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Abstract
Background  . The Mycobacterium tuberculosis Beijing genotype is globally spread lineage with important medical 
properties that however vary among its subtypes. M. tuberculosis Beijing 14717-15-cluster was recently discovered as 
both multidrug-resistant, hypervirulent, and highly-lethal strain circulating in the Far Eastern region of Russia. Here, we 
aimed to analyze its pathogenomic features and phylogeographic pattern.

Results  . The study collection included M. tuberculosis DNA collected between 1996 and 2020 in different world 
regions. The bacterial DNA was subjected to genotyping and whole genome sequencing followed by bioinformatics 
and phylogenetic analysis. The PCR-based assay to detect specific SNPs of the Beijing 14717-15-cluster was developed 
and used for its screening in the global collections. Phylogenomic and phylogeographic analysis confirmed endemic 
prevalence of the Beijing 14717-15-cluster in the Asian part of Russia, and distant common ancestor with isolates 
from Korea (> 115 SNPs). The Beijing 14717-15-cluster isolates had two common resistance mutations RpsL Lys88Arg 
and KatG Ser315Thr and belonged to spoligotype SIT269. The Russian isolates of this cluster were from the Asian 
Russia while 4 isolates were from the Netherlands and Spain. The cluster-specific SNPs that significantly affect the 
protein function were identified in silico in genes within different categories (lipid metabolism, regulatory proteins, 
intermediary metabolism and respiration, PE/PPE, cell wall and cell processes).

Conclusions  . We developed a simple method based on real-time PCR to detect clinically significant MDR and 
hypervirulent Beijing 14717-15-cluster. Most of the identified cluster-specific mutations were previously unreported 
and could potentially be associated with increased pathogenic properties of this hypervirulent M. tuberculosis strain. 
Further experimental study to assess the pathobiological role of these mutations is warranted.
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Introduction
A study of molecular epidemiology and evolution of 
Mycobacterium tuberculosis has been greatly facilitated 
by the lack of horizontal gene transfer and strictly clonal 
population structure of this medically relevant biological 
species. The clonality implies that the population struc-
ture is hierarchical and, as we know, consists of large 
phylogenetic lineages, smaller genetic families or sublin-
eages, and finally clonal clusters. Pathogenetically signifi-
cant properties may be featured by any of these entities 
although clonal clusters of the closely related isolates are 
of particular epidemiological/clinical interest. This inter-
est becomes even more pertinent if such drug resistance-
associated and/or hypervirulent clusters demonstrate 
global or local population increase hence impact on the 
public health programs.

The M. tuberculosis Beijing genotype is globally spread 
lineage with important medical properties. The evo-
lutionary history of the Beijing genotype is far from 
straightforward and was marked by some key turning 
points shaped by human migrations and demography. 
While Beijing itself likely emerged in the North of China, 
the ancestral lineage termed as proto-Beijing originated 
in the South of China [1]. Ancient or ancestral branch of 
the Beijing genotype is dominant in Japan, Korea, parts 
of China and Vietnam but extremely rare elsewhere in 
the world [2–6]. These strains have not been marked 

with particular clinically significant properties and show 
decreased transmission e.g., in Japan [7]. Although phy-
logenetic sublineages (ancient/ancestral and modern) 
of the Beijing genotype were first postulated in a Rus-
sian study [8], the ancient Beijing strains have been 
rarely found in Russia and did not attract any particular 
attention.

That being said, it was a surprise to find two clusters 
of exclusively MDR strains of the ancient Beijing sub-
lineage in two locations in the Asian part of Russia [9] 
(see clusters 1071-32 and 14717-15 on Fig. 1). A murine 
model study demonstrated that one of these clusters 
14717-15 that belongs to the RD181-intact sublineage, is 
not only MDR but highly lethal and hypervirulent [10]. 
In spite of this, this strain is prevalent only in one area 
in the Russian Far East, namely in Buryatia (16%). It was 
hypothesized that this situation is a result of the partic-
ular interplay of the human and bacterial genetics and 
long-term adaptation of these strains to the local human 
population.

The strain was the most lethal of all Russian Beijing 
strains studied to date, including the notorious Bei-
jing B0/W148 cluster, yet its phylo- and pathogenom-
ics and geography were not studied in sufficient detail. 
In the present study, we aimed, based on analysis of the 
expanded strain/DNA collection and whole genome 
sequencing, to identify pathogenetically relevant genomic 
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Fig. 1  Simplified evolutionary scenario of the M. tuberculosis Beijing genotype, including ancient Beijing 14717-15-cluster [47]. Main Russian clusters are 
in bold
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features of the Beijing 14717-15 cluster, to develop a sim-
ple method of its detection and to assess its geographic 
distribution in Eurasia.

Materials and methods
Study collections
The collection included DNA extracted from M. tuber-
culosis strains obtained between 1996 and 2020, within 
prospective or cross-sectional studies or collected as con-
venience samples, characterized in our previous studies 
[2, 8–11]. The study was approved by the Ethics Com-
mittees of St. Petersburg Pasteur Institute, St. Petersburg, 
Russian Federation (protocol 41 of 14 December 2017) 
and the Research Institute of Phthisiopulmonology, St. 
Petersburg, Russian Federation (protocol 31.2 of 27 Feb-
ruary 2017). All methods were performed in accordance 
with the relevant guidelines and regulations.

Genotyping
DNA was extracted from cultured M. tuberculosis iso-
lates using the CTAB-based method [12], DNA-Sorb-B 
kit (Interlabservis, Russia), or GenoLyse® kit (Hain Life-
science). One microliter of the DNA extracted using 
DNA-Sorb-B or GenoLyse® commercial kits and 10–20 
ng of DNA extracted using CTAB method was used for 
PCR.

Spoligotyping and 24 loci MIRU-VNTR typing were 
performed according to standard protocols [13, 14]. The 
Beijing genotype was identified experimentally or in silico 
based on deletion RD207 (positions 3,120,521–3,127,920 
in H37Rv genome, NC_000962.3). The main sublineages 
of the Beijing genotype were identified by the following 
molecular markers: (i) mutT4 codon 48 CGG > GGG 
mutation, (ii) mutT2 codon 58 GGA > CGA mutation, 
(iii) deletion RD181 (positions 2,535,429–2,536,140 in 
H37Rv genome, NC_000962.3). These three markers per-
mit to differentiate between early ancient 1, early ancient 
2, and classical ancient subgroups of the Beijing genotype 
(Fig.  1) [9]. Compared to some of the previous classifi-
cations summarized by Shitikov et al. [15], early ancient 
1 and 2 correspond to Asia Ancestral 1 and 2 branches, 
respectively.

Whole genome sequencing
Whole genome sequencing was performed at the HiSeq 
platform (Illumina). DNA libraries were prepared using 
ultrasound DNA fragmentation and NEBNext Ultra 
DNA Library Prep Kit for Illumina (New England Bio-
labs). Data for the M. tuberculosis sequenced genomes 
were deposited in the NCBI Sequence Read Archive 
(project number PRJNA822891).

TB Profiler database (http://tbdr.lshtm.ac.uk/) was 
used for genotypic detection of drug resistance. MDR, 
pre-XDR and XDR phenotypes were defined according 

to the updated World Health Organization definitions: 
MDR are strains resistant to isoniazid and rifampicin; 
pre-XDR - resistant to isoniazid, rifampicin, fluoroquino-
lone; XDR - resistant to isoniazid, rifampicin, fluoroqui-
nolone plus bedaquiline and/or linezolid [16].

Bioinformatics and phylogenetic analysis
A dataset comprising Mycobacterium tuberculosis lineage 
2 isolates with intact RD181 (n = 618) and one H37Rv 
isolate was retrieved from NCBI database (https://www.
ncbi.nlm.nih.gov/sra) using SRA Toolkit v3.0.0 (https://
github.com/ncbi/sra-tools) and parallel-fastq-dump 
v0.6.7 (https://github.com/rvalieris/parallel-fastq-dump). 
Quality of downloaded FASTQ files was assessed with 
FastQC v0.11.9 (https://github.com/s-andrews/FastQC).

These 618 genomes included 8 Russian genomes and 
610 genomes from 23 other countries [1, 15, 17–21] 
(see Table S1 with accession numbers). The TBvar v1.1.5 
workflow (https://github.com/dbespiatykh/TBvar) was 
used for mapping and variant calling. In brief, FASTQ 
reads were mapped to the reference M. tuberculosis 
H37Rv genome (RefSeq accession no. NC_000962.3) 
using BWA MEM v0.7.17 [22] algorithm. Mapped reads 
were sorted by coordinates, converted to BAM format 
and indexed using SAMtools v1.16.1 [23]. Subsequently, 
duplicate reads were removed with Sambamba v1.0 [24]. 
Mapping quality was assessed with SAMtools stats and 
mosdepth v0.3.3 [25]. All the following variant calling 
steps were performed with GATK4 v4.3.0.0 package [26]. 
All reports were aggregated with MultiQC v1.10.1 [27]. 
Variants effects were annotated with SIFT4G v19.0.2 [28] 
and SnpEff v5.1d [29].

Lineages from called SNPs were assigned with TbLG 
v0.1.5 (https://github.com/dbespiatykh/tblg). TB-Profiler 
v4.4.2 was used to discover resistance mutations and for 
spoligotyping [30]. To construct the phylogenies, the 
SNP alignment was extracted from the tab-delimited 
output of GATK VariantsToTable. Repetitive regions 
were excluded using a mask from a previously published 
study (available at https://github.com/mbhall88/head_
to_head_pipeline/blob/master/analysis/baseline_vari-
ants/resources/compass-mask.bed) [31]. Recombinant 
regions from the SNP alignment were filtered out using 
Gubbins v3.2.1 [32]. The resulting alignment was cleaned 
with SNP-sites v2.5.1 [33]. Maximum likelihood (ML) 
phylogeny was inferred from 619 sequences with 16 220 
nucleotide sites using IQ-TREE 2 v2.2.0.3 [34]. Support 
values were inferred from 1 000 ultrafast bootstrap repli-
cates (UFBoot [35]) with the “-bnni” argument and from 
1 000 replicates for Shimodaira-Hasegawa (SH) approxi-
mate likelihood ratio test with the “-altr” argument. Best-
fit model was determined by ModelFinder [36] with the 
“-m MFP” argument, best-fit model according to Bayes-
ian information criterion (BIC) was K3Pu + F + ASC + R7. 
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M. tuberculosis H37Rv1998 (SRR20082811) was used 
as an outgroup. ML phylogeny was visualized with the 
ggtree v3.7.1.002 [37], ggtreeExtra v1.4.2 [38], ggplot2 
v3.3.6 (https://ggplot2-book.org/), ggstar v1.0.4 (https://
github.com/xiangpin/ggstar), ggplotify v0.1.0 (https://
github.com/GuangchuangYu/ggplotify), ggnewscale 
v0.4.7 (https://github.com/eliocamp/ggnewscale), ran-
domcoloR v1.1.0.1 (https://github.com/ronammar/
randomcoloR), and tidytree v0.4.2 (https://github.com/
YuLab-SMU/tidytree) packages for R v4.1.2 [39]. To 
construct minimum spanning tree (MST) SNP distance 
matrix was created using Seqtk v1.3-r106 (https://github.
com/lh3/seqtk) and snp-dists v0.8.2 (https://github.com/
tseemann/snp-dists). MST tree was inferred and visual-
ized using ape v5.7 [40], igraph v1.4.1 (https://github.
com/igraph/rigraph), ggnetwork v0.5.12 (https://github.
com/briatte/ggnetwork), and ggplot2 v3.4.1 R packages.

The NGS data (fastq files) were used for in silico spoli-
gotyping using SpoTyping program [41].

For the enrichment analysis Clusters of Orthologous 
Genes (COG) categories were annotated using eggNOG-
mapper v2.1.9 [42], gene ontology (GO) categories with 
PANNZER tool [43] using Positive Predictive Value 
(PPV) cutoff of 0.5, KEGG pathways were annotated 
using BioServices v1.11.2 [44] Python library. Addition-
ally, functional categories from the TubercuList database 
were also tested for enrichment [45]. All enrichment 
analyses were performed in R using Fisher’s exact test.

The significance of amino acid substitutions was 
assessed using PAM1 (Point Accepted Mutation 1) val-
ues calculated by PhyResSE online tool. The SIFT tool 
was used to predict whether an amino acid substitution 
affects protein function based on sequence homology 
and the physical properties of amino acids (https://sift.
bii.a-star.edu.sg/index.html).

PCR-RFLP analysis of Beijing 14717-15-clusters SNPs
Two SNPs at genome positions 2,423,040 and 1,448,330 
were tested by HhaI PCR-RFLP assays.

The first SNP is at genome position 2,423,040  A > G 
and concerns gene Rv2161c (amino acid change in 
codon 33 Val > Ala [GTG/GCG], gene position 98T > C). 
This A > G mutation creates an additional site for HhaI 
(GCGC). Two primers are used for PCR of this gene 
region: 2423040F 5’-GTCCGGCAGCTCTCCACCG and 
2423040R 5’-TGCAGTTCGTCACCGACCTGACC. PCR 
conditions: 95 °C, 5 min; 35 cycles of 95 °C, 30 s, 67 °C, 
20 s, 72  °C, 20 s, and final extension 72  °C, 3 min. PCR 
product size was 146 bp. After HhaI digestion at 37 °C for 
3 h, the fragments were separated in 1.4% standard aga-
rose gel. The profile for wild type allele consists of two 
fragments 87 and 59 bp, and in case of mutation, of three 
fragments 65, 22, and 59 bp.

The second SNP is at genome position 1,448,330 G > T 
and concerns gene Rv1293 (lysA) (silent mutation in 
codon 101-Ala). This mutation inactivates the single HhaI 
site in this gene fragment. Two primers are used for PCR 
of this gene region: 1448330F 5’-TGGAAGTGGGGC-
GAACGTGC and 1448330R 5’-TTGACCGCAGCGGT-
CAACTCTGA. PCR conditions were the same as above, 
and PCR product size was 201 bp. After HhaI digestion at 
37 °C for 3 h, the fragments were separated in 1.4% stan-
dard agarose gel. The profile for wild type allele consists 
of two fragments 121 and 80 bp, and in case of mutation, 
the PCR product remains undigested 201 bp.

Results and discussion
Phylogenomic position of Beijing 14717-15-cluster
Phylogenomic analysis of the Beijing isolates with intact 
RD181 (early ancient 1 sublineage of the Beijing geno-
type) was performed on 8 Russian genomes (2 from 
Omsk, West Siberia and 6 from Buryatia, Far East) and 
610 genomes from 23 countries, mostly from East and 
Southeast Asia (Table S1, Fig.  2a). All Russian isolates 
clustered in a separate branch on the tree (see the upper-
most branch on Fig. 2b). Four isolates from Europe were 
also found within this cluster and included three from 
the Netherlands and one from Spain. VNTR typing 
of the Russian isolates assigned all of them to the Mlva 
type 14717-15 and related profiles. For this reason, we 
term this branch the Beijing 14717-15-cluster. All iso-
lates of this cluster had in silico deduced spoligotype 
SIT269 (Table S2) that is a derived profile from the clas-
sical Beijing SIT1 by deletion of spacers 35 and 36. The 
experimental spoligotyping profiles were available for the 
Russian isolates and were concordant with their in silico 
spoligoprofiles.

On the phylogenetic tree, the relatively nearest neigh-
bors of the Beijing 14717-15-cluster were isolates from 
Korea and Japan (Fig.  2b). All Beijing 14717-15-clus-
ter isolates and some Korean isolates had spoligotype 
SIT269 however, given a limited number of spacers in the 
CRISPR locus of the Beijing genotype, this profile may be 
a result of convergent evolution and does not necessarily 
indicate a common origin.

The phylogenetic network (Fig.  2c) shows that 115 
SNPs separated Russian cluster from the most recent 
common ancestor with isolates from Korea which implies 
only very distant relation of these isolates. It may be 
noted that Korean isolates were separated by even more 
SNPs between them (mostly 130–200 SNPs [not shown]) 
that likely correlates with their long-term evolution in a 
country of the endemic high prevalence of the RD181-
intact ancient Beijing sublineage, i.e. Korea.

Resistance mutations were detected in silico based 
on the WGS data (Fig.  2b, Table S3). One should keep 
in mind a certain bias of the studied isolates from some 
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countries, in particular a collection from Korea included 
mainly drug resistant isolates. On the other hand, all Rus-
sian isolates came from the population-based studies and 
were not preselected in any way. In this view, MDR/pre-
XDR status of Russian isolates is noteworthy. All isolates 
of this cluster harbored two-mutation signature of the 
high-confidence resistance mutations katG Ser315Thr 

and rpsL Lys88Arg [46]. Interestingly, two isolates from 
the Netherlands, 1998, harbored only two first-line drugs 
resistance mutations (in rpsL88 and katG315) and thus 
were likely brought to the Netherlands during the early 
dissemination of this strain. katG Ser315Thr is the most 
frequent INH-resistance associated mutation and its 
presence is expected. The other mutation rpsL Lys88Arg 

Fig. 2  Phylogenomic analysis of the Beijing genotype isolates with intact RD181. (A) Global dataset (n = 618); (B) Beijing 14717-15-cluster and neighbor-
ing branches; (C) Minimum spanning tree of the Beijing 14717-15-cluster with information on the region of origin of Russian strains and year of isolation 
of the isolates (when available)
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is also a well-known high-confidence mutation asso-
ciated with STR resistance but it is less frequent than 
rpsL43 mutation [46]. Together these two mutations 
katG Ser315Thr and rpsL Lys88Arg may be considered as 
a characteristic marker of this cluster although they alone 
cannot be used for its identification.

We further identified polymorphisms specific of the 
Beijing 14717-15-cluster (Table S4). They included 55 
SNPs in CDS (35 non-synonymous, 20 synonymous) and 
10 SNPs in intergenic regions. Some of the SNPs were in 
the genes related to mycobacterial virulence and adap-
tation and could hypothetically influence an increased 
virulence and lethality of this cluster which was dem-
onstrated previously in both murine model and in TB 
patients [10, 47]. For example, PPE18 is known to be 
related to immune evasion [48–50]. Some other genes 
(fadE17, mmpS3, pks7) are related to adaptation and vir-
ulence [51, 52]. Nevertheless, gene function enrichment 
analysis revealed that the genes with nonsynonymous 
mutations were only enriched in lipid metabolism cat-
egory according to Tuberculist.

Based on the PAM 1 values, it is possible to hypoth-
esize a significant influence of the amino acid change 
and such SNPs with PAM1 below 5 were identified in 10 
genes including pks7, fadE17, hpx (Table S4).

In addition, SIFT P values were calculated for 35 non-
synonymous mutations. As a result, 12 SNPs in genes of 
different categories (Lipid metabolism, Regulatory pro-
teins, Intermediary metabolism and respiration, PE/PPE, 
Cell wall and cell processes) were found to significantly 

affect protein function (P < 0.05) (Table  1). Information 
on these 12 genes was searched in Pubmed but only few 
of them were found and without relation to pathobiologi-
cal properties. However, at least some of these genes such 
as, polyketide synthase Pks7, methyltransferase Rv0567, 
conserved transmembrane protein Rv0064, transcrip-
tional regulatory protein Rv0823c and two PE/PPE genes 
deserve particular attention. In particular, Pks genes 
encoding the polyketide synthases are involved in the 
lipopolysaccharide and complex lipids biosynthesis [53]. 
Mutations in the pks genes were also suggested to have a 
compensatory role in drug resistance [51, 52].

PCR-RFLP assay for detection of Beijing 14717-15-cluster
Among cluster-specific SNPs identified above, we 
selected two functionally neutral SNPs (PAM1 = 9867) 
and designed PCR-RFLP assays to detect them. These 
SNPs were in genome positions 1,448,330 G > T (Rv1293 
Ala101Ala) and 2,423,040  A > G (Rv2161c Val(s)33Ala). 
The neutral SNPs reflect a neutral evolution non-influ-
enced by selection pressure and unlikely to independently 
occur in different and unrelated phylogenetic groups. The 
use of two SNPs enhances the reliability of detection of 
this cluster.

Both SNPs can be detected by HhaI-RFLP analysis of 
the amplified PCR regions (Fig.  3). PCR conditions are 
the same for both genes, and both PCR products are 
digested (separately) by the same HhaI endonuclease. 
Both PCR-RFLP assays were optimized with isolates 
with known WGS sequences and VNTR profiles. Both 

Table 1  Twelve in silico predicted significant mutations characteristic of the Beijing 14717-15-cluster
Gene AA 

exchange
PAM1 SIFT 

P
Product Function, category (https://mycobrowser.epfl.ch/)

Rv0360c Trp89STOP 0 - Conserved protein Conserved hypotheticals. Function unknown

Rv1866 Asp699Tyr 0 0.01 Conserved protein Lipid metabolism. Function unknown, but supposed involve-
ment in lipid degradation.

Rv1661 
(pks7)

Leu2076Arg 1 0.01 Probable polyketide synthase Pks7 Lipid metabolism. Potentially involved in some intermedi-
ate steps for synthesis of polyketide molecule which may be 
involved in secondary metabolism

Rv1154c Met(s)57Ile 2 0.00 Hypothetical protein Conserved hypotheticals. Function unknown

Rv0567 Ser76Cys 5 0.02 Probable methyltransferase/methylase Intermediary metabolism and respiration. Causes methylation.

Rv0064 Ala225Pro 13 0.01 Probable conserved transmembrane 
protein

Cell wall and cell processes.

Rv2263 Gly25Ser 16 0.00 Possible oxidoreductase Intermediary metabolism and respiration. Oxidoreduction.

Rv3350c 
(PPE56)

Gly2482Ser 16 0.00 PPE family protein Function unknown

Rv1077 
(cbs)

Val77Ala 18 0.02 Probable cystathionine beta-synthase Intermediary metabolism and respiration. Thought to be 
involved in homocysteine transulfuration.

Rv0823c Thr218Met(s) 32 0.00 Possible transcriptional regulatory protein Regulatory proteins. Thought to be involved in transcriptional 
mechanism.

Rv0152c 
(PE2)

Asp217Asn 36 0.02 PE family protein Function unknown

Rv2607 
(pdxH)

Asp84Asn 36 0.04 Probable pyridoxamine 5’-phosphate 
oxidase

Intermediary metabolism and respiration. Involved in biosyn-
thesis of pyridoxine (vitamin B6) and pyridoxal phosphate.

Substitution is predicted to affect protein function if SIFT P < 0.05. Database UniProt + TrEMBL was used SIFT analysis

https://mycobrowser.epfl.ch/
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mutations were found only in isolates of the Beijing 
14717-15 cluster.

These two phylogenetic SNPs of the Beijing 14717-15 
cluster were screened for specificity in the proprietary 
Beijing global genome databases (> 6000 genomes [Dr. 
Joao Perdigao, Universidade de Lisboa, Portugal, and 
> 10,000 genomes [Dr Egor Shitikov, Lopukhin Fed-
eral Research and Clinical Center of Physical-Chem-
ical Medicine, Russia]). As a result, these two SNPs 
were found robustly specific and unique for the Beijing 
14717-15-cluster isolates.

A strategy to target a limited number of SNPs (at least 
two) was recommended and applied to identify specific 
strains or clones by PCR based assays [54–56] which 
increases the robustness. Thus, analysis of both targeted 
SNPs is the most robust method to detect the Beijing 
14717-15-cluster. Nonetheless, detection of particular 
clusters/genotypes based on use of a single marker is an 
acceptable and parsimonious approach, provided that 
such marker was proven specific and sensitive in the 
validation studies and this concerns both detection of 
the particular clusters and families and the development 
of the SNP-barcode system [15, 57]. In this view, since 
analysis of the two SNPs showed completely concordant 
results, testing of any of them appears the most practical 
and time-saving approach to trace this clinically signifi-
cant MDR Beijing 14717-15-cluster.

It should be noted that the strains with the intact 
RD181 locus belong to the early ancient sublineage of 
the Beijing genotype, which is very heterogeneous and 
includes strains with diverse VNTR profiles. In this 

sense, the SNPs identified by us are markers only of the 
Beijing cluster specific to Russia (primarily Buryatia), but 
not markers of the entire heterogeneous RD181-intact 
branch within deeply-rooted ancestral Beijing sublineage.

Geographic screening of Beijing 14717-15-cluster
The two PCR-RFLP assays were further applied to 
the Beijing genotype isolates that represented differ-
ent Beijing sublineages and had different VNTR pro-
files. These validation collections included isolates from 
Europe, Russia, Central and East Asia. The PCR-RFLP 
analysis of two SNPs correctly assigned all isolates with 
known Mlva 14717-15 and related profiles to the Beijing 
14717-15-cluster. The method has 100% sensitivity and 
100% specificity to detect Beijing 14717-15-cluster.

We further applied these PCR-RFLP assays to screen 
the available DNA collections from Russian regions 
and other countries. Results summarizing the above 
validation and screening analysis are shown in Table  2; 
Fig.  4 and demonstrate the clear peak of the Beijing 
14717-15-cluster in Buryatia, Far East.

Analysis of the available archival strains isolated in 
1996–2002 in northwestern Russia (St. Petersburg and 
other regions) did not reveal the isolates of the Beijing 
14717-15-cluster. However, two isolates of this cluster 
were detected in the Netherlands in 1998. One possibly 
related isolate (based on 12-MIRU-VNTR typing) was 
described in Lithuania, and was isolated in 2007 [9].

We additionally looked at the geographic distribution 
of the main Russian clusters of the modern sublineage 
of the Beijing genotype (B0/W148 and Central Asian 

Fig. 3  PCR HhaI-RFLP detection of Beijing 14717-15-cluster based on: (A) SNP at 2,423,040 A > G (Rv2161c Val33Ala) and (B) SNP at 1,448,330 G > T (Rv1293 
Ala101Ala). Lanes 1–5 – Beijing 14717-15-cluster. Lanes 6–7 – other genotypes. М – molecular weight marker 100 bp ladder (Fermentas). The raw gel 
image is shown in Figure S1
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Russian) and two main clusters of the ancient sublineage 
(Beijing 14717-15 and Beijing 1071-32), based on results 
of this study and previous publication [9, 58–60]. This 
comparison showed the overall prevalence of the mod-
ern Beijing clusters across Russia and presence of Beijing 
1071-32 at low prevalence but also indifferent parts of 
European Russia and Western Siberia. In this view, the 
high 18% prevalence of the Beijing 14717-15-cluster in 
Buryatia is in the striking contrast with its almost com-
plete absence elsewhere.

We note that percent of this cluster roughly correlates 
with proportion of the Buryat ethnic group in Buryatia 
itself and its neighbors. Due to human influx from Euro-
pean and Siberian parts of Russia since the 1930s, the 
proportion of Buryats decreased from 44% to 1926 to 19% 
in 1970 but remains stable in the last 20–30 years and 
makes up to 28–30% of the total population of this region 
(https://en.wikipedia.org/wiki/Buryatia#Demographics). 
Buryats also live in the neighboring provinces in Far 
East and Siberia. Thus, presently, the percent of Buryats 
in Buryatia is 30%, in Zabaykalie 8% and in Irkutsk 3%. 
In turn, percent of the Beijing 14717-15-cluster in these 
areas is 18%, 8%, and 2%, respectively. We do not have 

information on the ethnic background on the patients in 
the previous studies but the above figures are suggestive 
of some correlation.

Interestingly, no Beijing 14717-15 strains were found 
in the neighboring Mongolia [59]. Buryat and Mongol 
languages are related, and Y chromosome and mtDNA 
based study identified common genetic components for 
Buryats and Mongols [61, 62] but Buryats were separated 
form Mongols very long ago, and definitely long before 
emergence of this particular M. tuberculosis strain. The 
noticeable decrease in frequency of N1c1 haplogroup in 
western direction and the presence of a significant pro-
portion of unique haplotypes in Buryats indicate the 
absence of the intensive gene drift from Buryats to Mon-
gols [61]. Based on mtDNA graphs, Buryats are very het-
erogeneous and only one of their subgroups is close to 
Mongols [62]. A relatively mass migration of Buryat peo-
ple to Mongolia took place 90 years ago when they flew 
Red Army. However, no significant human movement 
took place since the 1930s and the two countries are sep-
arated by the state borders. This could be the reason why 
this strain was not brought to Mongolia form the neigh-
boring Buryatia.

Conclusions
Important strains may unexpectedly emerge among 
minor genotype lineages as was shown for genotypes of 
the Euro-American lineage, such as drug-resistant clones 
within Haarlem, LAM, Ural, NEW-1 families [63–66]. 
Herein described the Beijing 14717-15-cluster is the 
other relevant example. The strain was shown concor-
dantly lethal and virulent in mice and human studies [10, 
47]. Its elevated prevalence only in one region was linked 
to some hypothetical interplay of human immune system 
and the genetic background of this strain during local 
coevolution and long-term coadaptation. Further studies 
including GWAS-based may eventually shed more light.

Cluster-specific SNPs that significantly affect protein 
function were identified in 12 genes of different catego-
ries (Lipid metabolism, Regulatory proteins, Intermedi-
ary metabolism and respiration, PE/PPE, Cell wall and 
cell processes). Most of these genes were previously unre-
ported and could potentially be associated with increased 
pathogenic properties of these strains.

Furthermore, when the entire bacterial genome is con-
sidered, not only SNPs but also insertions and deletions 
could be cluster-specific and functionally significant. A 
further study of such alterations and their association 
with pathogenic properties of the isolates is warranted 
through more complete genome sequencing (including 
de-novo assembly and long-read sequencing), and exper-
imental allelic exchange approach.

The Russian isolates of the cluster 14717-15 were from 
the Asian part of the country. They had two common 

Table 2  Detection of Beijing 14717-15 in retrospective local 
collections
Country, region Total Beijing 

genotype
Beijing 14717-15 
cluster,
number and % in 
total local collection

Russia, Western Siberia, 
Omsk

482 321 12 (2.5%)

Russia, Eastern Siberia, 
Irkutsk

393 239 8 (2%)

Russia, Far East, Buryatia 499 342 89 (18%)

Russia, Far East, Zabaykal-
sky krai

62 41 5 (8%)

Russia, Far East, Yakutia 377 165 3 (0,8%)

Russia, Far East, Primorsky 
krai

97 68 1 (1%)

Russia, Northwest (Komi, 
Karelia, Kaliningrad)

371 184 0

Belarus 93 48 0

Estonia

Greece 19 19 0

Albania 5 5 0

Bulgaria 93 0 0

Kazakhstan 148 103 0

China, Beijing 74 45 0

Vietnam, Hanoi and Ho 
Chi Minh

53 37 0

Japan, Okinawa 71 71 0

Mongolia 147 105 0
Note. The Beijing genotype was determined based on spoligotyping or VNTR 
typing. Strains of Beijing 14717-15 cluster were determined based on SNP 
testing

https://en.wikipedia.org/wiki/Buryatia#Demographics
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resistance mutations rpsL Lys88Arg and katG Ser315Thr. 
Phylogenetically, their neighbors were isolates from 
Korea, while the Russian isolates from both Omsk and 
Buryatia and some of the Korean isolates had a charac-
teristic spoligoprofile SIT269 (derived from the classic 
spoligo profile Beijing - SIT1). However, the distance 
between Russian and the closest Korean isolates was at 
least 115 SNPs (corresponding to ~ 230 years, based on 
generally assumed mutation rate of 0.5 SNPs/genome/
year) and SIT269 may well result from convergent evo-
lution. In this view, the hypothesis of the Korean dis-
tant descent of this medically significant Russian cluster 
remains a speculation. Availability of more genomes from 
East Asia should hopefully permit more robust recon-
struction of its evolutionary history while omics studies 
may help to reach a more informed view on pathobiologi-
cal relevance of its genetic variation.
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