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Abstract
Background In May 2022, the World Health Organization (WHO) European Region announced an atypical 
Monkeypox epidemic in response to reports of numerous cases in some member countries unrelated to those 
where the illness is endemic. This issue has raised concerns about the widespread nature of this disease around the 
world. The experience with Coronavirus Disease 2019 (COVID-19) has increased awareness about pandemics among 
researchers and health authorities.

Methods Deep Neural Networks (DNNs) have shown promising performance in detecting COVID-19 and predicting 
its outcomes. As a result, researchers have begun applying similar methods to detect Monkeypox disease. In this 
study, we utilize a dataset comprising skin images of three diseases: Monkeypox, Chickenpox, Measles, and Normal 
cases. We develop seven DNN models to identify Monkeypox from these images. Two scenarios of including two 
classes and four classes are implemented.

Results The results show that our proposed DenseNet201-based architecture has the best performance, 
with Accuracy = 97.63%, F1-Score = 90.51%, and Area Under Curve (AUC) = 94.27% in two-class scenario; and 
Accuracy = 95.18%, F1-Score = 89.61%, AUC = 92.06% for four-class scenario. Comparing our study with previous 
studies with similar scenarios, shows that our proposed model demonstrates superior performance, particularly in 
terms of the F1-Score metric. For the sake of transparency and explainability, Local Interpretable Model-Agnostic 
Explanations (LIME) and Gradient-weighted Class Activation Mapping (Grad-Cam) were developed to interpret the 
results. These techniques aim to provide insights into the decision-making process, thereby increasing the trust of 
clinicians.

Conclusion The DenseNet201 model outperforms the other models in terms of the confusion metrics, regardless 
of the scenario. One significant accomplishment of this study is the utilization of LIME and Grad-Cam to identify the 
affected areas and assess their significance in diagnosing diseases based on skin images. By incorporating these 
techniques, we enhance our understanding of the infected regions and their relevance in distinguishing Monkeypox 
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Background
Monkeypox is a re-emerging zoonotic disease caused by 
the Monkeypox virus, which belongs to the Poxviridae 
family, Chordopoxvirinae subfamily, and Orthopoxvirus 
genus [1]. The virus was first identified in monkeys in 
1958 [2] and later found to infect humans in the Demo-
cratic Republic of the Congo (DRC) in 1970 [3]. Com-
mon initial symptoms of Monkeypox include headache, 
fever, backache, muscle aches, swollen lymph nodes, and 
fatigue. Within the first three days of experiencing these 
symptoms, most infected individuals develop a rash or 
sores, initially appearing on the face and then rapidly 
spreading centrifugally to other parts of the body [4].

The spread of the virus had been limited to a few Afri-
can countries for a considerable period. However, as of 
the time of writing this article (December 19, 2022), the 
world was experiencing a global outbreak of the Mon-
keypox virus. There had been 82,809 confirmed cases 
reported in 110 countries. In response to this concern-
ing situation, the World Health Organization (WHO) 
convened an “emergency meeting” on May 20, 2022, to 
address the escalating cases of the Monkeypox virus. 
The WHO was deliberating whether to declare the out-
break officially. Furthermore, due to a significant increase 
in cases, the Centers for Disease Control (CDC) in the 
United States raised its Monkeypox alert level to “Level 
2” on June 6, 2022 [5]. The CDC noted that, as of now, 
there are no specific treatments available for Monkeypox 
infection [6]. However, it is worth mentioning that the 
Food and Drug Administration (FDA) recently approved 
a Monkeypox vaccine.

As the number of Monkeypox cases continued to rise, 
countries around the world were implemented various 
preparations, initiatives, and measures to mitigate the 
spread of the virus. These efforts included implement-
ing lockdown measures in Belgium, the United States 
procuring 500,000 doses of the smallpox vaccine, Can-
ada offering vaccination to high-risk groups, French and 
Danish health authorities advocating for vaccine distri-
bution to adults affected by the virus, Germany recom-
mending vaccinations for high-risk populations, and the 
United Kingdom advising self-isolation for all individuals 
infected with the virus [7].

Over the past two decades, significant progress has 
been made in the development of modern Machine 
Learning (ML) algorithms, particularly Deep Learning 
(DL). This progress has been facilitated by the availabil-
ity of large databases, improved computational power, 

and increased accessibility to advanced technologies. As 
a result, Artificial Intelligence (AI) and ML have transi-
tioned from experimental laboratory concepts to practi-
cal and applicable technologies in various commercial 
domains. One sector that has witnessed substantial 
growth is the application of ML techniques in health-
care. DL has emerged as a prominent player in the field of 
health informatics, offering distinct advantages in feature 
extraction and data classification [8].

DL models typically employ a larger number of hid-
den neurons and layers compared to traditional neural 
network architectures. This design choice is driven by 
the availability of vast amounts of raw data during the 
training phase, enabling the use of more neurons. DL 
approaches are based on representation learning, which 
involves constructing nonlinear modules layer by layer to 
achieve higher levels of representation. Each layer trans-
forms the representation from one form to the next, ulti-
mately resulting in a more abstract representation, thus 
facilitating the automatic generation of a feature set [9, 
10]. In the field of health informatics, the automatic gen-
eration of a feature set without human intervention offers 
significant advantages. Medical image processing is a 
prominent area where DL has been successfully applied. 
Among the various DL architectures, Convolutional 
Neural Networks (CNNs) are commonly used for medi-
cal image processing due to their proficiency in computer 
vision tasks and their ability to leverage Graphics Pro-
cessing Units (GPUs) [11]. CNNs have found application 
in various areas such as cancer detection, survival pre-
diction, and the prediction of Coronavirus Disease 2019 
(COVID-19) outcomes [12–15]. In recent years, there 
has been a significant surge in the integration of AI in 
clinical domains. DL has exhibited remarkable advance-
ments in performance. Various Deep Neural Network 
(DNN) architectures, such as VGG, ResNet, Inception, 
AlexNet, GoogLeNet, MobilNet, and ShuffleNet, have 
been employed for the classification of Monkeypox 
images [16–18].

Despite their promising performance, a critical con-
cern lies in the limited understanding and interpretabil-
ity of these models’ decision-making processes. This lack 
of transparency poses a challenge to gaining trust and 
acceptance among clinicians. Clinicians often hesitate to 
fully rely on AI models due to their “black box” nature, 
where the internal workings and reasoning behind pre-
dictions are not readily explainable. To address this issue 
and establish clarity and certainty, research efforts have 

from other similar diseases. Our proposed model can serve as a valuable auxiliary tool for diagnosing Monkeypox and 
distinguishing it from other related conditions.
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focused on developing methods for interpreting and 
explaining the performance of AI models. These methods 
aim to unveil the decision-making mechanisms employed 
by AI models and identify the influential factors that 
contribute to their predictions [19]. By employing such 
interpretability techniques, clinicians can gain deeper 
insights into how AI models arrive at their predictions. 
This enhanced understanding fosters trust and confi-
dence in the reliability of AI systems, bridging the gap 
between advanced AI technologies and real-world clini-
cal applications. Some researchers have also emphasized 
the interpretability and explainability of DL models in 
the context of Monkeypox. To achieve this, a few studies 
have employed two approaches, namely Local Interpreta-
ble Model-Agnostic Explanations (LIME) and Gradient-
weighted Class Activation Mapping (Grad-CAM) [20].

At the time of writing this article, there were only two 
publicly available datasets that were specifically created 
for the development of ML and DL models to detect 
Monkeypox disease [21, 22]. For this study, we utilized 
the dataset provided by Ahsan et al. [21], which includes 
skin lesion images of Monkeypox, Chickenpox, and 
Measles diseases. Considering the available datasets, two 
scenarios have been explored for Monkeypox detection: 
multi-class classification, where each class represents a 
specific skin lesion disease, and two-class classification, 
such as distinguishing Monkeypox from other diseases.

Despite the existing literature on the detection of Mon-
keypox disease using DL models, our literature review, 
along with a recent systematic literature review [20], has 
identified certain areas that warrant further research:

1. It has been observed that most published studies 
have focused on developing one of the previously 
mentioned approaches. Additionally, the two-class 
approach, specifically distinguishing Monkeypox 
from other diseases, has emerged as more prevalent 
in the literature [20].

2. Most studies have primarily reported accuracy as 
the main metric for evaluating the performance 
of their models. This trend is also evident in [20], 
where accuracy is the sole metric utilized across 
all included studies. However, it has been well-
established that accuracy alone may not provide a 
comprehensive evaluation of model performance. In 
light of this, the Receiver Operating Characteristic 
(ROC) curve, which offers a measurement based 
on the surface, has been proposed as an alternative 
evaluation metric [23].

3. The importance of model interpretability has been 
recognized, but only a limited number of studies 
have addressed this aspect [16, 24]. Understanding 
how models arrive at their predictions is crucial for 
ensuring trust, transparency, and effective decision-
making in clinical settings.

Therefore, further research is needed to explore alterna-
tive approaches, consider diverse evaluation metrics, and 
delve into the interpretability of DL models in the detec-
tion of Monkeypox disease. By addressing these gaps, 
we can enhance the effectiveness and reliability of these 
models for real-world applications.

Objectives and contributions
In this study, we utilized the previously mentioned pub-
licly available dataset [21] and performed preprocessing 
techniques to prepare the data for analysis. Subsequently, 
we implemented seven DL models that leverage pre-
trained capabilities to diagnose Monkeypox disease 
based on skin lesion images from patients. To enhance 
the performance of these models, we conducted experi-
ments and introduced modifications to the standard 
architecture, incorporating five dense layers. Addition-
ally, we explored two scenarios: the two-class scenario 
and the four-class scenario. In the two-class scenario, 
images were categorized into Monkeypox and non-Mon-
keypox classes, while the four-class scenario involved 
Monkeypox, Chickenpox, Measles, and Normal classes. 
These scenarios allowed us to develop robust models and 
facilitate a comprehensive analysis of the data.

To ensure the optimal performance of the models, we 
conducted rigorous hyperparameter optimization and 
evaluated their performance using eight different evalu-
ation metrics. Additionally, to enhance interpretabil-
ity and provide explanations for the models’ results, we 
employed LIME and Grad-Cam techniques [19]. The 
contributions of this paper can be summarized as follows:

1. Development of seven modified DNNs, specifically 
designed for the detection of Monkeypox, 
considering both two-class and four-class scenarios.

2. Evaluation of model performance and generalization 
capabilities using eight different performance 
metrics, providing a comprehensive understanding 
of the effectiveness of the models.

3. Utilization of LIME and Grad-Cam techniques to 
enhance the interpretability of the models, allowing 
for a better understanding of the factors influencing 
the models’ decisions.

4. Comparative analysis with previous studies that 
employed similar scenarios, demonstrates the 
superior performance of our proposed model in 
terms of the F1-Score metric for both scenarios. 
Additionally, we reported ROC curves and Area 
Under the Curve (AUC) values for all models, 
further validating their performance.

Materials and methods
Dataset and preprocessing
The increasing global incidence of Monkeypox infec-
tion has captured the attention of researchers, leading 
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to efforts aimed at exploring early detection methods for 
this contagious disease. A crucial aspect of these endeav-
ors involves leveraging the potential of ML techniques 
to accurately identify and distinguish Monkeypox from 
other similar diseases. To initiate this task, researchers 
have commenced data collection and the construction of 
datasets as an initial step.

The dataset of this study consists of 43 Monkeypox, 47 
Chickenpox, 27 Measles, and 54 normal images. In order 
to standardize the images, we resized them to 128 × 128 
pixels. To enhance the dataset for more robust training, 
we employed augmentation techniques to increase the 
number of samples. The augmentation process involved 
the following parameters: rotation range = 45, res-
cale = 1/255, zoom range = 0.15, height shift range = 0.25, 
width shift range = 0.25, shear range = 0.25, channel shift 
range = 25, vertical flip = True, and horizontal flip = True. 
Table 1 provides a brief overview of the dataset.

Deep models
For the classification task, seven CNN architectures 
were implemented, namely InceptionResNetV2, Incep-
tionV3, ResNet152V2, VGG16, VGG19, Xception, and 
DenseNet201 [25, 26].

InceptionResNetV2 is a CNN architecture that was 
released in 2015. It combines two networks: the incep-
tion architecture and residual connections. This network 
comprises 164 layers and has approximately 56  million 
parameters [25].

InceptionV3, released in 2016, is an optimized version 
of InceptionV1. It consists of 42 layers and has fewer than 
25 million parameters [26].

ResNet152V2 is a residual neural network and the 
second version of ResNet152. It was developed in 2016 
and includes 152 layers with approximately 1.7  million 
parameters [26].

VGG16 and VGG19 are CNNs introduced in 2015, 
both consisting of 138  million parameters. These net-
works differ in the number of weight layers, with VGG16 
having 16 weight layers and VGG19 having 19 weight lay-
ers [26].

The Xception architecture, released in 2017, incorpo-
rates residual connections and a subset of convolution 

layers. It is 71 layers deep and comprises approximately 
20 million parameters [25].

DenseNet201, proposed in 2017, is a CNN that directly 
connects all layers. It consists of 201 layers and approxi-
mately 20 million parameters [26].

These DNN models have often been trained on large, 
publicly available datasets such as ImageNet, enabling 
them to recognize various image properties. Leverag-
ing pre-trained networks offers advantages in terms of 
training speed and accuracy when applied to new tasks, 
such as image classification. This is because pre-trained 
models can transfer significant image features that 
have already been learned to the new task, eliminating 
the need to learn them again from scratch. To further 
enhance the results, we incorporated five Dense lay-
ers into all DNN models. The methodology diagram is 
depicted in Fig. 1.

Models tuning
The grid search technique was employed to identify 
the optimal values for hyperparameters. This method 
involves systematically searching through a predefined 
set of hyperparameter values to determine the best 
combination for a specific model. Additionally, 5-fold 
cross-validation was implemented to ensure the models’ 
generalizability and obtain more reliable performance 
estimates. In each iteration of cross-validation, 80% of 
the data was used for training, while the remaining 20% 
was reserved for testing. It is important to note that a 
small portion of the training set was also utilized for 
hyperparameter tuning during each iteration to find the 
best hyperparameter values.

Based on our experimental findings, we incorporated 
four dense, fully connected layers following the pre-
trained models to diagnose the disease in this study. The 
number of units for these four layers was determined 
through a grid search. Additionally, at the end of the 
proposed models’ architecture, another dense fully con-
nected layer with four units and a softmax activation 
function was added to determine the class label in the 
four-class scenario. Similarly, this layer had two units to 
determine the class in the two-class scenario. This pro-
cess is shown in Fig. 1 and the optimal values for hyper-
parameters are presented in Table 2.

Evaluation metrics
After applying cross-validation and identifying the opti-
mal hyperparameters, the performance of all models 
was assessed using ROC and AUC. In addition to ROC 
and AUC, six other metrics were employed to evaluate 
the models’ performance: Accuracy, F1-Score, Precision 
or Positive Predictive Value (PPV), Negative Predictive 
Value (NPV), Specificity, and Sensitivity (Recall) [14, 27].

Table 1 Dataset description
Disease Dataset original 

samples
Dataset 
samples after 
augmentation

Monkeypox 43 430

Chickenpox 47 470

Measles 27 270

Normal 54 540

Total 171 1710
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Model explainability
LIME is a commonly used technique for interpreting and 
explaining AI models. It offers a transparent approach 
to comprehensively assess the performance of AI black 
box models. LIME allows for the local interpretation 
and analysis of individual examples, enabling a better 

understanding of the model’s decision-making process. 
This method is applicable to various types of data, includ-
ing images, text, and tabular data, making it a versatile 
tool for model interpretation [19].

Grad-CAM was also employed in this study for result 
interpretation. Grad-CAM utilizes the gradients of a tar-
get concept that flow into the final convolutional layer of 
a model. It generates a coarse localization map that high-
lights the significant regions in an image, indicating the 
areas that are important for predicting the concept of 
interest. By visualizing these important regions, Grad-
CAM provides insights into which parts of the image 
contribute most to the model’s decision-making process 
[28].

Results
As mentioned earlier, this study implemented seven 
DNNs and evaluated their performance in two scenarios. 
After applying hyperparameter optimization and 5-fold 
cross-validation, the performance of all models was 
assessed using the introduced metrics. The results for 
both four-class and two-class approaches are presented 
below.

Four-class scenario
Table 3; Fig. 2 present a comprehensive overview of the 
performance of all the developed DL models, consid-
ering various performance metrics. It is evident that 
DenseNet201 exhibited the highest performance across 
all metrics. There are some advantages for DenseNet 
architecture making this DNN a robust model that can 
outperform other architectures. DenseNet architecture 
addresses a critical issue in high-level neural networks 
where information tends to dissipate before reach-
ing its final destination due to the significant distance 
between input and output layers. DenseNet was spe-
cifically designed to overcome this challenge, result-
ing in improved accuracy and performance. The unique 
connectivity patterns in DenseNet facilitate the flow of 
information throughout the network, enabling enhanced 
information propagation and feature extraction [29]. 
Additionally, Table  4 provides a detailed breakdown of 
the performance of DenseNet201 for each fold. This 
allows for a more comprehensive understanding of how 

Table 2 Best values for the models’ hyperparameters
Model Learn-

ing 
Rate

Batch 
Size

Number 
of epochs

Loss 
Function

Activa-
tion 
Function

Inception-
ResNetV2

0.00001 10 10 SGD Tanh

InceptionV3 0.001 12 20 Adam ReLU

ResNet152V2 0.001 10 15 SGD ReLU

VGG16 0.00001 10 15 SGD ReLU

VGG19 0.0001 10 15 SGD ReLU

Xception 0.0001 12 15 Adam Tanh

DenseNet201 0.0001 8 10 Adam ReLU

Table 3 Performance of DNN models for four-class (Monkeypox, Chickenpox, Measles, Normal) approach
Model Accuracy (%) F1-Score (%) NPV (%) PPV (%) Specificity (%) Sensitivity (%) AUC (%)
InceptionResNetV2 94.48 88.85 96.47 89.95 96.27 88.95 84.22

InceptionV3 94.74 87.93 96.64 89.98 96.09 88.90 73.00

ResNet152V2 94.17 88.39 96.89 90.72 95.62 87.13 73.09

VGG16 88.78 71.10 93.66 77.09 91.79 75.56 72.98

VGG19 87.20 67.21 90.86 74.19 90.40 62.10 73.09

Xception 95.02 88.41 96.78 88.94 95.83 88.61 84.29

DenseNet201 95.18 89.61 97.10 90.73 96.50 89.82 92.06

Fig. 1 Method diagram
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effectively the model assigned the correct class to each 
sample. Furthermore, to gain insights into the overall 
classification performance of all developed models, Fig. 3 
showcases the confusion matrices for each model. These 
matrices provide a visual representation of the model’s 
ability to accurately classify samples into their respective 
classes.

Lastly, for the purpose of interpretability and identi-
fying image regions that are closely associated with the 

four conditions, LIME and Grad-Cam techniques were 
employed. These techniques offer valuable insights by 
highlighting the specific regions within the images that 
contribute significantly to the classification of each con-
dition. This aids in understanding the decision-mak-
ing process of the models and provides valuable visual 
explanations for their predictions. The results of this 

Table 4 Fold-wise performance of the best model (DenseNet201) in a four-class approach
Fold Accuracy (%) F1-Score (%) NPV (%) PPV (%) Specificity (%) Sensitivity (%) AUC (%)
Fold 1 96.59 92.95 97.82 93.00 97.59 92.98 92.55

Fold 2 93.48 86.24 96.10 88.87 95.21 86.55 94.31

Fold 3 95.92 91.10 97.50 91.64 97.08 91.23 84.94

Fold 4 94.45 88.15 96.56 89.36 96.07 88.30 92.43

Fold 5 95.50 89.65 97.52 90.82 96.57 90.06 96.09

Average 95.18 89.61 97.10 90.73 96.50 89.82 92.06

Fig. 3 Average confusion matrices of all folds for developed models in a 
four-class scenario

 

Fig. 2 AUC diagram of all folds for developed models in a four-class 
scenario
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experiment are depicted in Figs. 4 and 5, respectively. As 
seen both techniques could identify those regions which 
are more associated with poxes and diseases. It is impor-
tant to note that the blue color signifies a more severe 
condition, while the red color indicates less affected 
areas.

Furthermore, the ability to identify sensitive areas in 
the decision-making process provides a valuable tool 
for clinicians, enabling them to gain a better and clearer 
understanding of the AI black box model.

Two-class scenario
In the second scenario, our main objective was to accu-
rately detect Monkeypox disease. For this purpose, we 
employed the “one versus all” classification approach. 
Monkeypox images were classified as the first class, while 
Chickenpox, Measles, and Normal images were grouped 
as the second class. The performance of all models was 
evaluated using various metrics, as presented compre-
hensively in Table  5; Fig.  6. Additionally, we calculated 
and visualized the confusion matrices for all models 
in Fig.  7. Once again, DenseNet201 consistently dem-
onstrated the best performance across all metrics. To 
provide a deeper understanding of its performance, 

Fig. 4 Explainability and interpretability of the best model (DenseNet201) with LIME in a four-class scenario

 



Page 8 of 13Sorayaie Azar et al. BMC Infectious Diseases          (2023) 23:438 

we present the results of each fold for DenseNet201 in 
Table 6.

It is worth noting that the average performance of 
DenseNet201 in this scenario surpassed that of the previ-
ous scenario. This suggests that Monkeypox images pos-
sess unique characteristics and attributes that enable the 
DNN to identify them more effectively in the “one versus 
all” classification approach. This observation highlights 

the discriminative nature of the features associated with 
Monkeypox, allowing the model to differentiate them 
from other conditions with greater accuracy.

To enhance the interpretability of the models’ outputs, 
we applied LIME and Grad-Cam techniques, and the 
results are illustrated in Figs.  8 and 9. Both LIME and 
Grad-Cam techniques demonstrate their proficiency 
in identifying the crucial areas within the images that 
play a significant role in the classification of poxes and 
disorders.

Discussion
A recent systematic literature review revealed a more 
than 10-fold increase in Monkeypox cases over the past 
five decades [30]. This highlights the growing significance 
of Monkeypox as a public health concern. The COVID-19 
pandemic has further emphasized the need for prepared-
ness before such crises occur. Ongoing debates suggest 
that COVID-19 might not be the last pandemic in our 
lifetime, underscoring the importance of proactive mea-
sures and readiness for future health emergencies. These 
arguments stress the importance of proactive preparation 
for similar situations. It is crucial for researchers across 
various disciplines, such as medicine, public health, and 
data science, to collaborate and develop robust infra-
structures before a disease escalates into a global crisis, 
akin to a pandemic. At the time of writing this article, 
Monkeypox had garnered significant attention from 
health authorities worldwide, raising concerns about 
its potential to become the next pandemic if timely and 
appropriate actions are not taken [31]. Furthermore, it is 
worth mentioning that WHO believes that Monkeypox 
has not gone away and there is much possibility it comes 
back within the Europe region during this spring and 
summer [32].

ML and DL play an undeniable role in disease detec-
tion, prediction, and assisting clinicians in decision-mak-
ing. AI-driven clinical solutions, especially in radiological 
and histopathological image analysis, have achieved 
notable success with advancements in computer vision. 
These solutions provide analytical support and aid in 
the diagnosis, empowering physicians without replacing 
them [33].

In this study, we developed seven modified DL models 
specifically designed for diagnosing Monkeypox diseases. 
The dataset included samples from diseases that exhibit 
skin lesions similar to Monkeypox, such as Chickenpox 
and Measles. Accurately distinguishing Monkeypox from 
other diseases that present with similar skin poxes is 
crucial. Misdiagnosis can occur as multiple diseases can 
manifest similar skin lesions. For instance, Monkeypox 
and Smallpox, both associated with Orthopoxviruses, 
produce similar skin lesions. However, during the preva-
lence of Smallpox, there were no documented instances 

Fig. 5 Explainability and interpretability of the best model (DenseNet201) 
with Grad-Cam in a four-class scenario

 



Page 9 of 13Sorayaie Azar et al. BMC Infectious Diseases          (2023) 23:438 

of Monkeypox. This could be due to the focus primarily 
being on Smallpox, leading to a similarity in appearances 
or an assumption that Smallpox was the cause in the 
absence of laboratory evidence of the etiologic agent [34].

Including samples from various diseases that cause 
poxes allowed us to develop more accurate models for 
diagnosing and distinguishing between these similar con-
ditions. By expanding the dataset to encompass different 
diseases with similar symptoms, our models can provide 

improved accuracy in identifying and differentiating spe-
cific conditions.

In our study, we examined two scenarios for diag-
nosing Monkeypox: two classes and multi classes. The 
results revealed that DenseNet201 exhibited the high-
est performance across all eight performance metrics 

Table 5 Performance of DNN models for two-class (Monkeypox versus others)
Model Accuracy (%) F1-Score (%) NPV (%) PPV (%) Specificity (%) Sensitivity (%) AUC (%)
InceptionResNetV2 85.64 78.06 87.59 78.40 87.57 78.02 86.52

InceptionV3 85.90 79.34 87.73 79.69 87.72 79.21 88.62

ResNet152V2 84.26 70.69 86.84 71.63 86.81 70.30 88.03

VGG16 85.11 75.10 87.30 75.14 87.28 75.06 88.79

VGG19 84.85 73.32 87.18 75.19 87.13 73.25 87.66

Xception 85.99 79.70 87.79 80.07 87.77 79.69 90.52

DenseNet201 97.63 90.51 98.89 89.96 98.47 91.08 94.27

Fig. 7 Average confusion matrices of all folds for developed models in a 
two-class scenario

 

Fig. 6 AUC diagram of all folds for developed models in a two-class 
scenario

 



Page 10 of 13Sorayaie Azar et al. BMC Infectious Diseases          (2023) 23:438 

for both scenarios. In addition, our study demonstrated 
that DenseNet201 performed better in the two classes 
approach compared to the multi classes approach. These 
results reinforce the superiority of DenseNet201 as an 
outstanding performer in accurately detecting Monkey-
pox disease. The higher average performance in a two-
class scenario validates the model’s capability to leverage 
unique characteristics specific to Monkeypox images, 
contributing to enhanced diagnostic accuracy and high-
lighting the importance of considering distinct features 
of different diseases in classification tasks.

The lack of interpretability in DNN poses legal, ethi-
cal, and trust challenges, as they are often perceived as 
“black-box” or difficult to understand. This lack of trans-
parency can lead to issues and raise doubts among cli-
nicians and patients regarding the reliability of DNN 
models. To address this challenge, techniques like LIME 
and Grad-Cam have been introduced and have shown 
promising results, validated by clinicians, in interpreting 
DNN outputs [35]. Therefore, in this study, we applied 
these techniques to perform image segmentation and 
highlight the regions that are most relevant to the infec-
tions, aiming to improve the interpretability of our 
models.

Furthermore, we conducted a comparative analysis of 
our best-performing model with previous studies that 
employed similar settings [16–18, 20, 22, 24, 36, 37]. 
These studies were categorized into two groups: four-
class and two-class scenarios. The results of these com-
parisons are presented in Tables  7 and 8, respectively. 

Table 6 Fold-wise performance of the best model (DenseNet201) in a two-class approach
Fold Accuracy (%) F1-Score (%) NPV (%) PPV (%) Specificity (%) Sensitivity (%) AUC (%)
Fold 1 98.31 91.68 99.23 90.30 98.89 93.10 95.99

Fold 2 96.81 85.14 99.03 79.69 97.41 91.40 94.40

Fold 3 97.38 86.95 98.59 86.61 98.50 87.30 92.90

Fold 4 97.82 89.41 99.11 86.96 98.47 92.00 95.23

Fold 5 97.83 88.87 98.52 91.25 99.08 86.60 92.83

Average 97.63 90.51 98.89 89.96 98.47 91.08 94.27

Table 7 Comparison of our study with previous studies in a four-class (Monkeypox, Chickenpox, Measles, and Normal) scenario
Study Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%)
Abdelhamid et al. [24] AlexNet, VGG19, GoogLeNet, ResNet50 98.8 - - - -
Situala et al. [16] 13 DNNs 87.13 85.44 85.47 85.4 -

Our study Modified 7 DNNs 95.18 90.73 89.82 89.61 92.06

Table 8 Comparison of our study with previous studies in a two-class (Monkeypox versus others) scenario
Study Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%)
Ahsan et al. [17] VGG16 78 75 75 75 -
Ali et al. [22] VGG16, ResNet50, InceptionV3, Ensemble 82.96 87 83 84 -
Sahin et al. [18] EfficientNetb0, MobilNetV2 91.11 86.36 95 90.48 -

Haque et al. [36] 5 DNNs 83.89 90.70 89.10 90.11 -

Saleh et al. [37] ML and DNN models 98.48 91.11 89 - -

Our study Modified 7 DNNs 97.63 89.96 89.96 91.08 94.27

Fig. 8 Explainability and interpretability of the best model (DenseNet201) 
with LIME in a two-class scenario
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Upon examining Table 7, it is evident that our modified 
DenseNet201 model outperformed the other studies in 
terms of precision, recall, F1-Score, and AUC (except 
for accuracy). Notably, our study is the only one that 
reported the AUC metric. The inclusion of the AUC 

metric further enhances the comprehensive evaluation of 
our model’s performance and based on Mandrekar et al.‘s 
study [38], the performance of our proposed model can 
be described as “outstanding”.

Table 8 shows the comparison of our study with simi-
lar studies using a two-class approach. As shown, dif-
ferent studies had the best performance for different 
performance metrics. Among them, our proposed DNN 
outperformed other studies for F1-Score and AUC met-
rics. Similar to the previous scenario, DenseNet201 has 
greater value than 90 for AUC which is considered as 
“outstanding” performance [38].

In conclusion, our best proposed model exhibited 
superior performance compared to previous studies in 
both scenarios, specifically in terms of the F1-Score and 
AUC metrics. The performance of our model warrants 
its classification as “outstanding” [38] in both scenarios, 
indicating its potential applicability for the detection of 
Monkeypox using skin images. Furthermore, our experi-
ments demonstrated that the trained model can suc-
cessfully detect a Monkeypox image in just 65  seconds. 
This finding suggests the feasibility of using our system 
as a real-time application, providing timely and efficient 
detection of Monkeypox cases.

Overall, the performance and real-time capabilities of 
our proposed system hold promising implications for 
the field of Monkeypox detection and contribute to the 
advancement of AI-based diagnostic tools in healthcare.

Despite the promising results, our study has some limi-
tations. The main limitation of this study is related to the 
dataset. The current dataset is not clinically approved and 
only contains skin images. However, collecting other fea-
tures like laboratory tests seems essential to have robust 
models that can work in real practice.

Conclusion
This study aimed to explore the potential of DL models 
in detecting Monkeypox using skin images. The dataset 
used in this study consisted of 1710 samples from four 
classes: Monkeypox, Chickenpox, Measles, and Normal 
cases. Seven DL models, including InceptionResNetV2, 
InceptionV3, ResNet152V2, VGG16, VGG19, Xception, 
and DenseNet201, were developed for both multi-class 
and binary-class approaches. Cross-validation and hyper-
parameters optimization techniques were employed to 
ensure the generalizability of the models.

The performance of the developed models was evalu-
ated using eight metrics. Our results consistently showed 
that DenseNet201 outperformed the other models in 
terms of all metrics in both scenarios. While different 
studies may have outperformed others in specific evalua-
tion metrics, our modified DenseNet201 exhibited supe-
rior performance in terms of F1-Score for both scenarios. 
It is worth noting that the use of the AUC metric, which 

Fig. 9 Explainability and interpretability of the best model (DenseNet201) 
with Grad-Cam in a two-class scenario
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is considered a benchmark in the healthcare domain, 
was not reported in previous studies. However, our best 
model achieved an AUC greater than 90, indicating an 
“outstanding” performance. This underscores the poten-
tial of our proposed model as an auxiliary tool for clini-
cians in the quick and early diagnosis of Monkeypox 
disease.

To enhance trust and transparency, we incorporated 
LIME and Grad-Cam techniques, which provide inter-
pretability and explainability of the decision-making 
process in AI models. These techniques allowed us to 
identify the infected regions and their significance in the 
diagnosis of various diseases using skin images.

In our future work, we plan to validate the perfor-
mance of our proposed model using different datasets of 
clinical images to demonstrate the generalizability of our 
approach. Additionally, we aim to explore the feasibil-
ity of developing decision support software that can be 
integrated into clinical practice for the timely detection 
of Monkeypox.
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