0.85 to 0.9 signifying excellent 
performance, and 0.9 to 1 reflecting nearly perfect to per-
fect performance.

The risk area of DENV in Zhejiang province was built 
by the ArcGIS 10.0 software. the risk index of the risk 
area of the DENV epidemic was divided into four inter-
vals by the manual grading method. High risk area: suit-
able index [0.60, 1.00]; moderate risk area: suitable index 
[0.40, 0.60); low risk area: suitable index [0.2, 0.40); no 
risk area: suitable index [0, 0.2). Potential total area is 
defined as the sum of high risk area, moderate risk area 
and low risk area.

Results
Model evaluation
Ae. aegypti and Ae. albopictus are the major vectors in 
DENV urban cycle, we first predicted the ecological niche 
of Ae. albopictus (supplementary Fig. S1) and Ae. aegypti 
(supplementary Fig. S2) by MaxEnt model with histori-
cal climate data. The training AUC for 100 replicate runs 
of the MaxEnt model was 0.918 (Ae. aegypti) and 0.920 
(Ae. albopictus). The maximum TSS for 100 replicate 
runs of the MaxEnt model was 0.661 (Ae. aegypti) and 
0.675 (Ae. albopictus). The risk regain of DENV of Zhe-
jiang province of China (Fig.  1A) under current climate 
were analyzed using MaxEnt with bootstrap of 100. Sec-
ondly, the DENV prevalence in Zhejiang was performed 
using MaxEnt with bioclimatic factors, elevation, human 
population, and previous Ae. albopictus and Ae. aegypti 
results. The results showed the mean AUC value for the 
training set was 0.975, which indicated good model per-
formance level and accuracy in predicting the potential 
DENV prevalence in Zhejiang (Fig.  1B). And the maxi-
mum TSS showed a good performance of prediction 
for the MaxEnt model with the value of 0.80. According 
to the results, about 89.2% (90,805.6 KM2) area in total 
is under risk for DENV prevalence including 8.0% area 
(8,144 KM2) with high risk, 36.1% (36,749.8 KM2) with 
moderate prevalence, and 45.1% area (45,911.8 KM2) 
with low risk. The high risk area for DENV were mainly 

https://sedac.ciesin.columbia.edu/
https://sedac.ciesin.columbia.edu/
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Fig. 1  Probability of risk area predicted by MaxEnt in Zhejiang province. (A) The location of Zhejiang province in China. (B) The ROC curve and AUC value 
evaluating the model based on MaxEnt. (C and D) The rate of DENV prevalence risk region of cities in Zhejiang province. Values close to dark blue indicate 
high risk for DENV epidemic
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distributed in the city of Wenzhou, Jinhua, Quzhou and 
Lishui which located in the south, west, west-east and 
middle of Zhejiang province, respectively (Fig. 1C to D). 
Potential suitable Ae. albopictus distribution area in Zhe-
jiang province, obtained from MaxEnt are shown in sup-
plementary (Fig. S3).

Variable importance
Based on the VIFs between bioclimatic variables exceed-
ing ten were excluded. There were 11 variables used in 
Ae. albopictus and Ae. aegypti prediction and 13 variables 
used in DENV prediction. According to the Jackknife test 
for DENV, the distribution of Ae. albopictus (82.7% con-
tribution), Ae. aegypti (3% contribution) and the human 
population (11.8% contribution) are the main variables 
affecting DENV potential prevalence (Fig. 2). Ae. albop-
ictus is more competent vector than Ae. Aegypti. As 
shown in Fig. 2, with the increase in the Ae. aegypti and 
Ae. albopictus density range, the probability of the occur-
rence of DENV rapidly increased.

Potential future risk of DENV in Zhejiang
The potential distribution of DENV from 2021 to 2040, 
2041–2060, 2061–2080, and 2081–2100 was predicted 
based on the previously constructed model. According 
to the results, if the development paths of society are 
sustainable and “green” pathways, during 1081–2100, 
the total risk (Fig. 3) area and the high risk (Fig. 4) will 
increase in the future 2081–2100 under SSP126 of EC-
Earth3-Veg, GISS-E2-1-G, INM-CM4-8, MIROC6 and 
CNRM-CM-1.  If the development path of society is 
Fossil-fueled development, during 2081–2100, the total 
risk (Fig. 3) area will decrease under SSP585 of ACCESS-
CM2, CMCC-ESM2, EC-Earth3-Veg, GISS-E2-1-G 
and CNRM-ESM2-1, and the high risk (Fig. 4) area will 
decrease under SSP585 of ACCESS-CM2, CMCC-ESM2, 
EC-Earth3-Veg, CNRM-CM6-1 and CNRM-ESM2-1. 
The high risk (Fig.  4) area will first increase and then 
decrease under SSP585 of ACCESS-CM2, CMCC-ESM2 
and CNRM-ESM2-1 in the future period of 2021–2100. 
The lowest total risk was predicted by SSP370 of CMCC-
ESM2 during 2081–2100. The lowest high risk was pre-
dicted by SSP585 of CMCC-ESM2 during 2081–2100.

Discussion
In this study, we aimed to predict the potential distri-
bution of DENV in Zhejiang province under different 
SSPs. The ecological niche of primary vectors of DENV 
was first performed with historical climate data based on 
MaxEnt. Then, predicted results along with a set of bio-
climatic variables were then included in MaxEnt model 
to analyze the risk region of DENV in Zhejiang province. 
Finally, the established model was utilized to predict 

spatial pattern of DENV risk in the different current and 
future scenarios in Zhejiang province.

MaxEnt is one of the most commonly used ecological 
niche models. Previous study showed that DENV out-
breaks in China are significantly shaped by environmental 
factors, such as temperature, precipitation and land cover 
through MaxEnt model [38]. The MaxEnt model could 
correctly describe the breeding sites distribution of Ae. 
Aegypti, Ae. albopictus and DENV [39]. Variables with a 
variance inflation factor (VIF) of < 10 were left for model 
fitting to reduce collinearity, which adversely affects the 
accuracy and interpretability of the MaxEnt model [40]. 
Typically, AUC values above 0.9 indicate excellent model 
performance [41]. For MaxEnt model, the values of TSS 
is lower than the values of Area Under the Curve (AUC). 
This is often the case because TSS is a more stringent 
and less biased evaluation metric compared to AUC [37]. 
TSS is more sensitive and decreases as the model’s sensi-
tivity and specificity decrease, along with an increase in 
omission errors and commission errors. The differences 
in AUC values between each model are smaller than the 
differences in TSS values, making TSS a more discrimi-
native metric [42]. Although the use of AUC has been 
criticized [36, 37], it is still widely used for evaluating 
ecological niche models (ENMs). In addition to statistical 
considerations, we must also take into account the coher-
ence with the biology and ecology of the species. In our 
study, the MaxEnt model was utilized, producing reliable 
results with an AUC value of 0.975 and a TSS value of 
0.80 for predicting risk area.

Our findings indicated that Ae. albopictus, human 
population, Ae. aegypti, Ae. albopictus had significant 
impacts on DENV potential prevalence and made sub-
stantial contributions. Consistent with our findings, Ae. 
albopictus is more competent vector than Ae. Aegypti. 
Dengue outbreaks in China have primarily been attrib-
uted to Ae. albopictus, with Ae. aegypti being detected 
only in limited areas of southern and southwestern 
China in recent years [43–46]. Temporal fluctuations in 
Ae. albopictus density play a significant role in the local 
transmission of DENV. The monitoring results of Ae. 
albopictus in Hangzhou showed that July to August is the 
peak period of Ae. albopictus density [17], which could be 
may be the reason for the epidemic of DENV in Hang-
zhou in 2017. Additionally, in the process of urbaniza-
tion, the increase of urban population density may lead 
to the prevalence of infectious diseases. Wiese et al. took 
neighborhood factors into account in addition to envi-
ronmental variables using MaxEnt, and the combined 
model showed much better accuracy compared with the 
model with environmental variables exclusively [47]. As 
is reported, human density significantly influences den-
gue dynamics at fine spatial scales, such as city blocks 
and census tracts, with human population density acting 
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as the primary driver [48]. The dense urban population 
and the presence of infected mosquitoes are crucial fac-
tors contributing to the transmission and prevalence of 
dengue fever. The implementation of strict prevention 
and control measures against COVID-19 by the Chinese 
government likely contributed to the containment of 
DENV transmission in Zhejiang, further supporting the 

notion these triggering factors for the DENV epidemic in 
the region.

Our results suggested that environmental factors may 
also play a role. The suitable temperature and precipita-
tion range could promote the development and survival 
for Ae. aegypti and Ae. albopictus. Our findings indi-
cated that temperatures during the driest quarter and 

Fig. 2  Response curve of 13 variables in DENV prevalence prediction and Jackknife test gain for DENV prevalence. Blue, green, and red bars indicated the 
variable alone, without the variable, and with all variables, respectively. X_bio_2, X_bio_3, X_bio_8, X_bio_9, X_bio_13, X_bio_14, X_bio_15, X_bio_18, 
X_bio_19 refers to mean diurnal range, isothermality, mean temperature of wettest quarter, mean temperature of driest quarter, precipitation of wettest 
month, precipitation of driest month, precipitation seasonality, precipitation of warmest quarter, precipitation of coldest quarter
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precipitation of the wettest month also made contribu-
tions to DENV potential prevalence. Consistent with our 
study, rising temperatures during the driest quarter can 
enhance the survival rates of mosquitoes, consequently 
prolonging the duration of exposure to dengue hazards 
[49]. Similarly, researchers found that an increase in pre-
cipitation during the wettest month (over 8  mm) could 
create favorable comminity conditions for Ades mos-
quitoes [50]. Hence, our study emphasizes the need for 
vigilance against a potential DENV epidemic in light of 
ongoing increases in precipitation and temperatures.

The results revealed that the regions with a high poten-
tial for DENV epidemics were primarily located in Wen-
zhou, Jinhua, Quzhou, and Lishui, which are situated in 
the southern, western, west-eastern, and central parts 

of Zhejiang province. Our results align with the epide-
miological characteristics of dengue fever in Zhejiang 
province from 2015 to 2019 [46]. During this period, 
Wenzhou and Jinhua experienced relatively high DENV 
risk and reported a larger number of DENV cases. Nota-
bly, Hangzhou witnessed a significant DENV outbreak, 
with 1,424 cases (1,201 indigenous and 223 imported) 
reported during 2017–2019. The occurrence of local 
cases in subsequent years may be attributed to imported 
cases from Southeast Asia and subsequent local trans-
mission [51]. The extensive trade and collaboration with 
foreign regions or countries, especially in cities like 
Hangzhou, increase the risk of imported cases.

The growth and spread of DENV are intricately linked 
to social and economic development, global climate 

Fig. 3  Potential total area for DENV under different SSPs (SSPs126, SSPs245, SSPs370, and SSPs585) of different climate scenarios in future periods (2021–
2040, 2041–2060, 2061–2080, and 2081–2100) of the 21st century. The y-axis represents the percentage of the total area for DENV divided by the total 
area of Zhejiang Province of China
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change, tourism, commerce, migrant workers, and accel-
erated urbanization. According to our findings, under 
SSP126, the risk for DENV in Zhejiang province is pro-
jected to increase in the future compared with the pres-
ent. Even slight increases in temperature could provide 
substantial benefits to mosquito-borne disease, regard-
less of great efforts made by human societies to con-
trol carbon emissions. Aligned with our findings, in the 
best-case scenario SSP126 there will be a prolongation 
of the risk season for mosquito-borne disease in Brazil 
[52]. This highlights the need to integrate international 
climate protection policies with national disease pre-
paredness efforts, including enhancing capacity for dis-
ease surveillance, diagnosis, and treatment. Additionally, 
under SSP585, a scenario characterised by Fossil-fueled 
development and limited greenhouse gas mitigation, the 
risk area for DENV in Zhejiang province is expected to 
initially expand and then decrease. This trend can be 
attributed to the rising temperatures in Zhejiang prov-
ince, situated in the subtropical region, resulting from 
increased carbon dioxide emissions and global warm-
ing. Initially, the elevated temperatures create a more 
suitable environment for the survival and transmission 
of mosquito vectors. However, persistent overheating 

eventually reduces the vectors’ suitability for survival. 
Correspondingly, existing literature suggests that as tem-
peratures rise, the regions most conducive to dengue 
risk shift to higher altitudes, while the tropical regions 
become unsuitable due to excessively high temperatures 
(over 35 °C) [53]. They suggest many cities in coastal 
eastern China and Japan are also likely to become suit-
able for dengue prevalence by 2050 [53]. Similar to our 
results, Xu also suggested a reduced risk region for Zika 
virus in the future SSP585 scenario, attributing it to envi-
ronmental degradation and rising temperatures, which 
share the same vectors as DENV [54]. Our interpreta-
tion suggests that these results may be attributed to ris-
ing temperatures and changes in the vectors’ ecological 
adaptations. Our findings support the idea that effective 
vector control, community participation, health educa-
tion, and environmental measures in high/moderate-risk 
regions could minimize the spatial diffusion and future 
pandemic potential of dengue fever in Zhejiang.

Conclusion
Our study predicted that the current risk area in Zhejiang 
province of China, with the AUC value of 0.975 and the 
TSS value of 0.8, which indicated an accurate prediction. 

Fig. 4  Potential high risk area for DENV under different SSPs (SSPs126, SSPs245, SSPs370, and SSPs585) of different climate scenarios in future periods 
(2021–2040, 2041–2060, 2061–2080, and 2081–2100) of the 21st century. The y-axis represents the percentage of high risk area for DENV divided by the 
total area of Zhejiang province of China
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The future climate showed different changing trends 
according to the development paths of society. The impli-
cations of this research highlight the need for effective 
vector control measures, community engagement, health 
education, and environmental initiatives to mitigate the 
potential spread of dengue fever in high-risk regions of 
Zhejiang province.
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