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Abstract 

Background  Although several pathways have been proposed as the prerequisite for a safe phase-out in China, it 
is not clear which of them are the most important for keeping the mortality rate low, what thresholds should be 
achieved for these most important interventions, and how the thresholds change with the assumed key epidemio-
logical parameters and population characteristics.

Methods  We developed an individual-based model (IBM) to simulate the transmission of the Omicron variant in the 
synthetic population, accounting for the age-dependent probabilities of severe clinical outcomes, waning vaccine-
induced immunity, increased mortality rates when hospitals are overburdened, and reduced transmission when self-
isolated at home after testing positive. We applied machine learning algorithms on the simulation outputs to examine 
the importance of each intervention parameter and the feasible intervention parameter combinations for safe exits, 
which is defined as having mortality rates lower than that of influenza in China (14.3 per 100, 000 persons).

Results  We identified vaccine coverage in those above 70 years old, number of ICU beds per capita, and the availabil-
ity of antiviral treatment as the most important interventions for safe exits across all studied locations, although the 
thresholds required for safe exits vary remarkably with the assumed vaccine effectiveness, as well as the age structure, 
age-specific vaccine coverage, community healthcare capacity of the studied locations.

Conclusions  The analytical framework developed here can provide the basis for further policy decisions that incor-
porate considerations about economic costs and societal impacts. Achieving safe exits from the Zero-COVID policy 
is possible, but challenging for China’s cities. When planning for safe exits, local realities such as the age structure and 
current age-specific vaccine coverage must be taken into consideration.
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Background
Since the beginning of the COVID-19 pandemic, China 
implemented the Zero-COVID policy which seeks to 
completely stop community transmission by very strin-
gent interventions like lockdowns, mobility restrictions, 
mass testing, contact tracing, case isolation, close contact 
quarantine, and border quarantine [1, 2]. Although this 
policy successfully enabled the nation to keep the inci-
dence and mortality rate of COVID-19 at very low levels, 
the emergence of the Omicron variant brought new chal-
lenges and opportunities. On one hand, the extremely 
high transmissibility of Omicron made the complete 
control of community transmission almost impossi-
ble and the Zero-COVID policy unsustainable. On the 
other hand, the remarkably reduced risk of severe clini-
cal outcomes among patients infected by the Omicron 
variant, especially among the vaccinated, suggests that it 
was no longer necessary to prevent cases through strin-
gent interventions [3]. Under these circumstances, China 
started to loosen the Zero-COVID policy gradually in 
December, 2022.

Several public health measures were considered as 
the possible way out of the Zero-COVID policy, includ-
ing increasing vaccine coverage in the oldest age groups, 
stockpiling antivirals, and increasing the healthcare 
capacities temporarily for the infected [4]. However, it is 
still not clear which of these options is the most effective 
and to what extent healthcare resources should be pre-
pared in order to maintain an acceptably low mortality 
rate of COVID-19.

A few studies have modelled the transmission of the 
Omicron variant in China [5–7], but they examined the 
resulting incidence and mortality rates of only limited 
combinations of interventions, instead of addressing a 
comprehensive framework for identifying all possible 
intervention combinations as the basis for further policy 
decisions that incorporating considerations about eco-
nomic costs and societal impacts. Furthermore, these 
studies did not take into account that only cases being 
detected by the healthcare or disease surveillance sys-
tems, instead of all cases, can be treated. They usually 
neglected the excessive mortality rates induced by over-
burdened hospitals as well.

Here, we develop an individual-based model and an 
analytical framework to explore if it is possible, and 
what would make it possible, to safely exit the Zero-
COVID policy after considering the population age 
composition and vaccine coverage as well as the com-
munity healthcare capacity. We defined a safe exit as 
keeping the mortality rate lower than that of influenza 
in China (14.3 per 100,000 persons) [8], a common res-
piratory illness with which COVID-19 is usually com-
pared. We chose to compare the mortality rate instead 

of the infection fatality rate (IFR), since mortality rate 
reflects not only the virulence, but also the transmis-
sibility of the pathogen. The mortality rate can still be 
considerable, when the transmissibility is high and a 
large proportion of the population is infected, even if 
the IFR is low. Our model is able to account for waning 
vaccine-induced immunity, increased mortality rates 
when hospitals are overburdened, and reduced trans-
mission when self-isolated at home after testing posi-
tive. We first examined the results for China as a whole, 
then examined three representative cities Shanghai, 
Shenzhen, and Shiyan which differ in healthcare capac-
ity (Table S1), age structure (Fig. S1), and age-specific 
vaccine coverage (Fig. S2).

Methods
Synthetic population for China and the three 
representative cities
We first generated a synthetic population of 500,000 
individuals to represent the age composition and vac-
cine coverage at each location. Sensitivity analyses with 
population sizes of 1, 2, and 5 million showed that the 
median mortality rate is insensitive to the size of the syn-
thetic population (Fig. S3). We considered a total of 16 
age groups (0–4, 5–9, …, 70–74, and above 75 years old) 
and 4 vaccine dose groups (0–3 doses). For each location, 
we first assigned individuals to an age group with prob-
abilities proportionate to the share of each age group in 
the general population of that location in 2020 (Fig. S1). 
We then assigned each individual a vaccine dose group 
according to probabilities proportionate to the dose-spe-
cific vaccine coverage in that age group for that location 
(Fig. S2). Besides age composition and vaccine cover-
age, we also assumed that the availability of healthcare 
resources varied with location (Table S1).

We assumed that the social contact pattern only 
depends on age but not vaccination status. We obtained 
the raw social contact matrices between age groups for 
all and only home settings from a survey conducted in 
Shanghai in 2017 before the pandemic and smoothed 
them with 8-dimension tensor-product spline bases as 
in previous literature [9, 10]. Fig. S4 shows the smoothed 
contact matrices for all and only home settings. We 
assumed that the contact patterns after the end of Zero-
COVID policy returned to the level before the pandemic. 
We further assumed that once identified, the cases would 
self-isolate at home and have less contacts with their 
family members, so their contact rates are only 20% of 
the average contact rate in home setting [11]. We also ran 
a sensitivity analysis in which we assumed no reduction 
in the home contact rate after detection (No self-isolation 
scenario in Table S2).
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Model description
A discrete-time individual-based model was developed 
to simulate the transmission dynamics of the Omicron 
variant in the synthetic population and the disease pro-
gression of each case, given their age group, vaccination 
status, antiviral treatment usage, and place of recovery 
(home, hospitals, or ICU). All individuals were consid-
ered to be susceptible at the beginning of the simulation, 
given the low cumulative prevalence before December, 
2022 in China [12, 13].

Individuals were partitioned into nine epidemiologi-
cal states (Fig.  1). We assumed that hospital beds were 
needed to care for severe cases, while ICU beds were 
needed for critical cases. Susceptibles can be infected 
through contacts with asymptomatic, presymptomatic, 
and mild cases, but not severe and critical cases, since 
they are highly likely to be identified and isolated due to 
their obvious symptoms. Asymptomatic and presympto-
matic cases can be identified through screenings before 
hospital admissions for non-COVID conditions, while 
symptomatic cases can be identified through at-home 
rapid antigen testing. We assumed a detection rate of 1.5 
percent for asymptomatic and presymptomatic cases [14] 
and 75 percent for symptomatic cases by assuming a full 
coverage of rapid antigen tests with a sensitivity of 0.75 
[15]. We further used a 75 percent coverage in a sensitiv-
ity analysis (75% testing scenario Table S2).

We assumed that 0.6 cases were imported to the syn-
thetic population each day, according to the per capita 
importation rate to Hubei in early December, 2022 (Dr. 
Yeqing Tong, personal communication, 2022 Dec 5). We 
simulated the transmission dynamics for a whole year 
(365 days) after the first importation at a time step of 4 h 
(1/6 day). At each time step, we first estimated the force 
of infection �i,t for each susceptible i at time t, which rep-
resents the rate at which i moves from the susceptible to 

the exposed group. The force of infection �i,t depends on 
mask coverage, social contact pattern, vaccine coverage 
and waning of vaccine-induced immunity of the commu-
nity, as well as the transmission probability per contact 
of the pathogen, β0 . We calibrated β0 to have a R0 of 7 
for the Omicron variant according to previous studies 
[7, 16]. We further set R0 to 5 and 10 in the sensitivity 
analysis (R0 = 5 and R0 = 10 scenario Table S2). The details 
about estimating �i,t are presented in S1 Text. We then 
determined if this individual was infected in this time 
step through sampling from a Bernoulli distribution with 
a success probability of �i,t.

The disease progression of each individual (e.g., from 
Exposed to Asymptomatic or Presymptomatic, from 
Mild to Severe, Critical or Recovered) was sampled from 
categorical distributions with transition probabilities 
depending on age group, vaccination dose, drug intake 
and place of recovery. Younger age groups (Table S3) 
and individuals with more vaccine doses (Table S4) were 
assumed to have a lower probability of proceeding to 
symptomatic, severe, critical, and deceased cases accord-
ing to a previous study [5]. Taking antiviral treatments or 
being cared by healthcare teams can further reduce the 
probability of proceeding to severe clinical outcomes 
(See Interventions for details). The duration of time spent 
in each state for each individual was sampled from the 
Gamma distribution (Table S5) and was assumed to be 
independent of age and vaccination status. To account for 
stochasticity, 48 repetitions were run for each simulation. 
The total number of deaths at the end of each repetition 
was recorded to estimate the median mortality rate.

To test the validity of our model, we compared the sim-
ulated age-specific IFRs from the model based on Shang-
hai’s age structure and vaccine coverage, with the values 
observed in Shanghai during an Omicron outbreak in the 
spring of 2022 [17]. We assumed a mask coverage of 75 

Fig. 1  Schematic of the individual-based model. The probabilities of proceeding to each compartment downstream of the green compartments 
depends on the individual’s age group and vaccination status (Tables S3, S4 and ST1.2). The proportions of severe and critical cases that die also 
depend on their places of recovery (see details in Interventions). We assumed only compartments with red borders are transmissible
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percent according to a survey [18], and that no hospital 
strains occurred during the period.

Interventions
We examined the impacts of four types of interventions 
with relatively low societal disturbance that could have 
been implemented after the end of the Zero-COVID 
policy, including increasing facial covering, increased 
healthcare capacity (including hospital and ICU beds), 
vaccine coverage, and antiviral treatment coverage. We 
did not include lockdowns, school and workplace clo-
sures, travel restrictions, mass testing, mandatory case 
isolation, and close contact quarantine after contact trac-
ing, because they are less favorable by both the policy 
makers and the general public. The implementation of 
these interventions in the model are summarized below.

Facial covering
Facial covering was required for entering public places 
in China before December, 2022 [19]. We assumed this 
is retained after the end of the Zero-COVID policy due 
to its low economic and societal impacts. According to a 
recent study in community settings, a mask coverage of 
pm can reduce the transmission by 1-0.75Pm [20]. There-
fore, we scaled down the force of infection to  0.75Pm  of 
its original value in the simulation (see the first term in 
the equation for force of infection in S1 Text). Here, the 
range of the mask coverage (the parameter Mask) is set to 
be 0 to 1, representing that 0 to 100 percent of the popu-
lation wear masks.

Healthcare capacity
Once identified, we assumed that severe and critical cases 
are admitted to hospital and to ICU beds, respectively. 
If no hospital beds are available for severe cases, they 
remain at home, but their mortality rate will increase to 
10 times the mortality rate of those hospitalized. We used 
mortality rates of 2 and 5 times in the sensitivity analy-
sis (2*Hosp. Mort. and 5*Hosp. Mort. scenarios in Table 
S2). If no ICU beds are available for critical cases, they 
are always assumed to die, since their mortality rate is 
already as high as 30 to 40 percent even when having the 
needed ICU care [21–23]. For each location, the numbers 
of ICU and hospital beds per capita (the parameters ICU 
and Hospital) are assumed to range between the current 
values at that location (Table S1) to the worldwide maxi-
mum (48 ICU beds per 100,000 [24] and 14.4 hospital 
beds per 1000 [25]).

Vaccination
Inactivated vaccines are used in China. Although their 
ability in preventing infections caused by the Omi-
cron variant is limited, their effectiveness in preventing 

severe clinical outcomes is high [26]. The first, second, 
and booster doses reduce the susceptibility to infection 
by only 3.1, 7.0, and 13.1 percent, respectively (S1 Text); 
while they reduce the overall probability of death by 54.6, 
74.8 and 88.8 percent, respectively (Tables S3) [5]. The 
vaccine-induced immunity is assumed to wane across 
time at a constant rate until a stable rate is reached (S1 
Text) [27]. We assumed that the first and second doses 
have almost no impact on the probability of onward 
transmission from a recipient, while the booster can 
reduce it by 5.3 percent (S1 Text) [5]. To examine the 
effect of increasing vaccination coverage in different age 
groups on the probability of safe exit, we varied four 
parameters, ΔVac. 0–19, ΔVac. 20–59, ΔVac. 60–69, and 
ΔVac. 70above, representing the proportion of individu-
als having one additional dose in age groups 0–19, 20–59, 
60–69, and above 70, between 0 and 1.

Antiviral therapy
The neutralizing antibody combination therapy BRII-
196/BRII-198 and the combination antiviral therapy 
nirmatrelvir/ritonavir tablets were recently approved 
in China although not widely used yet. They can be 
prescribed to mild cases above 12  years of age and are 
assumed to be able to reduce hospitalization and death 
rate by about 80 percent [5]. The coverage of antiviral 
therapy (the parameter Antiviral) is assumed to range 
between 0 to 1 in the eligible population.

Possibility of a safe exit
To examine the possibility of keeping the mortality rate 
of COVID-19 below 14.3 per 100,000 persons (referred 
to as safe exit hereinafter), we first ran the model under 
the best-case intervention scenario, when all parameters 
were set to their upper bounds, then the worst-case sce-
nario, when all parameters were set to their lower bounds 
(see detailed values in S2 Text). A mortality rate higher 
than 14.3 per 100,000 persons under the best-case sce-
nario suggests that a safe exit is impossible for the loca-
tion without more stringent interventions like mass 
testing and contact tracing, while lower than 14.3 per 
100,000 persons under the worst-case scenario suggests 
that the current healthcare capacity and vaccine coverage 
are enough for a safe exit and no further action will be 
needed.

To assess sensitivity, we repeated the analyses with 
different coverages of rapid antigen tests, transmission 
intensities, vaccine effectiveness, relative susceptibility of 
children to adults, relative infectivity of asymptomatic to 
symptomatic cases, and increases in mortality rate when 
not having the required beds (Table S2). Only sensitivity 
scenarios that end in safe exits under the best-case sce-
nario but not the worst-case scenario, and having median 
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mortality rates differ significantly from the baseline sce-
nario, are included in further analyses.

Importance of different interventions in determining 
the mortality rate
To examine the impact of each intervention on con-
trolling the mortality rate of COVID-19, we first ran-
domly sampled 100 combinations of the 8 intervention 
parameters using the maximin Latin Hypercube sam-
pling method, which facilitates efficient exploration of 
the parameter space with a small number of samples 
[28]. Then for each intervention parameter set, we ran 
the simulation 48 times to account for stochasticity and 
estimated the median mortality rate at the end of each 
simulation. Next, we used the median mortality rate 
as the dependent variable together with the 100 sets 
of random samples as the independent variables to fit 
Gaussian process (GP) models with constant means and 
quadratic exponential kernels. The GP model assumes 
that all samples, including the observed and unobserved 
samples, are jointly multivariate normal, and the covari-
ance between them can be characterized by a predefined 
function of the distances between them [29]. The pre-
diction for an unobserved sample can be made based 
on the covariances between pairs of two observed sam-
ples, and between pairs of one observed and this unob-
served sample. GP models were used here as emulators 
of the original computationally intensive simulations due 
to their ability to make predictions with uncertainty in a 
significantly reduced amount of time [30]. For instance, it 
takes about 15 min on a cluster with 48 cores of 3.0 GHz 
Intel Xeon Gold 6248R CPU to obtain the median mor-
tality rate of a specific parameter set through simula-
tions, while only less than one second using a fitted GP 
model. To ensure that the GP models make accurate 
predictions, we used a ten-fold cross-validation design. 
We first divided all data into 10 subsets, each with 10 
sets of intervention parameters and their correspond-
ing median mortality rates, then used every combination 
of 9 of these to train the model and the one remaining 
as an out-of-bag testing samples to validate the model. 
After confirming the predictive power of the fitted mod-
els on the out-of-sample testing datasets, we again refit-
ted the models with the whole dataset and used them to 
examine the importance of each intervention parameter 
through the permutation importance procedure [31]. 
In that procedure, we first randomly shuffled the values 
of each intervention parameter one at a time and used 
them together with the other seven unchanged param-
eters, to predict the median mortality rate. We then esti-
mated the permutation importance score of the shuffled 
parameter as increase in the root mean square prediction 
error when compared with the predictions made by the 

original parameter values. A larger permutation impor-
tance score suggests that the shuffled parameter is more 
important, since a larger increase in the prediction error 
suggests that the model relies on this parameter to make 
accurate predictions.

Feasible intervention combinations for a safe exit
We tried to identify the feasible intervention combina-
tions for a safe exit through examining the predictions 
made by GP models on a fine grid of the intervention 
parameters. However, a major drawback of the GP model 
is that its predictions reverse quickly to the mean when 
extrapolating far away from all known data points. Since 
the mortality rates estimated from the previously sam-
pled 100 sets of intervention parameters rarely reached 
the desired mortality rate of lower than 14.3 per 100,000 
persons (Fig. 4A), we need to obtain more samples from 
a reduced parameter space that result in mortality rates 
closer to the desired range. The methods for accomplish-
ing this was described in S2 Text. After obtaining the new 
samples, we fitted GP models to these new samples, and 
made predictions on the fine intervention parameter grid 
to identify the feasible intervention combinations for a 
safe exit. In order to address the uncertainties inherent 
in the stochastic nature of the simulation model, we ran-
domly sampled 10 sets of simulated results and fitted a 
GP model to each set of them. Additionally, to account 
for prediction uncertainty of the GP models, we gener-
ated 100 random samples from the predicted distribution 
at a new data point using each of these 10 GP models. 
We then combined these 1000 samples to estimate the 
95% credible interval (CI) of the prediction. We provided 
an interactive interface for the model outputs at https://​
canal​cheng.​shiny​apps.​io/​COVID_​exit/. To visualize and 
provide an intuitive understanding of the feasible inter-
vention space, we identified the three most important 
intervention parameters in the reduced parameter space 
and fitted simplified Gaussian process models to them 
with the median mortality rate. Finally, predictions on 
fine grids of these three parameters were made to visual-
ize the feasible parameter space as heatmaps.

Results
Model results
The overall IFR from the simulation was 0.08% (95% CI: 
0.07–0.08%), very close to its observed value of 0.09% 
(95% CI: 0.09–0.10%). The age-specific IFRs output by 
the simulation show a similar magnitude and trend as 
the observed data (Fig. 2) [17]. They were both very low 
below 60  years old but increased rapidly after that. The 
large difference in the infection fatality rates of the oldest 
age group between the simulation and the observation is 
likely caused by the way the age groups were divided. The 

https://canalcheng.shinyapps.io/COVID_exit/
https://canalcheng.shinyapps.io/COVID_exit/


Page 6 of 11Cheng et al. BMC Infectious Diseases          (2023) 23:390 

oldest age group in our simulation is comprised of indi-
viduals over 75 years old, while that in the observed data 
is those over 80  years old. Given that individuals aged 
75–79 years old contributed 39.8% of the population over 
75 years old [32] and the IFR increases exponentially with 
age [33], it is expected that IFR for the oldest age group in 
our simulation is significantly lower than that of the old-
est age group in the observed data.

Possibility of a safe exit
Baseline scenario
Under the best-case intervention scenario (S2 Text), 
the median mortality rates are 8.0, 9.5, 2,2, and 7.9 per 
100,000 persons for China, Shanghai, Shenzhen, and 
Shiyan, respectively, while under the worst-case inter-
vention scenario (S2 Text), they are 83.7, 150.8, 17.8 and 
44.0, respectively. These results suggest that although it 
is possible for all four locations to have a mortality rate 
comparable to that of influenza without very stringent 
interventions, improvements will be needed on the cur-
rent healthcare capacity and coverages of mask, vaccine 
and antiviral treatment.

Sensitivity analyses
The distribution of the mortality rate is sensitive to only 
vaccine effectiveness (VE), but not the coverage of rapid 
antigen test, transmission intensity (R0), susceptibility of 
children, infectivity of asymptomatic case, reduction in 
home contact rate after detection, and changes in mortal-
ity rate when having no access to hospital beds (S3 Text). 
Therefore, we only kept different VE scenarios in further 
sensitivity analyses. More specifically, we kept the opti-
mistic VE scenario for all locations and pessimistic VE 
scenario for only Shenzhen, since safe exits can barely 

be achieved for the other three locations even under the 
best-case intervention scenario when assuming pessimis-
tic VEs (S3 Text).

Importance of each intervention in determining 
the mortality rate
Baseline scenario
Under the baseline scenario, 7, 2, 99, and 40 out of the 
100 random samples from the full parameter space result 
in safe exits for China, Shanghai, Shenzhen, and Shiyan, 
respectively; with average median mortality rates of 29.3, 
57.2, 5.72, and 16.4 per 100,000 persons (Fig. 3A). Results 
from the tenfold cross-validation suggest that the fitted 
Gaussian process emulators have strong and robust pre-
dictive power, even on the out-of-bag samples that were 
not used in training the model (Fig. S5). The GPs fitted to 
the full datasets were used to examine the importance of 
each intervention in determining the mortality rate. For 
all locations, ΔVac. 70above, Antiviral, and ICU are the 
most important intervention parameters in determining 
the mortality rate, while Hospital and ΔVac. 0–19 are the 
least important (Fig.  3B). The permutation importance 
score of the same intervention parameter for Shanghai 
is usually greater than that of other locations, since per-
mutation importance measures the amount of increase 
in the root mean squared prediction error and Shanghai 
tends to have a larger prediction error due to its higher 
mortality rate (Fig. 3A).

Sensitivity analyses
Results under the optimistic VE and pessimistic VE sce-
narios are shown in S3 Text. A majority of the 100 ran-
dom samples resulted in median mortality rates that 
are in the desired range for Shenzhen under both the 

Fig. 2  Age-specific infection fatality rates estimated from the simulation (blue triangles) and observed in Shanghai during an Omicron outbreak in 
the spring of 2022 (red dots) [17]
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optimistic VE and pessimistic VE scenarios, and for Shi-
yan under the optimistic VE scenario. Therefore, we did 
not reduce the parameter space for them, but only the 
spaces for China and Shanghai. Under all the studied VE 
scenarios, ΔVac. 70above, Antiviral, and ICU are still the 
most important parameters.

Feasible intervention combinations for a safe exit
Baseline scenario
Under the baseline scenario, 71, 77, and 89 out of the new 
100 sample sets from the reduced parameter space (see 
methods and the new ranges in S2 Text) result in safe 
exits from the Zero-COVID policy for China, Shanghai, 
and Shiyan, respectively. We did not reduce the param-
eter space for Shenzhen, since its median mortality rate 
was already low (Fig. 3A and S2 Text).

The probability density curves of the median mortal-
ity rate in the reduced space are shown in Fig. S6 and 
the validations of the GP models are shown in Fig. S7. 
As expected, the resulted median mortality rates were 
all very close to the desired range (Fig. S6) and the fitted 
GP models can make accurate predictions (Fig. S7). The 
permutation importance of each intervention parameter 
in the reduced parameter space is shown in Fig. S8. The 
three most important parameters for China and Shiyan 

are still ICU, Antiviral and ΔVac. 70above, while those 
for Shanghai are ICU, ΔVac. 20–59 and ΔVac. 60–69. We 
noticed that ΔVac. 70above is not among the top three 
for Shanghai, since the predefined ranges of the increase 
of the vaccine coverage for those above 70 years old are 
already very narrow (S2 Text). An interface to these full 
models is provided at https://​canal​cheng.​shiny​apps.​io/​
COVID_​exit/ and can be used to predict the median 
mortality rate of any combinations of intervention 
parameters interactively.

The simplified GP models fitted with only the three 
most important parameters still present reasonable 
predictive power on the out-of-bag samples (Fig. S9), 
with Pearson’s correlation coefficients of at least 0.93 
across scenarios and locations. We used them to make 
predictions on a fine grid of the three most important 
parameters, and estimated the minimal number of ICU 
beds per 100,000 persons (colors of the pixels in Fig. 4) 
required for each combination of the other two impor-
tant intervention parameters (x- and y-axis of Fig.  4) 
for visualizing the feasible region. There are clear trade-
offs between the three intervention parameters. As the 
value of one parameter increase, the minimal values of 
the other two required for a safe exit decrease. Reaching 
safe exits are possible, although extremely challenging 

Fig. 3  Results of the 100 samples from the full parameter space under the baseline scenario. A Median mortality rates (colored dots) and their 
probability density distributions (colored curves) from the simulations. Black dots on the top of the panel show the median mortality rate from 
the simulations under the best-case (the dot on the left) or the worst-case (the dot on the right) intervention scenario (S2 Text). Vertical dashed 
line shows the mortality rate of influenza (14.3 per 100,000 persons). B Permutation importance of each intervention parameter for predicting the 
median mortality rate (colored bars). The permutation importance of a parameter represents the amount of increase in the root mean squared 
prediction error when the randomly shuffled values of this parameter, together with the unchanged values of the other parameters, were used to 
make the prediction

https://canalcheng.shinyapps.io/COVID_exit/
https://canalcheng.shinyapps.io/COVID_exit/
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for China, Shanghai, and Shiyan, which requires very 
high vaccine coverage, antiviral coverage, or number of 
ICU beds, or all three. However, it is relatively easy for 

Shenzhen, which only requires a 15% antiviral cover-
age, or a 41% increase in the vaccine coverage among the 
above 70  years old, or increasing ICU beds to 9.73 per 

Fig. 4  Feasible intervention combinations of the three most important intervention parameters by location under the baseline scenario. The color 
of a pixel shows the lowest number of ICU beds per 100,000 persons required for a safe exit, while the x- and y-axis show the other two most 
important intervention parameters. Black solid lines are the contour of the lowest number of ICU beds per 100,000 persons required for a safe exit. 
Note that the x- and y-axis and color schemes vary between panels
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100,000 persons. Note that for Shanghai, a lower bound 
of 0.98 was set for ΔVac. 70above in the reduced space. 
Therefore, besides the three parameters presented in 
Fig. 4B, reaching a safe exit also requires ΔVac. 70above 
to be greater than 0.98 (S2 Text). Figure 4 can be used as 
a tool for identifying possible combinations of interven-
tion parameters that result in safe exits for policy mak-
ers. Further considerations concerning the economic cost 
and societal impacts can be incorporated when making 
decisions.

Sensitivity analyses
The results under other scenarios are shown in S3 Text. 
When assuming a high VE (optimistic VE scenario), it is 
possible for Shenzhen to achieve a safe exit even with the 
current vaccine coverage, number of ICU beds per cap-
ita, and without antiviral treatment.

Discussion
As COVID-19 is likely to become an endemic disease 
with an acceptable IFR, moving on from the Zero-
COVID strategy was inevitable and is currently in 
progress. Hence, careful plans are needed to avoid hos-
pital capacity strains and excessively high mortality rates. 
Although increasing the vaccine coverage of the elderly 
population, expanding healthcare and testing capacities, 
and stockpiling antiviral treatments have been proposed 
as possible pathways to accomplish this, it has not been 
studied quantitatively in order to determine thresholds 
of these interventions required to ensure a safe transi-
tion. We developed an individual-based model to exam-
ine the importance of various interventions and delineate 
the feasible intervention parameter space for a safe exit, 
defined as achieving a mortality rate lower than that of 
influenza, or 14.3 per 100,000 persons per year. The 
results show that the possibility of safe exits depend 
highly on the vaccine coverage of those above 70  years 
old, coverage of antiviral treatment, and the number 
of ICU beds per capita, as well as the vaccine effective-
ness (VE), age structure, and vaccine coverage of the 
population.

Our results that achieving safe exits without stringent 
interventions are exceptionally challenging are consist-
ent with previous modelling studies for the Omicron 
variant in China. In Cai et  al. [5] which assumes a low 
reproductive number of 3.9, a high vaccine effectiveness 
as the optimistic VE scenario in our study, and no exces-
sive mortality rate when hospitals are strained, maintain-
ing the COVID-19 deaths below that of influenza would 
require that 100% of symptomatic cases receive antiviral 
treatment, regardless of their ascertainment status. In 
Leung et al.[7], which assumes a reproductive number of 
8.3, a vaccine with higher effectiveness and a slower wane 

of the protection against hospitalizations and deaths than 
our optimistic VE scenario, having a 85% coverage for the 
fourth vaccine dose and a 60% antiviral treatment cover-
age still ends in a mortality rate more than 3 times the 
influenza mortality rate.

In the sensitivity analyses, we found that the impact of 
the proportion of symptomatic cases being rapid antigen 
tested (75% testing scenario) were insignificant under 
both the best- and worst-case intervention scenarios 
although it was more noticeable under the former than 
the latter. This inconsistency is likely due to the differ-
ence in antiviral coverage under these scenarios. Under 
the best-case intervention scenario, when all ascertained 
cases are treated by the antiviral drugs, a reduction in the 
number of cases due to decreased testing coverage leads 
to a decrease in the number of people treated and there-
fore an increased mortality rate; while under the worst-
case intervention scenario, when antiviral treatment are 
not available, the impact of testing coverage is minimal. 
The impact of R0 on the mortality rate is insignificant 
(R0 = 5 or R0 = 10 scenarios). R0 affects the median mor-
tality through affecting the transmission intensity. How-
ever, since the R0 values we examined here are already 
high, that is to say the proportions of individuals ulti-
mately infected are already high, the relative increase in 
the incidence rate and therefore the mortality rate is low. 
The proportion of people being infected at the end of the 
simulation is 0.92 to 0.98 when R0 is set to 5, which only 
increased to 0.993 to 0.998 when R0 is set to 10. That rela-
tive susceptibility of children and adolescents and the rel-
ative infectivity of asymptomatic cases (Lower Child. Sus. 
and Lower Asymp. Inf. scenarios) have little impact on 
the mortality rate is not surprising, since they were used 
to estimate β0 , the transmission probability per contact. 
Their impacts on the transmission dynamics are can-
celled out when the value of R0 is predefined. The impact 
of changes in the home contact rate after ascertainment 
on the mortality rate is limited (No Self-Isolation sce-
nario), because only a very small proportion of cases 
were identified and self-isolated. The amount of increase 
in mortality rate when the required hospital beds are 
not available does not affect the mortality rate except for 
Shanghai under the worst-case scenario (5* and 2*Hosp. 
Mort. scenarios), since hospital beds are sufficient.

Our result that the number of ICU beds per capita, but 
not the number of hospital beds per capita, played an 
important role in determining the mortality rate is con-
sistent with the conclusion of a previous study [5]. That 
study found that peak hospital bed demands are always 
below the number of hospital beds available for respira-
tory illness in China under various intervention scenar-
ios, but the peak ICU bed demands are only lower than 
the current ICU capacity when the effective reproduction 
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rate is low, the effectiveness and the coverage of the anti-
viral treatment are high, or heterologous booster with 
subunit vaccines were used. Our result that the coverage 
of antiviral treatment is among the most important inter-
ventions in determining the morality rate is also consist-
ent with theirs, although our assumption about who is 
eligible for antiviral treatment differs from theirs. They 
assumed that all symptomatic cases over 12 years old are 
eligible for antiviral treatments, regardless of their ascer-
tainment status, while we made a more realistic assump-
tion that only detected case will be treated.

Our study has several limitations. First, our defini-
tion of a safe exit as having a mortality rate lower than 
that of influenza is arbitrary, although influenza is the 
disease that COVID-19 is most often compared with. 
However, the method developed here could be easily 
adapted to examine the results for other definitions of 
safe exits. Secondly, due the lack of individual-based 
census data required by the population synthesis algo-
rithms to generate household structure [34, 35], we 
were not able to include household structure in the syn-
thetic population. We assumed that the cases isolated 
at home still had contact with anyone in the synthetic 
population, but at rates estimated in the home setting, 
not the sum across all settings (Fig. S4). This assump-
tion may result in an overestimation of the case count 
since cases have access to more susceptibles under this 
assumption which makes it harder to run out of suscep-
tibles and thereby end the transmission. However, the 
impact of not simulating the household structure on 
the mortality rate should be negligible. As in the 75% 
testing and no self-isolation scenarios, since the ascer-
tained cases consists only a very small proportion of all 
cases, their impact on the overall transmission is lim-
ited. Furthermore, we did not consider the impact of 
different demography on contact patterns, since accord-
ing to our preliminary examination, its impact on the 
distribution of mortality rate is negligible. Thirdly, our 
assumption that the social mixing pattern would return 
to its pre-pandemic levels immediately after the end of 
the Zero-COVID policy may lead to overestimation of 
the mortality rates, since according to Google Mobility 
Trends, the amount of time people spend in residen-
tial areas is still higher, while the number of visitors to 
workplaces, transit stations, and retails are still lower 
than the pre-pandemic level long after the interven-
tions are lifted [36]. However, since we calibrated to 
the model to have a predefined R0, a lower contact rate 
should not affect the final incidence and mortality rates, 
since the estimated β0 will increase in this case to match 
the predefined R0. Fourthly, we only examined a limited 
set of interventions because of their feasibility in China. 

For example, we left out possible effective interventions 
such as using subunit vaccines as the third or fourth 
dose after two doses of inactivated vaccines as the pri-
mary vaccinations, because they are still not available in 
China. Lastly, our study only focuses on China and the 
results might be different for other places and countries. 
However, the analytical framework can be modified eas-
ily to examine the results for other places and other dis-
eases as well.

Conclusions
In conclusion, through the individual-base model and 
the analytical framework we developed, we identified the 
importance of increasing vaccine coverage in the older 
age groups, antiviral coverage and the number of ICU 
beds per capita in determining the median mortality rate 
and provided combinations of them that can result in safe 
exits for China as a whole and three representative cit-
ies. The exact thresholds for these interventions ensuring 
safe exits depends on the vaccine effectiveness, and the 
age structure and current vaccine coverage of the stud-
ied population. The model developed here can be easily 
extended to other definitions of safe exits and applied to 
other locations for developing transition plans based on 
local context.
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