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Abstract 

Background  The serial interval is the period of time between symptom onset in the primary case and symptom 
onset in the secondary case. Understanding the serial interval is important for determining transmission dynamics 
of infectious diseases like COVID-19, including the reproduction number and secondary attack rates, which could 
influence control measures. Early meta-analyses of COVID-19 reported serial intervals of 5.2 days (95% CI: 4.9–5.5) for 
the original wild-type variant and 5.2 days (95% CI: 4.87–5.47) for Alpha variant. The serial interval has been shown to 
decrease over the course of an epidemic for other respiratory diseases, which may be due to accumulating viral muta-
tions and implementation of more effective nonpharmaceutical interventions. We therefore aggregated the literature 
to estimate serial intervals for Delta and Omicron variants.

Methods  This study followed Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. A 
systematic literature search was conducted of PubMed, Scopus, Cochrane Library, ScienceDirect, and preprint server 
medRxiv for articles published from April 4, 2021, through May 23, 2023. Search terms were: (“serial interval” or “gener-
ation time”), (“Omicron” or “Delta”), and (“SARS-CoV-2” or “COVID-19”). Meta-analyses were done for Delta and Omicron 
variants using a restricted maximum-likelihood estimator model with a random effect for each study. Pooled average 
estimates and 95% confidence intervals (95% CI) are reported.

Results  There were 46,648 primary/secondary case pairs included for the meta-analysis of Delta and 18,324 for 
Omicron. Mean serial interval for included studies ranged from 2.3–5.8 days for Delta and 2.1–4.8 days for Omicron. 
The pooled mean serial interval for Delta was 3.9 days (95% CI: 3.4–4.3) (20 studies) and Omicron was 3.2 days (95% 
CI: 2.9–3.5) (20 studies). Mean estimated serial interval for BA.1 was 3.3 days (95% CI: 2.8–3.7) (11 studies), BA.2 was 
2.9 days (95% CI: 2.7–3.1) (six studies), and BA.5 was 2.3 days (95% CI: 1.6–3.1) (three studies).

Conclusions  Serial interval estimates for Delta and Omicron were shorter than ancestral SARS-CoV-2 variants. More 
recent Omicron subvariants had even shorter serial intervals suggesting serial intervals may be shortening over time. 
This suggests more rapid transmission from one generation of cases to the next, consistent with the observed faster 
growth dynamic of these variants compared to their ancestors. Additional changes to the serial interval may occur as 
SARS-CoV-2 continues to circulate and evolve. Changes to population immunity (due to infection and/or vaccination) 
may further modify it.
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Introduction
The Delta SARS-CoV-2 variant (B.1.617) was first 
detected in India in October 2020 and Omicron variant 
(B.1.1.529) in South Africa in November 2021 [1]. They 
were designated the fourth and fifth variants of con-
cern by the World Health Organization (WHO) due to 
their high transmissibility and ability to evade immune 
responses [1, 2]. Compared to the original wild-type vari-
ant, Omicron contains over 50 mutations, including 32 
in the spike protein, that alters protein binding efficiency 
and immunogenicity, increasing infectivity, antibody 
escape ability, and the chance of reinfection [3]. Addi-
tional mutations led to multiple Omicron subvariants 
with increased transmissibility including BA.2, BA.2.12.1, 
BA.4, BA.5, BF.7, BQ.1, and XBB.1.5; as of May 2023 the 
latter accounted for most infections in the United States 
[4]. Compared with the Delta variant, there is evidence 
that Omicron replicates less efficiently in the lungs and 
more efficiently in the upper respiratory tract, which may 
contribute to increased transmissibility [5, 6]. Omicron 
also has a shorter incubation period (3.42 days; 95% CI: 
2.88–3.96 days) compared to previous variants [7]. Lower 
hospitalization rates, shorter hospital stay, and lower 
case-fatality rates have been documented for Omicron 
compared to Delta, even after controlling for vaccination 
status [8].

The generation time (generation interval) is the time 
between infection of primary and secondary cases. Gen-
eration times are difficult to observe in practice and are 
often replaced with serial intervals, or the period of time 
between symptom onset in the primary case and symp-
tom onset in the secondary case [9]. Generation time is 
never negative as the secondary case’s infection time 
always occurs after the primary case’s infection time, but 
serial interval for a primary/secondary case pair can be 
negative if the secondary case has symptom onset earlier 
than the primary case. Understanding the serial interval 
is important for determining transmission characteris-
tics of infectious diseases like COVID-19, including the 
reproduction number and secondary attack rates, which 
in turn could influence the design of control measures 
[10–14]. The serial interval depends on both biological 
and sociological factors. Biological factors include the 
degree and duration of infectiousness of an index case, 
incubation period (time from infection to symptom 
onset), and latent period (time from infection to infec-
tiousness) [15, 16]. Sociological factors include popula-
tion contact patterns between infectious and susceptible 
individuals, which may vary concomitantly with public 

health interventions, lockdowns, and travel restrictions. 
The serial interval has been shown to decrease over the 
course of an epidemic [17], which may be due to accu-
mulating viral mutations and/or implementation of 
more effective nonpharmaceutical interventions [18]. It 
is often difficult to estimate the serial interval when the 
pathogen is widespread in a population because of the 
uncertainties in linking primary and secondary cases. 
The predominant literature for COVID-19 serial inter-
val focuses on the original wild-type and Alpha variants, 
with subsequent meta-analyses reporting serial intervals 
of 5.2 days for both variants [19–21]. A rapidly growing 
body of literature reports shorter serial intervals for Delta 
and Omicron variants. Here we expanded and aggregated 
those studies to estimate serial intervals for Delta and 
Omicron variants, which should help inform accurate 
estimation of important epidemiological quantities such 
as the reproductive number and more robust predictions 
using mathematical/statistical models.

Methods
Search strategy
This study followed Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses (PRISMA) guide-
lines. A systematic literature search was conducted of 
PubMed, Scopus, Cochrane Library, ScienceDirect, and 
preprint server medRxiv for articles published from 
April 4, 2021, when Delta was classified as a WHO Vari-
ant of Interest, through May 23, 2023. Search terms 
were: (“serial interval” or “generation time”), (“Omicron” 
or “Delta”), and (“SARS-CoV-2” or “COVID-19”) (Sup-
plemental methods). Reference lists of selected papers 
were also screened for additional studies. There were no 
restrictions on language, study design, or place of publi-
cation. Preprints were included. Citations were managed 
in EndNote version 20 (Thomson Reuters).

Eligibility criteria
All articles with original data for estimating clinical serial 
interval (time between symptom onset of primary and 
secondary case), diagnostic serial interval (time between 
diagnosis dates of primary and secondary case), or gen-
eration time (time between infection of primary and 
secondary case) were included. Studies were included 
if they reported mean serial interval or generation time 
and standard deviation for primary/secondary case pairs. 
Excluded studies 1) were done before the emergence of 
Delta or Omicron and 2) only reported mean or median 
serial interval without standard deviations (SD). Studies 
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that did not report mean serial intervals or SDs were 
included, however, if they provided the underlying serial 
interval data, which we used to estimate the serial inter-
val distribution and SDs (see Statistical Analysis section). 
One reviewer (Z.J.M.) first screened studies by titles and 
abstracts to identify potential studies for inclusion. That 
reviewer then evaluated full-text articles and selected 
those that met the inclusion criteria.

Data extraction
For this study, one reviewer (Z.J.M.) extracted the fol-
lowing information: first author, location, article type, 
primary case symptom onset dates, SARS-CoV-2 variant, 
contact setting, statistical distribution, serial interval or 
generation time, study adjusted for right truncation or 
not (i.e., secondary cases that were not yet detected at the 
time of the study were excluded from the data set), num-
ber of primary/secondary case pairs, mean serial interval, 
and SD.

Evaluation of study quality and risk of bias
We used the Newcastle–Ottawa Scale (NOS) to assess 
the methodological quality and risk of bias of included 
studies [22]. We used an adapted version of the NOS for 
cross-sectional studies designed by Herzog et  al. [23]. 
Studies could earn up to 10 points in participant selec-
tion (maximum 5 stars), study comparability (maximum 
2 stars), and outcome of interest (maximum 3 stars). 
Studies were classified as having high (≤ 3 stars), mod-
erate (4–6 stars), and low (≥ 7 stars) risk of bias. One of 
us (Z.J.M.) evaluated the study quality and assigned the 
quality grades. We also used funnel plots, Egger’s test, 
and Begg and Mazumdar rank correlation to evaluate 
the potential for publication bias, with significance set at 
P < 0.10 [24, 25].

Statistical analysis
For studies that did not report mean serial interval or SD, 
but provided the raw serial interval data, we used EpiEs-
tim package [26] in R software version 4.2.3 (R Project 
for Statistical Computing) to fit log-normal, Weibull, and 
gamma distributions to the raw difference-in-days data, 
and subsequently calculated means and SDs [26]. Akai-
ke’s information criterion (AIC) was used to compare fits, 
and the model with the lowest AIC value was selected. 
If a study reported a skewed normal distribution but the 
mean or SD was not provided, we used maximum like-
lihood estimation to fit a skewed normal distribution to 
the raw serial interval data using the package sn in R [27].

Overall meta-analyses were done for Delta and Omi-
cron using a restricted maximum-likelihood estima-
tor model with a random effect for each study. The 
Cochran Q test and I2 statistic are reported as measures 

of statistical heterogeneity. I2 values of 25%, 50%, and 
75% indicated low, moderate, and high heterogene-
ity, respectively. Meta-analyses were done using meta-
for package in R [28]. Pooled average estimates and 95% 
confidence intervals (95% CI) are shown in forest plots. 
We conducted sensitivity analyses 1) excluding genera-
tion time studies, 2) restricted to studies in which serial 
intervals were reported for both Delta and Omicron 
variants to control for between-study heterogeneity, and 
3) restricted to studies at low risk of bias from the NOS 
assessment. We further evaluated serial intervals by Omi-
cron subvariant and for Delta and Omicron disaggre-
gated by transmission setting (household/community).

Results
Our search retrieved 582 deduplicated records between 
April 4, 2021, and May 23, 2023 (Fig. 1). Thirty-one stud-
ies [29–59] were included in this review (Table S1). Stud-
ies included 17 research articles [29, 32, 34, 35, 40, 42, 43, 
45–48, 50, 53–55, 57, 59], eight brief communications 
[30, 31, 33, 36, 39, 51, 52, 58], three letters [37, 38, 41], 
and three reports [44, 49, 56]. Studies were from Belgium 
[33], Brazil [37], China [34–36, 42, 44, 45, 49–51, 53–57, 
59], Germany [29], Japan [46], Netherlands [30], Singa-
pore [38, 52], South Korea [32, 39–41, 58], Spain [31], 
U.K. [47], and U.S.A. [43, 48]. Twenty studies were at low 
risk of bias and 11 moderate, primarily due to small sam-
ple sizes (Table S2).

Distributions used to fit the serial interval data were 
gamma (15 studies [29, 36, 44–47, 52–59]), normal (five 
studies [32–34, 39, 40]), Weibull (three studies [42, 49, 
50]), Gaussian (one study [37]), and skewed normal (one 
study [38]); the distribution was unspecified for four 
studies [30, 31, 35, 41]. All studies but four reported mean 
and SD for serial interval. Two studies reported the mean 
serial interval by fitting skewed normal [38] and gamma 
distributions [52], but did not provide SD. Using the raw 
difference-in-days data, we fit skewed normal and gamma 
distributions to obtain SDs. Two other studies did not 
specify the distribution and did not report mean serial 
interval or SD but provided the raw serial interval data 
which included only positive values [48]. The log-normal 
distribution provided the best fit to the serial interval 
data for both studies. Only two studies [47, 57] reported 
mean generation time and two studies [51, 54] reported 
adjusting for right truncation. Nine studies [29, 30, 38, 
41, 42, 47, 48, 50, 58] were exclusively from the household 
setting. The study with the largest sample size [29] only 
reported the number of households included in the serial 
interval analysis rather than the number of primary/sec-
ondary case pairs. The study included 39,277 households 
for Delta and 11,512 for Omicron and reported that 31% 
of households comprised only two cases. We assumed 
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each household represented a case pair, therefore the n 
used in this meta-analysis was an underestimate for that 
study.

There were 46,648 case pairs included for the meta-
analysis of Delta and 18,324 for Omicron. Mean serial 
interval for included studies ranged from 2.3 days [44] to 
5.8 days [31, 54] for Delta and 2.1 days [43, 59] to 4.8 days 
[31] for Omicron. The pooled mean serial interval for 
Delta was 3.9 days (95% CI: 3.4–4.3) (20 studies [29–31, 
33–35, 37–39, 42–49, 52–54]) and Omicron was 3.2 days 
(95% CI: 2.9–3.5) (20 studies [29–33, 36, 40, 41, 43, 48, 
50–59]) (Fig.  2). Moderate heterogeneity was found for 
Delta (I2 = 73.5%; P < 0.001) and Omicron (I2 = 64.1%; 
P < 0.001) estimates. Publication bias was not suspected 
for studies of Delta or Omicron (Figure S1). Exclud-
ing studies [47, 57] that reported generation time, mean 
serial interval for Delta was 3.8  days (95% CI: 3.4–4.2) 

and Omicron was 3.2 days (95% CI: 2.9–3.5). Restricting 
to nine studies [29–31, 33, 43, 48, 52–54] that reported 
serial intervals for both Delta and Omicron, the pooled 
mean serial interval for Delta was 4.2 days (95% CI: 3.5–
4.9) and Omicron was 3.2 days (95% CI: 2.7–3.8) (Figure 
S2). Restricting to studies at low risk of bias, mean serial 
interval for Delta was 4.0 days (95% CI: 3.5–4.5) (14 stud-
ies [29–31, 33, 34, 38, 39, 42, 46–49, 52, 54]) and Omi-
cron was 3.3  days (95% CI: 2.9–3.7) (14 studies [29–31, 
33, 36, 40, 48, 50–54, 56, 57]).

Examining specific Omicron subvariants, mean serial 
interval was 3.3 days (95% CI: 2.8–3.7) for BA.1 (11 stud-
ies [30–33, 36, 40, 41, 48, 52, 53, 58]), 2.9 days (95% CI: 
2.7–3.1) for BA.2 (6 studies [36, 50, 52, 53, 55, 56]), and 
2.3 days (95% CI: 1.6–3.1) for BA.5 (3 studies [51, 57, 
59]). Excluding one study of generation time [57], serial 
interval for BA.5 was 2.3  days (95% CI: 1.4–3.1). One 

Fig. 1  PRISMA Flow Diagram
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Fig. 2  Forest plot of serial interval estimates for Delta and Omicron variants. Primary case symptom onset dates are provided for each study. Mean 
serial intervals and 95% confidence intervals are shown on the right
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study [51] reported mean estimates for BA.4 of 2.8 days 
(95% CI: 1.5–6.7) and BA.2.12.1 of 4.4 days (95% CI: 2.6–
7.5). Estimated mean serial interval was 3.2 and 3.1 days 
for household and community transmission for Omicron, 
whereas mean serial interval was slightly shorter for the 
community setting for Delta (3.6 days, 95% CI: 3.0–4.2) 
than the household setting (4.2  days, 95% CI: 4.1–4.3) 
(Figure S3).

Discussion
Estimated serial intervals for Delta (3.9  days, 95% CI: 
3.4–4.3) and Omicron (3.2  days, 95% CI: 2.9–3.5) were 
shorter than serial intervals reported for Alpha (5.2 days, 
95% CI: 4.87–5.47) [21] and the original wild-type vari-
ant (5.2 days, 95% CI: 4.9–5.5 [19]; and 5.2 days, 95% CI: 
4.4–6.0 [20]). Our estimates were also shorter than serial 
intervals for respiratory syncytial virus (7.5 days), severe 
acute respiratory syndrome (SARS) (8.4 days), and Mid-
dle East Respiratory Syndrome (MERS) (12.6  days), but 
longer than the serial interval for influenza A(H3N2) 
(2.2  days) [60, 61]. Mean serial interval for Omicron 
subvariants BA.2 (2.9  days, 95% CI: 2.7–3.1) and BA.5 
(2.3  days, 95% CI: 1.6–3.1) were shorter than that of 
BA.1 (3.3 days, 95% CI: 2.8–3.7), suggesting serial inter-
vals may be shortening over time. A recent conference 
abstract that was not included in this analysis (it did not 
report SD, number of case pairs, and did not provide the 
underlying data) of the Virus Watch study in England 
and Wales reported an even shorter mean serial interval 
for the Omicron BA.5 subvariant of 2.02 days (95% CrI: 
1.26–2.84) [62]. In the absence of vaccines, the shorter 
the serial interval of the virus the more difficult it is to 
mitigate the rapid generation of secondary cases [63].

Shorter serial intervals also affect the estimation of 
epidemic transmissibility parameters such as the effec-
tive reproduction number, Rt, defined as the average 
number of individuals infected by a single infected case 
in a large population on day t. Real-time estimation of 
Rt is important for evaluating the effectiveness of public 
health measures (e.g., vaccination, isolation, quarantine) 
and determining whether current public health meas-
ures need to be intensified [64–66]. One study demon-
strated that modeling with time-varying serial intervals 
more accurately estimated Rt compared to a single static 
serial interval, and advised using caution when apply-
ing serial interval estimates to different settings and 
time periods [18]. A meta-analysis reported pooled 
effective reproduction numbers for Omicron subvari-
ants BA.1 and BA.2 of 3.22 (95% CI: 2.31–4.14) and 5.04 
(95% CI: 4.33–5.75); the review included one study for 
BA.5 which reported a Rt of 5.22 (95% credible inter-
val: 4.65–5.79) [67]. Serial intervals can become shorter 

during the course of an epidemic due to the synergy of 
multiple factors, e.g., behavioral changes, case isolation, 
improved contact tracing systems, nonpharmaceutical 
interventions, viral mutations, and susceptible deple-
tion among close contacts [17, 63, 68–70]. The increas-
ing growth rate and more rapid transmission cycles 
mathematically associated with shortened serial inter-
vals can challenge the healthcare system since contact 
tracing needs to keep up with the rapid replacement of 
case generations.

Estimated serial interval for Delta was slightly shorter 
than the incubation period reported for Delta (4.4 days; 
95% CI, 3.8–5.1 days) from a systematic review and meta-
analysis, whereas serial interval for Omicron was nearly 
identical to the incubation period (3.4 days; 95% CI, 2.9–
4.0 days) [7]. When the serial interval is shorter than the 
incubation period, that suggests pre-symptomatic trans-
mission has occurred, whereas serial intervals longer 
than the incubation period suggest most transmission 
occurred after symptom onset in a primary case [71]. 
Our systematic review included different studies than 
the review of incubation period, so the estimates are not 
directly comparable because of between-study heteroge-
neity. Serial intervals strongly depend on human behavior 
and can decrease concomitant with increasing interven-
tions [18]. We found a slightly shorter serial interval for 
community transmission of Delta than household trans-
mission, which could be attributed to improved nonphar-
maceutical interventions such as rapid isolation of cases 
and thorough contact tracing [18, 72].

This study had several limitations. First, there was 
moderate heterogeneity for Delta and Omicron serial 
interval estimates, which may be attributed to differ-
ences in study design, study period, infection incidence, 
population characteristics, human behavior, and ana-
lytic methods. Several studies fitted positive distri-
butions like Gamma and Weibull that do not include 
negative serial intervals. However, seven studies [32, 
36, 46, 49–51, 54] with non-positive serial interval 
data reported shifting the data by adding several days 
to each serial interval in order to fit the Gamma or 
Weibull distributions. Second, serial interval may vary 
by age, comorbidity status, vaccination status, or other 
covariates, but that data was not reported in most stud-
ies precluding meta-analysis. For example, one study 
included in this review found the mean serial interval 
for Omicron to be two days shorter from child primary 
cases than adult primary cases which may be associated 
with lower vaccination uptake in children or behavioral 
factors [32]. Third, precise ascertainment of symptom 
onset dates is critical for serial interval estimation, but 
initial COVID-19 symptoms can be non-specific and 
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unrelated to SARS-CoV-2 infection. Fourth, consist-
ent with other systematic reviews of serial intervals for 
SARS-CoV-2 [19, 20], our analysis only included clini-
cal serial intervals characterized by symptom onset 
dates. Our estimates for serial intervals thus may not 
reflect generation times involving asymptomatic pri-
mary cases, as studies suggest viral shedding from 
asymptomatic carriers may differ from symptomatic 
carriers [73]. Disregarding the time scale of asympto-
matic transmission can bias reproduction number esti-
mation [74]. More specifically, R0 will be overestimated 
if asymptomatic cases have shorter generation intervals 
than symptomatic cases, whereas R0 will be underesti-
mated if they have longer generation intervals [74]. A 
possible alternative is to use diagnostic serial intervals, 
or the time between diagnosis dates of primary and sec-
ondary cases, which are defined for asymptomatic cases 
and have been proposed as a more objective measure 
than onset of symptoms [69]. Nevertheless, none of the 
studies we collected contain data on diagnostic serial 
intervals. Fifth, despite studies reporting careful selec-
tion of linked primary/secondary case pairs, exposure 
from additional unknown or asymptomatic sources 
may have occurred. Sixth, only two included studies 
reported adjusting for right truncation—the selection 
bias such that cases with shorter incubation periods 
are more likely to be included in the study. Seventh, our 
study included BA.1, BA.2, BA.2.12.1, BA.4, and BA.5 
Omicron subvariants, but more recent subvariants may 
have different serial intervals. Eighth, to increase speed 
of the review process, a single reviewer was respon-
sible for title/abstract screening, full text screening, 
and the risk of bias assessment, consistent with other 
rapid reviews [75]. Having a second reviewer inde-
pendently screen and review articles may have identi-
fied additional studies for inclusion. Notwithstanding 
these limitations, we are unaware of other systematic 
reviews focusing on serial intervals for Delta or Omi-
cron variants.

Serial interval estimates for Omicron were shorter 
than ancestral SARS-CoV-2 variants, which may reduce 
the effectiveness of public health interventions like con-
tact tracing. Additional changes to the serial interval may 
occur as SARS-CoV-2 continues to circulate and evolve. 
Changes to population immunity (due to infection and/
or vaccination) may further modify it.
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