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Abstract 

Background  Non-pharmaceutical interventions (NPIs) were adopted in Belgium in order to decrease social interactions 
between people and as such decrease viral transmission of SARS-CoV-2. With the aim to better evaluate the impact of 
NPIs on the evolution of the pandemic, an estimation of social contact patterns during the pandemic is needed when 
social contact patterns are not available yet in real time.

Methods  In this paper we use a model-based approach allowing for time varying effects to evaluate whether mobility and 
pre-pandemic social contact patterns can be used to predict the social contact patterns observed during the COVID-19 
pandemic between November 11, 2020 and July 4, 2022.

Results  We found that location-specific pre-pandemic social contact patterns are good indicators for estimating social 
contact patterns during the pandemic. However, the relationship between both changes with time. Considering a 
proxy for mobility, namely the change in the number of visitors to transit stations, in interaction with pre-pandemic 
contacts does not explain the time-varying nature of this relationship well.

Conclusion  In a situation where data from social contact surveys conducted during the pandemic are not yet available, 
the use of a linear combination of pre-pandemic social contact patterns could prove valuable. However, translating the 
NPIs at a given time into appropriate coefficients remains the main challenge of such an approach. In this respect, the 
assumption that the time variation of the coefficients can somehow be related to aggregated mobility data seems unac-
ceptable during our study period for estimating the number of contacts at a given time.
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Background
Since the beginning of the COVID-19 pandemic, Bel-
gium has adopted several Non-Pharmaceutical Inter-
ventions (NPIs), including school closures, mandatory 
homeworking and restrictions on the number of con-
tacts, in order to curb the increase in hospital admissions 
and preserve hospital capacity. As NPIs have huge social 
[1, 2] and economic [2, 3] costs, a good comprehension of 
transmission dynamics under these conditions is neces-
sary to predict which NPIs could be the most effective in 
slowing down the transmission of the virus.
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A method commonly used today to study the trans-
mission dynamics of airborne pathogens is the use of 
the so-called social contact hypothesis [4]. Under this 
hypothesis, it is assumed that transmission rates are pro-
portional to contact rates. The social contact hypoth-
esis, adapted to account for age specific differences, 
has been used in several models to predict and under-
stand the COVID-19 pandemic in Belgium [5–8]. These 
authors have used pre-pandemic contact patterns [9–11], 
i.e. data collected before the pandemic when NPIs were 
not in place, to investigate the possible dynamics of the 
COVID-19 pandemic given no social contact patterns 
were available in the initial phase of the pandemic.

Although several studies have demonstrated the abil-
ity of NPIs to reduce contacts [12–17], there is a need 
to evaluate social contact patterns during the pan-
demic when social contact patterns are not yet avail-
able in real time. In this regard, it is necessary to assess 
whether social contact patterns under specific NPIs can 
be inferred from available data, such as location-spe-
cific pre-pandemic contact patterns and freely available 
aggregated mobility data. This is not trivial as not only 
the NPIs but also the epidemiological context of the pan-
demic and the weariness against the NPIs are likely to 
influence people’s social behaviour. A study conducted 
in Belgium between April 2020 and April 2021 shows 
that risk perception and perceived effectiveness of NPIs 
play a role in social contact patterns [18]. Another study 
covering 16 European countries between December 
2020 and September 2021 shows similar results [19]. In 
the absence of readily available data, some models have 
assumed that social contact patterns during and after the 
lockdown can be approximated by a linear combination 
of pre-pandemic social contact patterns in different loca-
tions (e.g. contacts at home, at work, etc) [5–8]. Others 
have assumed that social contact patterns are related to 
the mobility of individuals, and therefore e.g.  Google 
mobility data could be used to scale pre-pandemic con-
tact matrices to pandemic contact matrices [20, 21]. 
Tomori et al. [22] found that both contact behaviour and 
mobility behaviour are needed to capture the full aspect 
of the transmission dynamics of COVID-19 in Germany 
between April 2020 and June 2020. Instead of estimat-
ing contact patterns, other studies have inferred complex 
contact networks from the GPS data of mobile phones 
of a fraction of the population [23–25]. Although these 
high-resolution data appear to be more effective in mod-
eling transmission dynamics [23], they may lead to pri-
vacy issues and GDPR restrictions. For this reason, they 
are likely to be less readily available than publicly avail-
able aggregated mobility data. In this paper, we investi-
gate whether social contact patterns under specific NPIs 
can be obtained from readily available data, i.e., both 

pre-pandemic contact patterns and aggregated mobility 
data.

This study is based on two social contact surveys, 
namely the CoMix survey conducted in Belgium dur-
ing the pandemic [12, 26] and a survey conducted in 
Flanders (Belgium) before the pandemic in 2010-2011 
[10, 11]. In addition Google mobility data is used [27]. 
The Belgian CoMix survey has monitored social con-
tact patterns, stratified by age groups, during more 
than 40 waves of data collection during the COVID-19 
pandemic [12] at different conceptual locations (e.g. 
home, work, school, leisure, transport and other places). 
For the present work, CoMix data collected between 
November 11, 2020 and July 4, 2022 were used. The 
2010-2011 study [10, 11] surveyed social contacts in 
Flanders (Belgium) before the pandemic at the same 
conceptual locations as CoMix. Mobility data from 
Google is openly available, and quantifies the change 
in the number of visitors to different types of loca-
tions over time relative to a baseline (e.g. retail and rec-
reation, grocery and pharmacy, parks, transit stations, 
workplaces). The change in time spent at home is also 
quantified. For the current article, we used the change 
in the number of visitors to transit stations collected 
between November 11, 2020 and July 4, 2022 [27].

A time varying effect model [28] was built to describe 
the relationship between the social contact patterns 
observed during the pandemic and pre-pandemic social 
contact patterns. To examine whether mobility can 
explain the temporal variation in this relationship, a sec-
ond time-varying model was constructed that considered 
the interaction between mobility and pre-pandemic data.

This paper is structured as follows. The data used and 
the statistical methodology are covered in Methods sec-
tion. The results are given in Result section.  Discussion 
section discusses the results and its implications.

Methods
Data
Social contact patterns before the pandemic: The pre-
pandemic contact patterns were obtained from a cross-
sectional diary-based survey of social contacts conducted 
in 2010-2011 in Brussels and Flanders, Belgium. This sur-
vey can be assumed representative of the whole Belgian 
population. Indeed a similar survey conducted in 2006 
considering all the Belgian population showed no statis-
tical differences in social contacts rates with this survey 
which considered only Flanders and Brussels (68% of the 
Belgian population on January 1, 2023) [10]. In the 2010 
survey, 1759 people were asked to detail their social con-
tacts for a single day [10, 11]. Participants were asked 
to describe all contacts made on a given day, the type of 
contact, the location of the contact, and the age of the 
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person contacted, with a contact defined as a face-to-face 
conversation of at least a few words, or a skin-to-skin 
contact. This survey has been used in some recent epi-
demiological models [5–8] and is described in [10] and 
[11]. Based on this survey, the age-specific contact pat-
terns at home, work, transport, leisure, school and other 
places amongst individuals in age groups [0-12), [12,18), 
[18,25), [25,45) [45,65) and 65+ were generated using the 
Socrates tool. This tool allows the extraction and genera-
tion of social contact matrices [7, 29]. Pre-pandemic con-
tacts at leisure and transport were categorised as contacts 
at other places. This is summarised in 4 contact matrices 
and visualised in Fig. 1. A fifth contact matrix depicting 
the sum of the 4 location-specific matrices is also shown 
in Fig. 1.

Social contact patterns during the pandemic: The pan-
demic social contact patterns data were obtained from 
the CoMix survey, a longitudinal online survey on social 
contact patterns set up during the COVID-19 pandemic 
in different European countries [12, 26]. For the present 
study, we only utilize datasets collected in Belgium. These 
datasets are representative of the Belgian population in 
term of age, gender and region of residence. The defini-
tion for contact were similar as the survey of 2010, i.e. 
an in-person conversation of at least a few words, or a 
skin-to-skin contact. Based on this survey, the age-spe-
cific contact patterns amongst individuals in age groups 

[0-12), [12,18), [18,25), [25,45) [45,65) and 65+ were 
obtained at 39 different waves of the survey conducted 
between the period spanning between November 11, 
2020 and July 04, 2022 [12, 26]. The first eight waves of 
data collection in the CoMix survey did not include chil-
dren and are therefore not considered in this work. The 
39 different waves of CoMix data collection considered 
in this work therefore correspond to waves 9 to 47. This 
is summarised with 39 contact matrices and visualised in 
(Additional file 1: Fig. S5). The time period correspond-
ing to each CoMix data collection wave can be visualised 
in Fig. 2. Age specific contact patterns at the same loca-
tions as in the pre-pandemic survey were also obtained 
in order to calculate the number of contacts at each loca-
tion. The selected waves of data collection cover a period 
during which NPIs were in place. However, the strin-
gency index from the University of Oxford [30] shows 
that the strictness of ‘lockdown style’ varied over time 
(Fig.  2). The average interval between two consecutive 
waves of data collection was 2 weeks between Novem-
ber 11, 2020 and March 08, 2022 and 4 weeks between 
March 08, 2022 and July 04, 2022. These intervals were 
not dependent on the NPI in place. Each individual was 
invited every 2 weeks (November 2020 - March 2022) 
and 4 weeks (March 2022-July 2022).

Google mobility data: Google provides data describing 
the change in the number of visitors to a specific location 

Fig. 1  Contact matrices (average number of contacts per day) during pre-pandemic times at different locations (at home (a), work (b), school (c), 
other places (d) and at all locations (e)) based on a survey conducted in 2010-2011  [10, 11] and generated by the Socrates tool [7, 29]
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relative to the amount of total visitors to the same loca-
tion with respect to the baseline, which is the median 
value from the 5-week period Jan 3 - Feb 6, 2020 [27]. For 
example, a value of 0.80 for a specific place would then 
correspond to a decrease of 20% in the number of visi-
tors to that place compared to the baseline period. The 
baseline period corresponds to a relative change of 1. 
The available settings are retail and recreation, grocery 
and pharmacy, parks, transit stations, workplaces, and 
residential. The residential category refers to a change in 
time spent at home rather than a change in the number 
of visitors. We consider that changes in the number of 
visitors to transit stations imply changes in various loca-
tions. For this reason we consider that this setting is the 
most suitable to predict the overall change in contact pat-
terns. Corresponding to the times of the CoMix waves, 
the mean change in the number of visitors to transit sta-
tions were computed. Figure 2 shows the trend between 
November 11, 2020 and July 4, 2022. It can be seen that 
between November, 2020 and April, 2020, the num-
ber of visitors to transit stations remained at a relatively 
low level as compared to the pre-pandemic level (Fig. 2). 
From April, 2021 onwards, an increase in the num-
ber of visitors to transit stations followed by a decrease 
during the summer holiday and a stabilisation to a level 

close to the pre-pandemic level until November 2021 
was observed. From November 2021, the total number 
of visitors decreases until February 2022 and increases 
again until July 2022. It is worth mentioning that holiday 
periods are always associated with a decrease in the num-
ber of visitors to transit stations. However, the absolute 
level of the change differs between the different holiday 
periods.

Model
The main interest is in the relationship between contact 
patterns during the pandemic and before the pandemic. 
As this relationship is expected to be time-dependent, 
we employed a time varying effect model [28] consid-
ering a linear combination of pre-pandemic contacts at 
different locations [10, 11]. The dependent variable Yijt 
is the average number of contacts for participants of age 
j with individuals of age i at time t, where t = 9, . . . , 47 
refers to the 39 waves of the CoMix survey considered in 
this work [12, 26]. The average number of pre-pandemic 
social contacts at home, work, school and other places 
were used as explanatory variables. Let Zk

ij denotes the 
pre-pandemic average number of contacts for partici-
pants of age j with individuals of age i at location k, with 

Fig. 2  Stringency index from Oxford University (green) [30] and the relative change in the number of visitors to transit stations (red) compared to 
the baseline period (January 3 - February 6), based on Google mobility data [27]. Full color refers to period with CoMix data collection while lighter 
color refers to out of CoMix data collection. Holiday periods are depicted in the shaded areas. Black lines depict the periods corresponding to the 
different CoMix waves [12, 26]
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k corresponding to home, work, school and other places. 
We then model Yijt as:

where βp(t) ( p = 1, 2, 3, 4 ), refers to the 4 coefficient 
functions. It consists of smooth functions in time, 
modelled as a cubic P-spline with 10 knots. The cho-
sen parameters (i.e. degree and number of knots) of the 
coefficient functions were the default parameters as rec-
ommended by [31]. Given that the CoMix survey is a 
longitudinal survey, observations are not independent 
from wave to wave. In order to take this correlation into 
account, robust standard errors were estimated.

The coefficient functions for each location can be 
interpreted as the evolution over time of the expected 
change in the total number of contacts between two age 
groups during the pandemic resulting from a change of 
one contact between those age groups at that locations 
in the pre-pandemic period. For example, a value of 0.5 
at a given location would signify that one additional con-
tact between two age groups at that location in the pre-
pandemic period will result in a total of 0.5 additional 
contacts between those two age groups during the pan-
demic. As pre-pandemic value are expected to be larger 
than pandemic value, coefficient functions are expected 
to be estimated below 1. However, coefficients value close 
to 1 or higher than 1 are also possible. The particular case 
where the coefficient function at a given location is close 
to 1 could mean that a given change in that location at 
pre-pandemic time will result in a similar change in the 
expected total number of contacts during the pandemic. 
This could correspond to locations where social contact 
patterns are similar to the pre-pandemic period, such as 
home or school outside the holiday period. This could 
also be due to a compensatory behavior i.e. spending less 
time at work or school could imply meeting up with more 
people at home.

Some models have assumed that mobility can be used 
to scale pre-pandemic contact matrices to pandemic 
contact matrices. To test this assumption, a second time 
varying effect model has been explored considering a lin-
ear combination of pre-pandemic contacts at different 
locations in interaction with a proxy for mobility, namely 
the change in the number of visitors to transit stations 
with respect to the baseline period. Interest is in the abil-
ity or inability of mobility to reduce the variability of the 
smoothing functions βp(t) . It is worth mentioning that 
in this model, we are interested in the variability of βp(t) 
over time rather than βp(t) itself. Let Tt denotes mobil-
ity defined as the relative change in number of visitors 

(1)Yijt ∼N (µijt , σ
2)

(2)�ijt =�1(t)Z
home
ij

+ �2(t)Z
work
ij

+ �3(t)Z
school
ij

+ �4(t)Z
other
ij

to transit stations at time t as compared to the pre-pan-
demic period, based on Google mobility data [27]. The 
other parameters in this model are the same as in the first 
model. This second model can be summarised as follows:

The time varying effect models [28] were fitted using 
the SAS macro tvem [31] version 3.1.1 in SAS version 9.4.

Result
The evolution over time of the average number of con-
tacts for each age groups at different locations is depicted 
in Fig.  3. Children (i.e people aged 0 to 17 years old) 
made more contacts than adults (i.e. people aged 18 to 
64 years old) and elderly people (i.e. people aged 65+ 
years old) at all locations. For obvious reasons, children 
had no contacts at work, and adults had hardly any con-
tacts at school. At home, the average number of contacts 
remained stable for all age categories throughout the 
study period, with younger age categories making more 
contacts than older age categories. Outside the holiday 
periods, children made more contacts at school com-
pared to home and other places. The average number of 
contacts for children (i.e. people aged 0 to 17 years old) 
and students (i.e. people aged 18-25 years old) at school is 
very sensitive to the holiday period. However, when com-
paring the non-holidays periods, the average number of 
contacts is not equal between them. Moreover, students 
made fewer contacts at school than children. At work, 
the number of contacts made by adults (i.e. people aged 
18 to 64 years old) varied over time, without any obvious 
trends. Finally, the graphs for other places suggest that 
there is a small positive trend in the number of contacts, 
except for the youngest children (i.e. people aged 0 to 11 
years old). Moreover, within the school going age catego-
ries (i.e. people aged 0 to 24 years old), it can be noticed 
that there is more variability in the trend.

Figure  4 depicts the coefficient functions of the time 
varying coefficient models considering only pre-pandemic 
contacts (red) and considering mobility in addition (green). 
Concerning the model considering only pre-pandemic 
contacts, the coefficient functions can be interpreted as 
the evolution over time of the expected change in the total 
number of contacts during the pandemic resulting from a 
change of one contact at a given location at pre-pandemic 
time. As pre-pandemic contacts are likely to be larger 
than contacts during the pandemic, a value below 1 of the 
coefficient functions could be expected. However, a loca-
tion with a coefficient function close to 1 or higher than 1 
could be interpreted as a location in which social contact 

(3)Yijt ∼N (µijt , σ
2)

(4)�ijt =�1(t)TtZ
home
ij

+ �2(t)TtZ
work
ij

+ �3(t)TtZ
school
ij

+ �4(t)TtZ
other
ij
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Fig. 3  Evolution over time of the average number of contacts in a day during the pandemic at different locations (at home, work, school and other 
places) by age groups based on the CoMix survey [12, 26]. Holiday periods are depicted in the shaded areas

Fig. 4  Coefficient functions of the time-varying coefficient models considering only pre-pandemic contacts (red) and considering both 
pre-pandemic contacts and Google mobility data at transit stations (green)
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patterns are similar to the pre-pandemic period, or in loca-
tions subject to compensatory behavior (see Methods sec-
tion). Figure 4a shows that at home it increased slightly for 
the first waves (i.e. from wave 9 to wave 20). It then fol-
lowed a slight decreasing trends until wave 36 and then 
increased again. Throughout the study period, coefficient 
functions are close to 1. However, it is never statistically 
higher than 1. Figure  4b shows that a slight decreasing 
trend can be observed in the expected change in the total 
number of contacts during the pandemic resulting from 
a change of one contact at work. However, it remained 
lower than 1 and at a lower level than the one consider-
ing pre-pandemic contacts at home (Fig.  4a) and school 
outside holiday periods (Fig.  4c). At school the temporal 
trend of the coefficient function was more marked than 
at any other location. It followed a cyclic pattern between 
waves 9 and 36 and then stabilised from wave 37 onward. 
In November 2020 (i.e. waves 9 and 10), during the Easter 
2021 (i.e. waves 19 and 20) and the summer holidays 2021 
(i.e. from wave 26 to wave 30) as well as during the year 
2022 (i.e. from wave 37 to wave 47), a shift of one con-
tact at school at pre-pandemic time resulted in a smaller 
expected change in the total number of contacts during 
the pandemic than outside those periods. Outside holiday 
periods, the expected change was close to 1 and fairly sim-
ilar to that for pre-pandemic contacts at home (Fig.  4a). 
Pre-pandemic contacts at other places (Fig.  4c) was not 

statistically associated with the total number of contacts 
during the pandemic throughout the study period.

Considering the time varying coefficient model using 
mobility data in addition to pre-pandemic contact 
resulted in larger variations in the time-varying coef-
ficients for all locations. Moreover, it also added more 
uncertainty in the time-varying coefficients.

Figure  5 shows the observed (black) and estimated 
average number of contacts by wave by time varying 
effect model considering only pre-pandemic contacts 
(red) and considering mobility in addition (green), for 
each of the 39 waves considered in this study. The over-
all trend of the evolution of the number of contacts was 
well captured by the time-varying effect model consider-
ing only pre-pandemic contacts. Considering in addition 
mobility led to a similar fit. When looking at the estima-
tion by age groups (Fig. 5 b-g), it can be seen that for all 
the age groups the fit is fairly good for both models. How-
ever, some sudden changes in the number of contacts are 
not well captured by both time-varying effect models. For 
example, the peaks in wave 45 for the age group [25-45) 
and in wave 46 for the age groups [12-18) and [45-65) are 
not predicted by both time varying effect models. Simi-
larly, neither time varying effect model predicted the sud-
den peaks in the number of contacts observed in waves 
11, 13, and 17 for age group [18-25). Confidence inter-
vals are relatively narrow for all age groups throughout 

Fig. 5  Total number of contacts per wave observed (black) and estimated (with IC-95) by the time varying model considering only pre-pandemic 
contacts (red) and both pre-pandemic contacts and Google mobility data at transit stations (green)
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the study period, except between wave 12 and 20 for age 
groups [0-12) and [12-18).

Discussion
In this study we modelled the social contact patterns 
observed between November 2020 and July 2022 [12, 26] 
based on social contact patterns before the pandemic [10, 
11] through a time varying effect model. We then evalu-
ated whether a publicly available proxy of mobility data 
from Google [27] could help to predict the time variation 
of the coefficients.

Firstly, we found that social contact interactions in 
pre-pandemic time seem to be a good starting point to 
predict contact patterns under NPIs. Although a study 
conducted in England between January 2020 and June 
2021 showed that pre-pandemic and pandemic con-
tacts pattern seem hardly similar to each other [32], it 
has been shown previously that some characteristics of 
pre-pandemic social patterns were similar compared to 
social contact patterns during the pandemic. For exam-
ple, a study conducted in Canada [16] between March 
2020 and February 2021 showed that typical mixing at 
home (i.e.  assortative mixing and mixing between par-
ents and children) seemed to hold during pandemic 
time. Therefore, considering social contact patterns 
at different locations is needed as it allows to take into 
account the locations in which the contact patterns are 
the most similar as compared as the pre-pandemic time. 
From our results, it seems that pre-pandemic contacts 
at home and school had the strongest association with 
the total number of contacts during the pandemic com-
pared to the association observed for pre-pandemic 
contacts at work and other places. Interestingly, home 
corresponds to the location in which we observed a 
fairly similar social contact patterns as compared to 
the pre-pandemic time [16]. This result is expected as 
NPIs can not reduce contacts within a household. Pre-
pandemic contacts at school seem also to be a good pre-
dictor of contacts for children under NPIs. As during 
the studied period, schools were mainly open [33], this 
observation was expected.

In a context in which social contact patterns are not 
yet available in real time, the use of a linear combina-
tion of pre-pandemic social contact patterns could prove 
valuable. However, the coefficients of the linear combi-
nation varied over time (Fig. 4). This was expected due 
to the varying intensity of the NPIs (Fig.  2) as well as 
the time variation in the number of contacts at work, 
school and other places (Fig.  3). The challenge of such 
an approach is then to translate the NPIs at a given time 
into appropriate coefficients.

To this extent, assuming that the time variations of 
the coefficients can somehow be related to aggregated 
mobility data seems not acceptable during our study 
period to estimate the number of contacts at a given 
time. Indeed, the time varying effect model consider-
ing both pre-pandemic contacts and mobility showed 
more variation in the coefficient functions than the one 
considering only pre-pandemic contacts (Fig.  4). This 
could be the sign that the correlation between mobility 
and the number of contacts vary over time. Therefore 
simply deriving changes in social contacts from mobil-
ity data can be overly simplistic [22]. When stringency 
of the NPIs evolves due to a change in the epidemio-
logical context, people have to change their mobility 
(i.e. go back to work) while still attempting to minimise 
close contacts and maximise distance [22]. Zhang et al. 
[34] found that in China although mobility data can be 
a good proxy for social contacts during lockdown, this 
assumption does not hold in the post-lockdown peri-
ods. However they acknowledge that generalisation to 
other countries remains unclear. Another study based 
on data collected in 52 countries, found that although 
mobility correlates well with transmission intensity, this 
relationship is time dependent [35]. The temporal evo-
lution of the dependency between mobility and total 
number of contacts could be related to the evolution 
of the risk perception towards COVID-19. Wu et  al. 
[36] showed that perceived risk positively influences 
mobility. Moreover, [18] also showed that perceived 
risk positively influences the total number of contacts. 
However, even if both mobility and number of contacts 
are influenced by risk perception, the structure of the 
correlation may be different. Using changes in mobil-
ity patterns to estimate changes in the total number 
of contacts during a period in which perceived risk is 
evolving could therefore be unreliable. However, other 
approaches can avoid the need to estimate the coef-
ficients of the linear combination. For instance use of 
GPS data from mobile phones to infer complex social 
networks could be another option to model the dynam-
ics of transmission [23].

These results must be interpreted in the context of 
the following limitations. First, mobility data from 
Google only includes people using a smartphone and 
have enabled the location history setting [27]. This sub-
set of people may not be representative of the whole 
population, and children and older people might be 
under-represented [37]. In addition, only a unique 
aggregated dataset is available so no personally identi-
fiable information is available [27]. A study conducted 
in Japan based on non-publicly available data from 
Yahoo found that temporal changes in mobility were 



Page 9 of 11Lajot et al. BMC Infectious Diseases          (2023) 23:410 	

age dependent [38]. This finding may lead to bias in 
the estimation of our model considering mobility as we 
have used an average mobility value for all age groups. 
Similarly it is likely that variables other than age (e.g. 
socio-economic status, type of work, ...) influence both 
the number of contacts and mobility. However, in this 
study social contacts data were aggregated across age 
groups regardless of other variables. Our results apply 
at population level and may not be generalisable to spe-
cific sub-populations.

Another limitation of our work is that our model does 
not ensure positive predicted values. For a combination of 
values for which few contacts were observed, it can occur 
that the model predicted a small negative value for the 
number of contacts. However, none of the negative pre-
dictions were significantly different from zero. This is due 
to the hypothesis that the number of contacts is normally 
distributed. Hypothesizing a log-normal distribution 
would have ensured non-negative predictions. However, 
applying a log-normal distribution would have resulted 
in a less interpretable model. The interpretability of the 
model is facilitated greatly by the choice of the normal 
distribution for the outcome, and by a linear combination 
of pre-pandemic contacts, as has been done in previous 
models [5–8]. This is in line with our main research aim.

Moreover, the SAS package used does not provide a good-
ness of fit test for models using p-splines. Therefore, only a 
visual assessment of the goodness of fit was made. Although 
the fit looks good, this could be a limitation of our study.

Finally, for this study we only considered the change in 
the number of visitors to transit stations. Since change 
at this location may indicate mobility change at several 
locations, we considered it was the most appropriate to 
predict the overall change in contact patterns. However, 
mobility change at transit stations does not take into 
account the possibility that people may have switched 
from public to private transport (car, motorbike, bicycle, 
....) while maintaining their overall contacts.

Another option would have been to consider mobil-
ity at work instead of mobility at transit stations. We 
could assume that homeworking decreases as mobil-
ity at work increases, while mobility at transit stations 
may not capture this. Mobility at transit stations may 
remain low because people avoid public transport to go 
to work. However, a disadvantage of using mobility at 
work is that mobility at work is very sensitive to holi-
day periods. During these periods, people are likely to 
have made contacts in places other than work, and this 
may be better captured by considering mobility at tran-
sit stations.

In order to determine what would have been the impact 
in term of coefficients functions and fit of using other 
mobility proxy, two sensitivity analyses were carried out. 
In the first analysis, we considered a model similar to the 
one in Eq.  4 while considering mobility at work instead 
of mobility at transit stations; in the second, we used 
average mobility across all settings, similar to what was 
done in [35]. For both sensitivity analyses, we found very 
similar coefficient functions (see Additional file  1: Figs. 
S1 and S2) and model fits (see Additional file 1: Figs. S3 
and S4), compared to the analyses presented in the Result 
section. Nevertheless, it remains unknown whether our 
results can be generalised to mobility trends measured by 
data streams other than Google.
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