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Abstract 

Background  The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has rapidly spread over the world 
and caused tremendous impacts on global health. Understanding the mechanism responsible for the spread of this 
pathogen and the impact of specific factors, such as human mobility, will help authorities to tailor interventions for 
future SARS-CoV-2 waves or newly emerging airborne infections. In this study, we aim to analyze the spatio-temporal 
transmission of SARS-CoV-2 in Belgium at municipality level between January and December 2021 and explore the 
effect of different levels of human travel on disease incidence through the use of counterfactual scenarios.

Methods  We applied the endemic-epidemic modelling framework, in which the disease incidence decomposes 
into endemic, autoregressive and neighbourhood components. The spatial dependencies among areas are adjusted 
based on actual connectivity through mobile network data. We also took into account other important factors such 
as international mobility, vaccination coverage, population size and the stringency of restriction measures.

Results  The results demonstrate the aggravating effect of international travel on the incidence, and simulated coun-
terfactual scenarios further stress the alleviating impact of a reduction in national and international travel on epidemic 
growth. It is also clear that local transmission contributed the most during 2021, and municipalities with a larger 
population tended to attract a higher number of cases from neighboring areas.

Conclusions  Although transmission between municipalities was observed, local transmission was dominant. We 
highlight the positive association between the mobility data and the infection spread over time. Our study provides 
insight to assist health authorities in decision-making, particularly when the disease is airborne and therefore likely 
influenced by human movement.
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Background
The emergence and rapid worldwide spread of the 
Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) and its implied Coronavirus Disease 2019 
(COVID-19) has tremendously impacted global health. 
Several studies suggested that the transmission dynamics 
of SARS-CoV-2 are explained by several spatio-temporal 
factors, including demographic factors  [1], contact net-
works of individuals  [2], containment measures  [3, 4], 
and human mobility  [5, 6]. In Belgium, approximately 
650,000 COVID-19-positive cases were confirmed in 
2020, and this number increased to 1.5 million confirmed 
cases over the course of 2021, accounting for 12.9% of the 
Belgian population. Cases were heterogeneously distrib-
uted across municipalities (see, e.g., Fig. 1). Few studies 
have examined the effects of control strategies and mobil-
ity on the spatial spread of COVID-19 in the country, and 
these studies have focused on waves in 2020 [2, 7, 8]. A 
study incorporating spatio-temporal heterogeneous fac-
tors (e.g., demographic factors, containment measures, 
human mobility) is therefore advisable to understand the 

transmission dynamics of SARS-CoV-2 in Belgium, espe-
cially in 2021.

Human mobility has been identified earlier as a quin-
tessential factor in the spread of airborne infections [9–
12]. Hence, to mitigate SARS-CoV-2 spread in Belgium, 
one of the early responses was the installment of severe 
restrictions on travel, both at the national and interna-
tional level. Specifically, international travel was banned 
during the first wave, March-May 2020, and non-essen-
tial foreign travel to and from Belgium was prohibited 
between January 27 and April 19, 2021. However, being 
a small, centrally located European country, the relatively 
large in-flux of travelers - a fraction of which hosting the 
infection - especially in periods with little or no travel 
restrictions (e.g., from September 2021), potentially has 
an important impact on viral spread. The human mobility 
data in Belgium is available at several space-time resolu-
tions. In our study, two main sources are used: summary 
data on national mobility from the mobile network and 
the number of incoming travelers to the country. As 
these data reflect changes in mobility patterns at different 

Fig. 1  Distribution of reported cases by date (A) and municipality (B) and time-dependent data on international travelers per 100 inhabitants (C), 
vaccination coverage of at least one dose of COVID-19 vaccine (D), and stringency index (E) in Belgium from Week 2021-1 (04/1/2021) to Week 
2021-48 (05/12/2021). Two vertical red lines in (A) are to distinguish between the three time periods considered in our analyses: January - May, June 
- September, and October - December 2021
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time periods, they can be used to describe disease spread. 
More specifically, the key question arises whether we use 
the available travel data to quantify the impact of travel 
on the spread of COVID-19, in order to use them as an 
important factor to simulate and predict the disease inci-
dence in different time period.

In response to the pandemic, the non-pharmaceutical 
interventions (NPIs) issued by the Belgian government 
have changed with time, leading to variations in the strin-
gency of restriction measures. In 2021, relatively strin-
gent measures were still in place, but these no longer 
included lockdown and full school closure, although 
there were still longer periods with mask mandates (e.g., 
in public transport) and closure of culture and event sec-
tors. A precise estimation of their effects on the evolution 
of infections is challenging in the face of sparse data avail-
ability. Fortunately, the Oxford Coronavirus Government 
Tracker (OxCGRT) provides a proxy metric, the so-called 
stringency index, to assess the level of strictness of social 
policies imposed at a national scale [13]. The stringency 
index has shown to be useful in recent spatio-temporal 
studies  [14, 15]. Furthermore, vaccination campaigns 
have largely contributed to an important reduction of 
the risk of infection and of more severe outcomes such 
as hospitalization and death [16–19]. During 2021, mass 
vaccination campaigns were widely implemented in the 
Belgian population. However, vaccination coverages were 
heterogeneous across Belgian geographical units (see, 
e.g., Fig.  1D, and Faes et  al. (2022)  [20]). For pathogens 
such as measles, earlier findings indicated that the het-
erogeneity in vaccination coverage was associated with 
disease incidence  [21, 22]. Notwithstanding, the impact 
of vaccination and the relation between vaccine uptake 
in the population and disease incidence may be different 
between different vaccine-preventable diseases. Besides, 
given the importance of demographic characteristics, 
which are known to vary by location and usually available 
in spatial resolution, it could not be neglected in study-
ing the transmission process of COVID-19. Therefore, 
we expect that the combination of space-time available 
data will help to better unravel the complex dynamics of 
SARS-CoV-2, in this paper with a focus on Belgium.

Spatio-temporal modelling of infectious disease spread 
based on routine incidence data has received great inter-
est in recent years. In the context of COVID-19, various 
modeling frameworks have been employed. For exam-
ple, compartmental models (e.g., SEIR, metapopula-
tion models) study the interaction between individuals 
in communities at different spatial scales  [2, 23]. Spa-
tial and temporal point processes have also been used 
to study the disease’s dynamics. Additional information 
like demographics, human mobility, and control meas-
ures have been considered as possible factors influencing 

transmission  [24–26]. However, these models can be 
complex, require high-resolution data that may not 
always be available (e.g., susceptible proportion in com-
munities), and can be time-consuming to compute. 
An adequate method is offered by a multivariate time 
series model in a so-called endemic-epidemic (EE) sta-
tistical modelling framework introduced by Held et  al. 
(2005)  [27]. An important aspect is that it employs a 
common regression framework, and the model’s param-
eters can be conveniently estimated using standard 
optimization techniques, such as maximum likelihood. 
In essence, the time-space dependence of infections is 
determined by both background risk independent of the 
epidemic and auto-regression on past counts of within- 
and between-geographical units. The flexibility of the EE 
framework enables us to include potential variables and 
model their effects on disease dynamics, in both time and 
space. Properly tailored models have been used to inves-
tigate and predict the evolution of the COVID-19 pan-
demic  [3, 14, 15, 28].

In this paper, we examine both temporal and spatial 
patterns in disease spread and the way their dynamics are 
influenced by human mobility, the stringency of NPIs, 
and the effectiveness thereof. We apply the EE modelling 
framework with the aim to (i) analyze the spatio-tem-
poral transmission of SARS-CoV-2 in Belgium between 
January and December 2021 and (ii) explore the effect 
of different levels of human travel on disease incidence 
through the use of counterfactual scenarios. We leverage 
the available data on the daily time series for case inci-
dence, national mobility between Belgian municipalities, 
the number of incoming international travelers to the 
country, the stringency of containment policies, vacci-
nation coverage, and demographic variables. This study 
aims to provide public health authorities with essential 
information to make informed policy decision for miti-
gating the impact of COVID-19 as well as that of future 
pandemics, especially in relation to travel restrictions.

Methods
In this section, we first describe the data sources used in 
our analyses. A summary of the data used can be found 
in Table 1. Then, we introduce a spatial dynamic model 
to assess the impact of travel rate on COVID-19 spread. 
This impact is further illustrated through counterfactual 
scenarios with different travel levels. Lastly, sensitiv-
ity analyses to assess the stability of model estimates are 
described.

Data
Case data
The daily number of confirmed COVID-19 cases in each 
of the 581 municipalities in Belgium was retrieved for 
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the period between January 4, 2021 and December 5, 
2021 from Sciensano, the Scientific Institute for Public 
Health in Belgium. Figure 1A shows the evolution of the 
Belgian COVID-19 epidemic during 2021. More specifi-
cally, the total number of reported cases over time shows 
two waves: (1) a wave between January and June, 2021, 
representing the third COVID-19 wave in Belgium, and 
(2) a wave starting from September 2021 onwards. The 
daily number of cases started to increase again from July 
onwards and fluctuated around 2,500 confirmed cases 
before dramatically soaring to approximately 25,000 
cases per day at the beginning of December. Further-
more, the lower left panel (Fig.  1B) shows the distribu-
tion of confirmed cases by Belgian municipality using 
heat colors. For areas that are darker, the number of con-
firmed cases is higher.

National and international mobility data
To assess the amount of travel between municipalities 
in Belgium, summary information from mobile network 

data is used, available between September 1, 2020 and 
June 6, 2021 [29]. These data provide information about 
the average proportion of time that customers spent in 
their residing municipality as well as in other munici-
palities (if any). Based on this, we can present the con-
nectivity among municipalities through a mobility 
matrix (Fig. 2), calculated as the log-transformed mean 
percentage time spent in a municipality between Sep-
tember 2020 and June 2021, and averaged this tempo-
ral information to obtain a static network. The monthly 
mobility matrices over this time period are graphically 
depicted in Fig. A6 in the Appendix.

The international travel rate is available at the pro-
vincial level as the number of incoming travelers per 
100 inhabitants. This information is based on the 
COVID-19 weekly reports by Sciensano. Figure  1C 
shows the time trend over the study period. The rate 
for all provinces was at the minimum during Febru-
ary—April 2021, when a travel ban on non-essential 
travel was in place (from January 27 until April 19, 

Table 1  Overview of the different datasets used in the analyses with details on the resolution, spatial level and time range

Dataset Resolution Spatial level Time range

Case data Daily Municipality Jan 04 - Dec 05, 2021

Local mobility data Daily Municipality Sep 01, 2020 - Jun 6, 2021

Stringency Index Daily National Jan 04 - Dec 05, 2021

International travel data Weekly Province Week 1 - Week 48, 2021

Vaccination data Weekly Municipality Week 1 - Week 48, 2021

Population data Yearly Municipality 2020

Fig. 2  National mobility between September 1, 2020 and June 6, 2021. The y-axis represents the origin while the x-axis is the destination. Different 
municipalities are grouped according to the 10 Belgian provinces and Brussels-Capital Region (Brussels (Br), Antwerp (An), Flemish Brabant (BF), 
Walloon Brabant (BW), West Flanders (WF), East Flanders (EF), Hainaut (Ha), Liège (Le), Limburg (Lm), Luxembourg (Lu), and Namur (Na)
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2021). After this period, travel rates started to increase, 
to reach a peak around August and November 2021. 
Brussels remained the region with the highest travel 
rate during 2021.

Pharmaceutical and non‑pharmaceutical interventions
The number of individuals that received at least one 
dose of a COVID-19 vaccine in 2021 was obtained 
from Sciensano  [30]). Note that these data are avail-
able at municipality level and in weekly resolution. 
The proportion of vaccinated individuals in each Bel-
gian province is depicted in Fig.  1D. Differences in 
vaccine coverage among provinces are clearly visible. 
West-Flanders had the highest proportion of individu-
als receiving at least one vaccine dose, while the lowest 
level was observed in Brussels.

The Stringency Index ranges from 0 to 100 and 
reflects the level of severity of non-pharmaceutical mit-
igation measures imposed at the national level (Oxford 
Coronavirus Government Tracker 2022)  [13]. It is a 
composite measure of nine response metrics, including 
school and workplace closures, cancellation of public 
events, limitations on public gatherings, closure of or 
restrictions on public transport, stay-at-home man-
dates, public awareness campaigns, restrictions on 
internal mobility, and international movement con-
trol. Higher values of the Stringency Index imply that 
stricter measures were in place. Figure 1E presents the 
evolution of this index for Belgium throughout 2021. 
The highest values were observed during February–
April 2021, with a peak in April 2021, at the time of the 
third wave.

Population data
The population data of each Belgian municipality in 2020 
was retrieved from the Belgian statistical office [31]. The 
total population size was approximately 11.5 million indi-
viduals and was assumed to be constant during 2021.

Spatial dynamic model
Let Yit denote the number of confirmed COVID-19 cases 
in municipality i ( i = 1, . . . , 581 ) on day t ( t = 1, . . . ,T  ), 
with T the length of the time window considered in this 
analysis. Covariate information is represented by xit . 
Assuming that the number of new confirmed cases Yit at 
day t depends on the (series of ) past observations Yi(t−d) , 
d = 1, . . . ,D , with up to D = 7 days being of importance 
to determine Yit , the spatio-temporal model is formu-
lated as [27, 32, 33]:

[Yit | Yi(t−1), . . . ,Yi(t−D), xit ] ∼ NegBin(µit ,ψ),

with mean incidence µit and variance µit(1+ ψµit) . 
Here ψ ≥ 0 is the dispersion parameter to be estimated. 
Note that if ψ = 0 , mean and variance are equal and Yit 
follows a Poisson distribution. The conditional mean µit 
is modelled as:

The natural logarithm of the first term, referred to as 
the endemic component ǫit , and interpreted as the back-
ground risk, equals

with N ∗
i = Ni/100, 000 defining an offset. The second 

term is the local epidemic or autoregressive component, 
describing the local epidemic spread in time. The autore-
gressive parameter �it , is modeled as

Finally, the third term of mean µit represents the global 
epidemic or neighbourhood component. Its corresponding 
parameter φit is modeled as

Two types of weights are included in the model. First, 
the normalized Poisson weights ud in (1) represent the 
probability for a serial interval (i.e., the average time (in 
days) between symptom onset in an infectious individual 
and symptoms emerging in a newly infected individual 
when both were in close contact) of length d days with d 
taking values up to D = 7 days [33]. Second, the weights 
w∗
ji in the neighbourhood component express the strength 

of connectivity between pairs of municipalities. The defi-
nition of the mobility weights is based on the estimated 
connectivity over time inferred from mobility data, and 
a comparison is made from defining the connectivity 
merely on the distance between two municipalities.
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In the model, we include component-specific inter-
cepts ( α(ǫ) , α(�) , α(φ) ). We account for various covariates, 
including a weekend effect (WE), population size (N) (in 
the local and global epidemic components), proportion 
of non-vaccinated individuals as a proxy for susceptibil-
ity (sus), travel rate (travel), stringency index (SI), and 
calendar time (period). Specifically, two time periods, 
i.e., from June to September 2021 and from October to 
December 2021, are considered in the analysis in order to 
distinguish between different phases in the epidemic. The 
effect of the proportion of susceptible individuals (sus) is 
accommodated in the model by considering the natural 
logarithm of the proportion of residents that are non-
vaccinated (i.e., the fraction of individuals without any of 
the COVID-19 vaccine doses)  [21, 22]. We add a quad-
ratic term of the travel rate which was centered prior to 
inclusion in the model.

Inference and model comparison
Model comparison is done based on the Akaike Informa-
tion Criteria (AIC) [34]. The model with the lowest AIC 
is selected. Parameter inference is based on maximum 
likelihood estimation in R package surveillance [35] 
version 1.20.1 and hhh4addon version 0.0.0.0.9014 [33] 
under R version 4.0.5 [36].

Counterfactual simulation of case counts
To investigate the impact of travel, we consider three 
scenarios with different levels of travel and simulate 
the expected number of cases. In the first scenario, the 
national mobility and international travel rate is the same 
as observed. In the second one, the international travel 
rate is set at the lowest level during the study period, 
while national mobility is kept the same as observed. In 

the third case, we show what the situation would be if 
there would be no mobility within the country.

Sensitivity analyses
In order to check the stability of our model estimates, we 
performed four sensitivity analyses. First, the travel rate 
is estimated based on the number of incoming travellers 
from the Passenger Locator Form (PLF) data (Appendix 
Fig. A1). This form was required to be filled in by all pas-
sengers entering Belgium during the study period. Sec-
ond, we use serial intervals based on a literature review. 
This includes a gamma distribution with shape and rate 
parameters equal to 2.29 and 0.36, respectively  [37], 
and a lognormal distribution with parameters 1.38 and 
0.563  [38]. Third, the Stringency Index was adjusted to 
exclude travel restrictions (i.e., restrictions on internal 
movement and international travel controls) (Appendix 
Fig. A2), in order to reduce dependencies between the 
(original) Stringency Index versus the national mobil-
ity and the international travel rate in our model. Finally, 
we represent municipality connectivity by a power law 
matrix instead of mobility matrices [39].

Results
Figure 3 depicts the model fit (panel (a)) and the contri-
bution of each component (panel (b)). It can be seen that 
our model provides a good overall fit to the observed epi-
demic curve. Nevertheless, the estimated case numbers 
from around November onward are not as close to the 
observed data points as in the previous period. This may 
result as a result of the emergence of the Omicron vari-
ant, which started circulating in Belgium from December 
2021 onward. The relative contribution of each compo-
nent to the estimated daily number of cases is illustrated 

Fig. 3  The left panel (a) shows the fitted components of the selected model on COVID-19 cases in Belgium; the dots indicate the observed number 
of daily confirmed cases. The right panel (b) depicts the proportions of transmission that can be attributed to each of the three components (i.e., 
endemic, autoregressive and neighbourhood)
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in the right panel of the same figure. The local epidemic 
spread component usually accounts for the largest part of 
the circulation, throughout the study period. A sudden 
increase in the share of the global spread was observed 
in June - September 2021. Overall, the endemic, local 
epidemic and global epidemic components accounted 
for 15.8%, 73.9%, and 10.3% of the estimated cumulative 
number of cases, respectively.

The exponentiated model parameters, represent-
ing the multiplicative effect at the original scale, with 
their 95% confidence intervals, are presented in Table 2. 
As expected, the number of confirmed cases in week-
ends is lower as compared to weekdays due to report-
ing delays, under-reporting, or delays in health-seeking 
behaviour. Municipalities with a larger population size 
have a stronger spatial epidemic spread while its effect 
on within-municipality epidemic spread is found to be 
insignificant. An increase in the proportion of suscepti-
ble individuals (as approximated by the fraction of non-
vaccinated individuals) tends to lead to an increase in the 
number of confirmed cases, albeit that the effect is also 
insignificant. Interestingly, implementation of stricter 
measures is associated with a higher disease spread even 
though the effect is minimal. The two periods (i.e., June 
to September, 2021 and October to December, 2021) 
show different effects (compared to the reference period 
January to May, 2021) in each of the three model com-
ponents. Both periods have a lower mean baseline inci-
dence as compared to the first period (January to May, 
2021). In the period of June to September, the speed of 
local spread is reduced as compared to in the reference 
period, while in the period October to December it 
increases again to a level which is higher than January to 
May, 2021. At the same time, the speed of disease spread 
between municipalities is elevated in the period of June 
to September as compared to the period of January to 

May, and not significantly different between the period of 
October to December and the period of January to May. 
Similar results are observed in the sensitivity analyses.

The impact of travel rate on the mean number of cases 
is visualized in Fig.  4. Note that since the travel rate is 
centered, a value of zero on the x-axis corresponds to 
the mean travel rate on the original scale. From Fig.  4, 
it can be seen that the baseline circulation of COVID-
19 gets higher if there is more international travel, and 
in addition that the spatial spread is higher when inter-
national travel increases. Indeed, in the endemic and 
neighbourhood components the baseline mean incidence 
(assuming a mean centered travel rate of zero) increases 
multiplicatively with a factor evolving in a non-linear way 
in relation to the travel rate, while the opposite (although 
albeit small) effect holds for the autoregressive compo-
nent (red line). Furthermore, for large travel rates the 
increase in multiplicative effect with increasing travel 
rates stabilizes in the endemic case (green line), thereby 
deviating from an exponential increase in case of a linear 
travel rate term at the linear predictor scale.

The comparison between the estimated lag distribu-
tion from our model and from literature is illustrated in 
Fig. 5. This lag distribution reflects the distribution of the 
serial interval (i.e., the time between symptom onset days 
of two paired cases). Parameter estimates from using an 
alternative definition of the mobility matrix, the adjusted 
Stringency Index, and from fixing the serial intervals are 
given in Tables A1 and A2 in the Appendix, respectively. 
Similar conclusions are found in these analyses.

Figure  6 illustrates the impact of travel by means of 
three simulated scenarios for three periods: 18 January 
to 25 April (period 1), 26 April to 29 August (period 2) 
and 30 August to 5 December (period 3). In the first sce-
nario (travel rate as observed), the simulation was able 
to capture the observed epidemic curve despite a slight 

Table 2  The exponentiated model parameter estimates with corresponding 95% confidence intervals (CIs)

Local epidemic Global epidemic Endemic

Estimate 95% CI Estimate 95% CI Estimate 95% CI

Intercept 0.78 0.68 0.89 0.03 0.02 0.05 4.73 3.67 6.09

Weekend 0.32 0.31 0.32 0.87 0.80 0.94 0.35 0.33 0.37

Population 0.99 0.98 1.00 1.14 1.10 1.19 - - -

Susceptible proportion 1.00 0.98 1.03 - - - 1.05 0.98 1.12

Travel rate 1.03 1.01 1.05 1.23 1.15 1.31 1.51 1.44 1.59

Travel rate2 0.97 0.97 0.98 1.00 0.99 1.02 0.94 0.92 0.96

Stringency Index 1.00 1.00 1.01 1.01 1.01 1.02 1.01 1.01 1.02

Month Jun-Sep 0.88 0.85 0.92 2.01 1.70 2.36 0.29 0.27 0.31

Month Oct-Dec 1.45 1.39 1.52 1.09 0.91 1.32 0.80 0.71 0.89

AIC 754224.7



Page 8 of 13Nguyen et al. BMC Infectious Diseases          (2023) 23:428 

underestimation in period 1 and overestimation in period 
2 as compared to the observed cases (93.9% and 114%, 
respectively). In the second scenario (reduced interna-
tional travel) and third scenario (reduced national travel), 
the simulation clearly shows that restricting international 
travel and local mobility would greatly reduce the epidemic 
growth. No connectivity among municipalities would 

imply the largest effect on the spread in period 1, whereas 
in period 2 and 3, minimizing incoming international 
travelers would be the most effective. Specifically, a travel 
rate fixed to the minimum level that was observed would 
have prevented 11.4% of cases in period 1 up to 68.3% in 
period 3. When there is no connectivity among municipali-
ties, we also observe a decrease in cases with the largest 

Fig. 4  Impact of travel rate (proportion of incoming travelers per 100 population, centered) on the number of cases. The lines and envelopes are 
the mean estimate and 95%CI for the endemic (green), autoregressive (red) and neighbourhood component (blue)

Fig. 5  Lag distribution estimated from the data, a gamma distribution and two log-normal distributions
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reduction being 43.8% of cases in period 3 as compared to 
the first scenario (see Table A3).

Discussion
Using the endemic-epidemic modelling framework, we 
performed a detailed analysis concerning the spatio-
temporal characteristics of the COVID-19 pandemic 
at municipality level in Belgium. We successfully inves-
tigated the impact of different levels of human mobility, 
both between municipalities as well as by incoming trav-
ellers, on the daily incidence during 2021, while consider-
ing important covariates, such as vaccination on the one 
hand, and the Stringency Index as a proxy for the effect of 
NPIs that are in place.

From the model results, we conclude that a relatively 
high fraction of cases originated from local transmission 

within the municipality itself, suggesting that endogenous 
transmission contributed the most to the COVID-19 epi-
demic, at least during 2021. The spatio-temporal contri-
bution was relatively low in the earlier part of the year. 
However, it increased during summer, the time when 
travel related policies became less stringent, suggesting 
that a larger fraction of cases during this period were 
imported from other areas. In certain municipalities, 
the progression of the disease remained local, though an 
elevated contribution of the neighbourhood component 
was visible in a part of the Brussels Capital Region, espe-
cially in the second half of the year (Appendix Fig. A3). 
This is plausible since intensive connectivity between 
municipalities on the one hand and a higher fraction of 
incoming travelers per capita were observed in the Brus-
sels Capital Region.

Fig. 6  Comparison of simulation-based predictions for the number of infections in three mobility scenarios: travel rate as observed (blue), travel 
rate at the minimum level observed (yellow), and no connectivity between municipalities (red) against the observed values (bar chart). In each 
simulation, the lower and upper lines represent the pointwise 2.5% and 97.5% simulation-based percentiles for each day; the middle line displays 
the mean values
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It is suggested that differences in levels of travel played 
a role on daily confirmed cases. This hypothesis was 
confirmed by constructing three counterfactual sce-
narios, each with a different level of mobility. Reducing 
the mobility of individuals in the second and third coun-
terfactual scenario corresponded with an attenuated 
COVID-19 case growth. Previous studies have investi-
gated the relationship between disease data and human 
movement, but these studies were more focused on the 
areal mobility matrices, which illustrate the origin–des-
tination connectivity between geographical units  [1, 12, 
40–42]. Our work is one of a few studies that account 
for mobility patterns outside of the study settings, as 
a potential source of infection  [43, 44]. Nevertheless, 
regardless of the transmission model applied, the reduc-
tion on travel is effective in reducing the spread and size 
of epidemics. While using aggregated mobility flows can 
help estimating reductions in incidence at the popula-
tion level, it would be intriguing to examine the patterns 
of spread influenced by changes in individual-level travel 
behaviors. While not without challenges in data acqui-
sition, one might take into account the finer resolution 
of mobility data that involves information on individual 
contacts or clustering patterns. Adopting these mobility 
and travel behaviors may benefit to identify disease hot-
spots, adapt appropriate local-level regulations and con-
trol strategies.

From the estimated model coefficients, we found 
strong evidence of commuter-driven spread when we 
accounted for the unit-specific population in the neigh-
bourhood component, indicating that regions with a 
larger population are expected to attract a bigger num-
ber of cases from their neighbors. The existence of such 
an agglomeration effect was also confirmed in previ-
ous studies [14, 15, 22, 45]. We identify that vaccination 
coverage of the first dose in Belgium did not have a sig-
nificant association with fewer case counts. In endemic-
epidemic models of areal count time series (so-called 
hhh4 models within the surveillance package in R), the 
rate of disease diffusion is allowed to be proportional to 
the number of susceptible people, which can be inferred 
from the number of non-vaccinated individuals  [21]. In 
our study, only the local coverage of the first COVID-
19 vaccine dose was used in the model. The uncertainty 
about the true immunity levels in the population inferred 
from one-dose coverage should be noted. By including 
the proportion of unvaccinated individuals in the model, 
we assumed that the susceptibility level in the population 
over time is proportionate to the time-varying proportion 
of unvaccinated individuals. More specifically, immu-
nity in unvaccinated individuals as a result of previous 
infection with SARS-CoV-2 would imply an overestima-
tion of the time-varying susceptibility at the population 

level when solely informed by vaccination coverage. 
However, when assuming that a constant fraction of 
unvaccinated individuals has immunity within the study 
period (and if waning of (vaccine-induced) immunity is 
limited), the fraction of unvaccinated individuals is pro-
portional to population susceptibility. We acknowledge 
that this is a strong assumption and an investigation of 
the sensitivity of our results with regard to this assump-
tion is considered a topic for future research. Besides, for 
a disease such as measles, the assumption that depletion 
of susceptibles due to vaccination decreases the trans-
mission risk is a plausible one, but it arguably does not 
hold for COVID-19 given waning of humoral immunity 
with time since vaccination, the need for a second dose 
to maintain high protection against severe disease and 
the fact that vaccination does not completely prevent 
infection. Given age-specific differences in the fraction 
of the population that is protected against SARS-CoV-2 
infection due to prior exposure or vaccination  [46, 47], 
an age-stratified model would be a better approach to 
evaluate the impact of vaccination on the disease dynam-
ics. To our surprise, we found that the positive associa-
tion between stringency of NPIs and the new cases was 
not significant. Although recent studies indicated that 
this factor significantly contributed to the lower trans-
mission of cases [14, 15], such a beneficial effect was not 
observed in this context. One possible reason is that the 
Stringency Index provides a surrogate picture of control 
measures by assigning one estimated value for the entire 
Belgian population. A more granular perspective would 
provide additional information about the role and impact 
of NPIs in controlling the epidemic. For example, it 
would be interesting to replace the Stringency Index with 
local-level indices to investigate the impact of NPIs. Fur-
thermore, compliance to intervention measures and its 
variation across Belgium is not captured by this measure. 
Stringency should ideally be combined with informa-
tion on adherence to NPIs and with social contact data. 
In this way, studying the impact of NPIs on space-time 
spread of the virus is a relevant topic of further research, 
conditional on the availability of sufficient data. Another 
aspect that may contribute to this controversial result is 
the fact that we used a lag of 7 days in the model. It might 
be unlikely that the impact of control measures in reduc-
ing transmission will be noticeable within a week, as it 
may take 9-12 days or longer to manifest in the trajectory 
of the epidemics [40]. Additional research could investi-
gate the correlation between the delayed effects of NPIs 
and changes in disease incidence, for example, by exam-
ining the rate of change in reproductive number  [48]. 
Furthermore, we discovered that by fitting a model with 
the Stringency Index, excluding travel restrictions, we 
found that dependencies between the Stringency Index 
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versus the national mobility and the international travel 
rate in our model had minimal influence on model esti-
mates. The results of this sensitivity analysis are shown in 
Table A2 in the Appendix.

During our study period, the Alpha variant was most 
prevalent over the largest part of the first half of 2021, 
while the Delta variant was dominant in the second half 
of the year. Although the Beta and Gamma variants were 
concomitantly identified over the first half of 2021, they 
did not play an important role in subsequent waves of 
SARS-CoV-2 variants observed in Belgium [30, 49]. Fur-
thermore, previous studies have shown that both the 
Alpha and Delta variants have 50%-70% higher trans-
missibility compared to the pre-existing variants, and 
they impacted individuals with similar demographic and 
comorbidity characteristics  [49, 50]. The emergence of 
variants of concern (VOCs) such as Alpha and Delta vari-
ants, which are capable of immune evasion in different 
molecular mechanisms, may suggest different transmis-
sion risks. Adeyinka et al., 2022 suggested that the eval-
uation of the spread of VOCs should account for other 
factors such as vaccine uptake, the strength of control 
measures that are in place, and mobility patterns  [51]. 
However, due to the small size of Belgium as a country, 
significant geographical variation in the prevalence of 
VOCs across different provinces is unlikely, as least dur-
ing our study period - even though there may be some 
regional differences. Moreover, our model considered 
different time periods that did not precisely align with 
the periods when certain VOCs became more domi-
nant. Although it was feasible to adjust the time periods 
to match, this did not lead to improvement in the model, 
but rather provoked convergency issue. Therefore, the 
findings of this study should be interpreted while bearing 
in mind these VOCs.

A notable strength of our modelling strategy is that 
we were able to mine the mobile network activity to 
establish the spatial dependence of COVID-19 trans-
mission. Mobility data has gradually shown its poten-
tial and importance in (spatial) analyses of infectious 
diseases  [1, 24, 40, 43]. Our study has underscored its 
usefulness in modelling the connectivity between munic-
ipalities. In other words, they allow the modeller to con-
struct between-municipality weights. Although a power 
law, which describes the short-time human movement 
behavior when there is missing information about travel, 
improved model fit in terms of AIC (Appendix Table A2), 
it makes more sense to apply the mobile network data 
to the model as it reflects the “true” activity logs of indi-
viduals geographically. In addition, we used the daily case 
counts and used observations to 7 days back in time. 

This allowed us to avoid biases in serial interval assump-
tions when using the aggregated data (in weekly data, for 
example) [33]. The estimated lag distribution in our study 
was in line with findings in the studies of Grimée et  al. 
(2022) and Ssentongo et  al. (2021)  [3, 14]. The sensitiv-
ity analyses with different literature-based serial intervals 
also showed moderate stability of our results. Further-
more, the covariates used in the model (e.g., travel rate, 
vaccine coverage, stringency index) were time-varying. 
This approach is particularly important in the context of 
COVID-19, where policies and interventions tend to be 
highly variable, potentially over short periods of time.

Several limitations need to be mentioned. First, our 
mobile network data was not collected during the whole 
study period. This may lessen the representative qual-
ity for the human activity logs in the time period under 
investigation. Besides, we used a static spatially-depend-
ent network to capture the interaction between locali-
ties rather than the time-dependent connectivity matrix, 
which may better describe the commuting behavior of 
individuals. Second, we assumed a homogeneous mixing 
scenario, which prevents us from examining the interac-
tion between individuals in disease spread. Endeavors 
have been made to clarify the transmission dynamics in 
subgroups (age, gender) using social contact data  [52–
54]. Nowadays, such disease-related data and data on 
human behavior are collected and stored more systemati-
cally with high resolution and subject to specific circum-
stances. Future extensions of the EE framework would 
ideally address some or all of these limitations.

Conclusions
In conclusion, our research focus centered on capturing 
the COVID-19 diffusion at municipality level in Belgium 
through a space-time dynamic model and identifying 
covariates that serve as contributing factors to the virus 
spread. Even though transmission between municipalities 
was observed during the study period, local transmission 
was dominant. We highlighted the positive association 
between the mobility data and the infection spread over 
time. Insight from our study can assist in decisions of 
public health policies, particularly when the disease is 
likely influenced by human movement.
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