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Abstract 

Background The continuous emergence of novel SARS-CoV-2 variants with markedly increased transmissibility 
presents major challenges to the zero-COVID policy in China. It is critical to adjust aspects of the policy about non-
pharmaceutical interventions (NPIs) by searching for and implementing more effective ways. We use a mathematical 
model to mimic the epidemic pattern of the Omicron variant in Shanghai to quantitatively show the control chal-
lenges and investigate the feasibility of different control patterns in avoiding other epidemic waves.

Methods We initially construct a dynamic model with a core step-by-step release strategy to reveal its role in con-
trolling the spread of COVID-19, including the city-based pattern and the district-based pattern. We used the least 
squares method and real reported case data to fit the model for Shanghai and its 16 districts, respectively. Optimal 
control theory was utilized to explore the quantitative and optimal solutions of the time-varying control strength (i.e., 
contact rate) to suppress the highly transmissible SARS-CoV-2 variants.

Results The necessary period for reaching the zero-COVID goal can be nearly 4 months, and the final epidemic size 
was 629,625 (95%CI: [608,049, 651,201]). By adopting the city-based pattern, 7 out of 16 strategies released the NPIs 
more or earlier than the baseline and ensured a zero-resurgence risk at the average cost of 10 to 129 more cases 
in June. By adopting the district-based pattern, a regional linked release can allow resumption of social activity to 
~ 100% in the boundary-region group about 14 days earlier and allow people to flow between different districts with-
out causing infection resurgence. Optimal solutions of the contact rate were obtained with various testing intensi-
ties, and higher diagnosis rate correlated with higher optimal contact rate while the number of daily reported cases 
remained almost unchanged.

Conclusions Shanghai could have been bolder and more flexible in unleashing social activity than they did. The 
boundary-region group should be relaxed earlier and more attention should be paid to the centre-region group. With 
a more intensive testing strategy, people could return to normal life as much as possible but still ensure the epidemic 
was maintained at a relatively low level.
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Introduction
Since the first SARS-CoV-2 case reported at the end 
of December 2019 [1, 2], the COVID-19 pandemic has 
lasted for almost three years, which poses major threats 
to human society. To combat the COVID-19 pan-
demic, a toolkit of non-pharmaceutical interventions 
(NPIs) has been developed worldwide, including wear-
ing masks, social distancing, personal hygiene, testing, 
tracing and isolating infected people to effectively cut 
off the source of infection, etc. [3]. Control interven-
tions tailored to national circumstances are urgently 
needed, with the main objective of designing appropri-
ate or optimal intervention implementation strategies 
in the most cost-effective manner to control the spread 
of SARS-CoV-2. Many countries have made progress in 
this regard over the past three years [4–6]. For example, 
from the outset of the pandemic until May 2022, China 
has experienced dozens of local outbreaks of original, 
Delta and Omicron variants [7–15].

However, as new variants continuously emerge, the 
transmission ability of SARS-CoV-2 is consistently 
increasing [16–20]. For example, the Delta variant first 
discovered in India is 97% more transmissible than the 
original strain [21], and the effective (instantaneous) 
reproduction number of Omicron is 3.19 times greater 
than that of Delta under the same epidemiological 
conditions [22]. Note that the vaccination programme 
has been actively promoted and boosters have been 
administered against the COVID-19 infection, thereby 
reducing the severity of infections, numbers of hospi-
talizations and deaths [23–27]. However, the long-term 
effectiveness of the vaccine is still unknown, as break-
through infections [28–31] indicate a potential risk 
of illness after successful vaccination and subsequent 
infection with a different variant of the virus [31]. As 
a result, outbreaks are becoming more frequent and 
widespread in mainland China. Most recently, the ongo-
ing epidemic in Shanghai, China, reached a peak num-
ber of daily reported cases of 27,605 on 13 April 2022 
[32], which breaks the high number records of all of 
the former local outbreaks in mainland China [33, 34]. 
This brings new challenges to the established control 
policies, which urgently require dynamic adjustments to 
their strategies.

The zero-COVID policy’s principle is to use aggres-
sive interventions to control the cases down to zero 
in a short period. The outcomes of China’s multiple 
indigenous outbreaks mentioned above strongly sup-
port the case for the dynamic zero-COVID policy in 
China. However, the highly increased transmission 
ability of Omicron variants is continuously challenging 
the tolerable controlling period and costs leading to 
the need to alter current policies. The local outbreak in 

Shanghai in March 2022 showed different characteris-
tics from previous local outbreaks in China. For exam-
ple, in the early stage of the epidemic, the intensity 
of the government’s control measures was gradually 
increased rather than imposing a one-time adjust-
ment. After the epidemic was brought under control, 
the government again slowly and gradually released 
the control interventions rather than all at once, which 
was called the step-by-step release strategy. We named 
it the city-based pattern control by regarding Shanghai 
as a whole. In addition, note that the outbreak size and 
epidemic duration in different districts of Shanghai 
varied significantly, and they seemed to correlate with 
the distribution of population density and geographi-
cal location. Is there a strategy to release control inter-
ventions in advance in those areas where the outbreak 
was contained earlier? We try to explore a region-spe-
cific release strategy, which we term a district-based 
pattern.

To quantitatively explore feasible ways to main-
tain epidemics at low levels for the variants with high 
transmissibility is the subject of this study. We use 
a mathematical model to mimic the epidemic pat-
tern of Omicron under the control strength in China 
to quantitatively show the challenges in the control of 
the outbreak of Omicron, and then to investigate the 
feasibility of various combinations of the gradual and 
region-dependent releases of control interventions in 
avoiding other epidemic waves. In addition, we model 
the effects of dynamically changing intervention inten-
sity using optimal control theory, which refers to the 
problem of seeking an optimal amount of control to 
minimize a certain performance indicator for a con-
trolled system under certain constraints. Finally, we 
also conduct a retrospective analysis of the timing of 
the implementation of control interventions in Shang-
hai from a city-based pattern.

Methods
Model overview
Based on a Susceptible- Exposed- Infectious- Isolated 
and Hospitalized- Recovered model structure (SEIHR) 
[35–37], we developed a dynamic model of COVID-
19 transmission in the local outbreak caused by the 
SARS-CoV-2 Omicron variant in Shanghai, as shown 
in model (1) and the flow diagram in Fig. 1. According 
to different physical activity levels, the population not 
being hospitalized can be divided into two subgroups: 
the free population and the quarantined population 
(labelled with subscript ‘q’). The former represents 
the people under closed-loop management, while the 
latter represents other relevant risk groups [38]. We 
assumed that there was no cross infection between the 
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two subgroups. The free population was divided into 
susceptible ( S ), exposed ( E ), infectious ( I  ), and recov-
ered ( R ) classes. The transmission occurs when the 
susceptible population become close contacts of infec-
tious people and become infected with a transmission 
probability β for each contact. In addition, given the 
implementation of a close-contact tracing strategy, 
we assumed that a proportion q of the close contacts 
can be traced and quarantined, moving to the quar-
antined susceptible class ( Sq ) or quarantined exposed 
class ( Eq ) according to whether they are infected or 
not. The untraced population (a proportion 1 −q of 
the close contacts) will stay in the susceptible class 
( S ) if they are not infected (with probability 1-β ) or 
move to the exposed class ( E ) if they are infected (with 
transmission probability β ). Individuals in exposed 
( E ) /quarantined exposed ( Eq ) class will enter into 
the infectious ( I  ) /quarantined infectious ( Iq ) class 
with the transition rate σ , where 1/σ is the incubation 
period. Further, the infectious/ quarantined infectious 
individuals will be isolated and hospitalized after being 
diagnosed, entering into the class H  . Note that in 
China people testing positive for COVID-19 are hospi-
talized, unlike in other countries where this is only the 
case for those who are seriously ill and where transi-
tions from Iq to H  are common. Considering the fact 
that there may exist transmission or new infections 
amongst the quarantined population, we assumed a 
transmission rate βq of COVID-19 from quarantined 
infectious individuals to quarantined susceptible indi-
viduals, which actually equals the contact rate among 
quarantined population times the transmission prob-
ability per contact.

In model (1), c(t) is the contact rate, � is the release rate 
of the quarantined susceptible individuals, δ(t) , δq are the 
diagnosis rates for individuals in compartments I and Iq , 
respectively. γ and γH are the natural recovery rates for 
individuals in classes I and H , respectively. A disease-
related death for the hospitalized population is considered 
with rate d . The compartment D represents the dead class. 

A more detailed description of the parameters and vari-
ables is given in Table 1.

Considering that the package of NPIs was dynami-
cally changing as it was following the development of the 
epidemics, the control-related parameters (the contact 
rate c(t), the diagnosis rate δ(t) and the quarantine rate 
q(t) were assumed to be time-dependent according to the 
implementation schedule of control interventions listed 
in the Supplementary material [38]. Particularly, the con-
tact rate c(t) was given as follows.

where t1 = 33, t2 = 41, t3 = 49, t4 = 59, t5 = 92 by tak-
ing 1 March 2022 as the initial time. Note that the con-
trol interventions were dynamically adjusted to be 
relaxed partially after 28 April 2022 when the contact 
rate was assumed to follow a linear increasing function 
when t > t4 . The diagnosis rate δ(t) and quarantine rate 
q(t) were set to be piecewise constant functions in three 
phases, as defined in Table 1.

Shanghai has 16 districts (Fig. 2(e)), we assumed that 
there was no movement of people between any two dis-
tricts, and the model framework describing the COVID-
19 transmission dynamics in each district was the same 
as that in Shanghai.
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c1, 0 ≤ t < t1, before 2 April,

c2, t1 ≤ t ≤ t2, 2 − 10 April,

c3, t2 < t ≤ t3, 11 − 18 April,

c4, t3 < t ≤ t4, 19 − 28 April,

k(t − t4) + c4, t4 < t ≤ t5, 29 April to 31 May,

Fig. 1 Schematic diagram illustrating the COVID-19 transmission in the local outbreak in Shanghai city, China
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Data
Multi-source epidemic data of COVID-19 related to 
the local outbreak caused by the SARS-CoV-2 Omicron 
variant in Shanghai were obtained from the Shanghai 
Municipal Health Commission [33]. The data are public 
and easily available on the website [33, 34, 38]. Shang-
hai Municipal government announced the start of the 
epidemic by holding a press conference on epidemic 
prevention and control on March 1, 2022, and officially 
announced a major change in the epidemic control policy 
on June 1, so we chose this period to fit the model. The 
data information included a time series of the number 
of daily reported cases between 1 and 2022 and 31 May 
2022, which was further separated into two groups: newly 
reported cases from the non-quarantined population and 

newly reported cases from the quarantined population, as 
shown in Fig. 2(a-d). Note that the newly reported cases 
included both the newly reported COVID-19 positive but 
asymptomatic cases and the newly reported confirmed 
symptomatic cases (excluding those transferred from the 
asymptomatic cases). In obtaining and processing the 
data, we found that the above COVID-19 epidemic data 
could be further divided into 16 groups according to the 
respective residential district of the reported cases. And 
the sizes of the outbreak and duration of the epidemic in 
these 16 districts are quite different. Furthermore, these 
seemed to be related to population density distributions 
and geographical locations. Therefore, 16 districts in 
Shanghai were also considered for in-depth analysis. The 
data were released and analyzed anonymously.

Table 1 Definition and values of parameters and variables in model (1) in the local outbreak in Shanghai

Parameter Definition Value(95%CI) Source
c -- Contact rate among free population -- --

c1 Contact rate before 2 April 31.895[31.072–32.732] Estimated

c2 Contact rate from 3 to 10 April 16.460[15.939–17.011] Estimated

c3 Contact rate from 11 to 18 April 6.823[6.659–6.936] Estimated

c4 Contact rate from 19 to 28 April 8.212[8.012–8.387] Estimated

k Linear increasing rate of contact rate from 28 April to 31 May 0.150[0.147–0.154] Estimated

β Transmission probability per contact among the non-quarantined population 0.085[0.082–0.087] Estimated

βq Transmission rate from quarantined infectious to quarantined susceptible individuals 0.806[0.783–0.824] Estimated

� Release rate of quarantined susceptible individuals 1/14 [38]

σ Transition rate from exposed to infectious 1/3 [42]

q Tracing and quarantine rate -- --

q1 Quarantine rate before 28 March 0.618[0.604–0.629] Estimated

q2 Quarantine rate from 29 March to 14 April 0.757[0.734–0.769] Estimated

q3 Quarantine rate from 15 April 0.799[0.779–0.817] Estimated

δ Diagnosis rate of infectious individuals -- --

δ1 Diagnosis rate before 3 April 0.221[0.214–0.228] Estimated

δ2 Diagnosis rate from 4 to 14 April (Nucleic acid testing once every two days with antigen test-
ing)

0.273[0.267–0.279] Estimated

δ3 Diagnosis rate from 15 April (Nucleic acid testing once per day with antigen testing) 0.374[0.366–0.382] Estimated

δq Diagnosis rate of quarantined infectious individuals 0.642[0.622–0.659] Estimated

γ Natural recovery rate of infectious individuals 1/7 [38]

γH Recovery rate of hospitalized and isolated cases 1/7 [38]

d Disease-related death rate 2.995[2.888–3.079]*e-5 Estimated

Initial value Definition Value(95%CI) Source
S(0) Initial susceptible population 24,900,000 Data

E(0) Initial exposed population 10.535[10.335–10.794] Estimated

I(0) Initial infectious population 1 Data

Sq(0) Initial quarantined susceptible population 277 Data

Eq(0) Initial quarantined exposed population 0 Assumed

Iq(0) Initial quarantined infectious population 1 Data

H(0) Initial hospitalized and isolated population 0 Data

R(0) Initial recovered population 0 Data

D(0) Initial dead population 0 Data
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Model fitting process
The data of COVID-19 in Shanghai and the 16 districts 
between 1 and 2022 to 31 May 2022 were fitted to model 
(1), respectively, to calibrate the model. We firstly fixed 
some parameters in model (1) by reviewing literature, 
which included the incubation period ( 1/σ ), the release 
rate of quarantined susceptible individuals ( � ), the nat-
ural recovery rate of infected individuals ( γ ) and the 
recovery rate of hospitalized individuals ( γH ). The initial 
susceptible population was fixed as the total population 
in Shanghai and the corresponding district, respectively. 
The initial infected quarantined susceptible/exposed/
infected population hospitalized population, recovered 

and dead populations were obtained from the database, 
as shown in Tables 1 and S1-S4.

Next, unknown parameters were estimated by using 
the nonlinear least squares method to fit the model to 
the time series data (between 1 March to 31 May 2022) 
of newly reported cases from the non-quarantined popu-
lation and newly reported cases from the quarantined 
population in Shanghai and the 16 districts. One hun-
dred groups of parameter estimations were obtained by 
perturbing the pre-set values of unknown parameters 
which were assumed to follow the uniform distribution. 
The nonlinear least-squares method was carried out in 
MATLAB, using the “ODE45” function to solve the ODE 

Fig. 2 a-b The daily reported cases between 1 March and 31 May 2022 from a the non-quarantined population and b the quarantined 
population in Shanghai. c-d The accumulative reported cases between 1 March and 31 May 2022 from c the non-quarantined population and 
d the quarantined population in Shanghai. e Distribution of the 16 districts in Shanghai city. The population density was ranked from low to high, 
represented by different colors, as shown in the color bar on the right with values varying from 1 to 16
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system and the “fmincon” function to search for optimal 
solutions of the objective function.

Optimal control problem
We utilized optimal control theory to explore the solu-
tion of the dynamic control strength to maintain the epi-
demic below a targeted level. To this end, we formulated 
an Optimal Control Problem (OCP) to find an optimal 
(time-varying) reduction rate of the contact rate to mini-
mize the cost produced by the prevention and control 
interventions while ensuring that the number of newly 
reported cases is always less than the pre-set threshold. 
The detailed formulation is provided in the Supplemen-
tary material.

We aimed to maintain the number of daily reported 
cases below the targeted number in a finite period T  , 
which was named the control duration. Thus, it is reason-
able to assume that the optimal control program would 
be initialized when the epidemic was controlled to a low 
level, hence a threshold condition which triggered the 
optimal control program was given. The simulations of 
the optimal control problem were completed in MAT-
LAB with the help of OpenOCL- Open optimal control 
library [39].

Results
Baseline estimation and prediction
The best fitting results of the model to the epidemic data 
of Shanghai city are shown in Fig. 3, correspondingly the 
estimated values of the unknown parameters and initial 
conditions are listed in Table 1. The results showed that 
the number of newly reported cases in Shanghai had 
fallen below 30 on 31 May 2022, and we predicted that 
the zero-COVID goal would be reached on 24 June (95% 
CI: 18 June to 1 July), and the final epidemic size would 
be 629,625 (95%CI: [608,049, 651,201]) if the NPIs’ inten-
sity after 31 May 2022 was maintained as the same as it 
was on 31 May 2022. This is consistent with the result 
in [40], whose estimate is about 626,000. The effec-
tive reproduction number was calculated by using the 
renewal equation method (see details in the Supplemen-
tary material). In addition, the fitting results of the model 
to the respective accumulative number of reported cases 
in the 16 districts are shown in Fig. 3 and the parameter 
estimation results are listed in Tables S1-S4. In addition, 
we obtained the time when the number of daily reported 
cases fell below 5 in each district, which correlated with 
the population density in the corresponding district, as 
shown in Table  S5 in the Supplementary material [41]. 
The results showed that the daily reported number of 
cases in 6 of the 16 districts had fallen to 5 before 24 May 
(on 17 May on average). These districts, Jiading, Songji-
ang, Jinshan, Fengxian, Qingpu and Chongming, were 

just those districts located on the boundary of Shanghai 
city (Fig. 2(e)) with the population density less than 2000 
persons/km2 (Table S5). Meanwhile, the daily number of 
reported cases fell to 5 after 26 May (on 5 June on aver-
age), in the other 10 districts whose population densi-
ties were more than 2000 persons/  km2, much later than 
those in districts with smaller population densities.

The baseline estimation and prediction showed 
that, although the number of newly reported cases 
in Shanghai had fallen below 30 on 31 May 2022, the 
time required to reach the zero-COVID goal would be 
almost 1 month even with the same intensity of NPIs 
as on 31 May 2022. The Shanghai government had 
announced that it would unlock the city from 1 June to 
deal with the subsequent epidemic trend. Therefore, in 
the next section, we investigate how different unlock-
ing strategies / release strategies of the control inter-
ventions (including release patterns and intensities) 
will affect the prevention and control of the epidemic in 
Shanghai and the main epidemic trend.

Feasibility of various strategies centred on the step‑by‑step 
release of NPIs
In this section, we discussed the feasibility of various 
release strategies of Shanghai city regarding the resur-
gence risk and cumulative number of reported cases in 
June. Given that Shanghai had gradually relaxed the 
control interventions from 28 April onwards, NPIs were 
assumed to be gradually relaxed after 28 April, which is 
reflected in the non-decreasing of the contact rate. In 
terms of time, we divide the relaxation into two or three 
phases. For the two-phase strategy, it is composed of a 
continuous release process and a process with unchanged 
control interventions. The contact rate c(t) is conse-
quently assumed to be a piecewise function composed 
of a linear growth function and a constant function, as 
shown in Eq. (3). Correspondingly, the contact rate in the 
three-phase strategy was assumed to be composed of two 
linear growth functions with different growth rates, as 
shown in Eq. (4).

In the above equations, φk or φ1
k , φ2

k were the modifi-
cation factors of the linear growth rate with respect to 
the baseline increasing rate k , tN or t2N was the corre-
sponding time when NPIs were swiftly released, t1N was 

(3)c(t) =
φkk(t − t4)+ c4, t4 < t < tN ,

c(tN ), t ≥ tN .

(4)c(t) =















φ1
k k(t − t4)+ c4, t4 < t < t1N ,

φ2
k k(t − t4)+ c4, t

1
N < t < t2N ,

c(tN ), t ≥ t2N .
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the corresponding time when the linear growth phase 
switched, c(tN ) represents the maximum social activity 
level after the relaxing strategy. Define φc = c(tN )

c1
 , which 

represents the ratio of the resumed social activity level 
to the normal social activity level in pre-endemic dura-
tion, reflecting the ultimate relaxation degree. Then 16 

relaxation strategies were given with different combina-
tions of φc , φk ( φ2

k ) and tN ( t2N ). In fact, strategies 1–6, 
13–16 belong to the two-phase strategy, while strate-
gies 7–12 belong to the three-phase strategy, as shown 
in Fig.  4(a) and Table  2. Figure  4 shows the time-vary-
ing contact rate c(t) after 28 April in each strategy and 

Fig. 3 Fitting results of model (1) to the epidemic data in Shanghai and to the 16 districts, respectively. The two graphs in the first/ second row 
show the fitting of newly reported cases/ cumulative number of reported cases from the non-quarantined population (left) and the quarantined 
population (right) in Shanghai, respectively. The rest of the graphs show the fitting of the cumulative number of reported cases in the 16 districts, 
respectively. The black points represent the reported epidemic data, the solid red curves with the shadow areas are the best fitting curves and their 
95% confidence intervals
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Fig. 4 Changes in contact rates in 16 strategies after 28 April and the corresponding curves of the numbers of daily reported cases in June. 
a Time-varying contact rate in 16 strategies. Different combinations of colors and line types were used to represent different strategies. 
b Time-varying daily reported numbers of cases by adopting strategies 1–8. c Time-varying daily numbers of reported cases by adopting strategies 
9–16. Shadows represented a 10% random perturbation of the simulation results

Table 2 Key parameters of 16 strategies, resurgence probability and the predicted cumulative number of cases under the 
corresponding strategies

Strategy φk   tN φ1

k
, φ2

k
t
1
N
, t2

N
φc P Isum 95%CI

1 1 29 April -- -- 0.26 0% 98 [92–104]

2 1 16 May -- -- 0.34 0% 206 [193–218]

3 1 1 June -- -- 0.41 0% 257 [242–272]

4 1 1 June -- -- 0.6 0% 306 [287–324]

5 1 1 June -- -- 0.8 0% 386 [363–410]

6 1 1 June -- -- 1 53% 514 [481–547]

7 -- -- 1, 2.85 1 June, 14 June 0.6 0% 277 [261–294]

8 -- -- 1, 5.88 1 June, 14 June 0.8 0% 308 [289–326]

9 -- -- 1, 8.92 1 June, 14 June 1 18% 350 [328–371]

10 -- -- 1, 1.42 1 June, 28 June 0.6 0% 267 [251–282]

11 -- -- 1, 2.94 1 June, 28 June 0.8 0% 280 [263–297]

12 -- -- 1, 4.46 1 June, 28 June 1 0% 296 [278–314]

13 2 1 June -- -- 0.57 0% 648 [608–688]

14 3 1 June -- -- 0.72 0% 1604 [1501–1707]

15 4 1 June -- -- 0.88 1% 3928 [3661–4194]

16 5 31 May -- -- 1.01 91% 9607 [8910–10,304]
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the corresponding time-varying daily reported cases 
between 1 and 30 June. Table 2 lists the combination of 
each strategy and the resurgence risk ( P ) and the cumu-
lative reported number of cases ( Isum ) between 1 and 30 
June. In the 16 strategies, strategy 3 was the baseline esti-
mation scenario.

The results showed that strategies 4, 5, 7, 8, 10, 11, 12 
would be more preferred choices, which would not trig-
ger a resurgence or lead to significantly increased num-
bers of reported cases (see Table 2) while social activity 
could be resumed to higher levels (greater φc than the 
baseline scenario) without delaying the relaxation timing. 
The relaxation strategy adopted by the Shanghai govern-
ment in reality was to swiftly relax NPIs on 1 June, which 
led to 304 reported cases in June. This is closest to the 
relaxation strategy 4, leading to 306 (95%CI: [287–324]) 
reported cases in June. However, an intense relaxation 
strategy of NPIs, for instance, strategies 6 or 9, which 
completely relaxed the NPIs too early (resuming to the 
normal social activity quickly with φc = 1 ) would lead to 
a high resurgence risk of 53% or 18%, with corresponding 
Isum being 514 (95%CI: [481–547]) or 350 (95%CI: [328–
371]) respectively. Worse still, accelerating the relaxation 
strategy between 28 and 28 and 31 May would signifi-
cantly cause more infections in June (strategy 13–16). 
Particularly, in strategy 16, the NPIs were acceleratively 
relaxed after 28 April and social activity was completely 
resumed to the normal condition on 31 May, so the 
COVID-19 outbreak in Shanghai would flare up quickly 
due to the high transmissibility of the Omicron variant 
and the continued existence of an infectious source.

Furthermore, by focusing on a relaxation strategy simi-
lar to the real case in Shanghai, namely, releasing gradu-
ally first after 28 April and then jumping to a constant 
level at time tN , we produced contour plots of the resur-
gence risk  P(φc, tN ) and the total number of reported 
cases Isum(φc, tN ) in June with respect to the resumed 
social activity level ratio φc and the swift relaxation tim-
ing tN , as shown in Fig.  5. The results showed that a 
greater φc should be combined with a later tN to reduce 
the resurgence risk or maintain a lower total number of 
reported cases in June. That is, to resume social activity 
levels close to normal, the swift relaxation timing must 
be postponed in order to avoid resurgence. For example, 
if the social activity level was supposed to be resumed 
to the normal condition ( φc = 1 ), then the swift relaxa-
tion timing should not be earlier than 15 June, other-
wise resurgence would probably occur, verifying the case 
in strategy 6. Furthermore, there was a critical curve 
of φc  and tN (the green dotted curve in Fig.  5(a)) below 
which the resurgence risk P(φc, tN ) was always 0. We 
observed that the critical curve was close to a horizontal 
line when φc was approximately 0.85 and tN was between 
18 May and 1 June. This also indicated that the resur-
gence risk P(φc, tN ) was more sensitive to the resumed 
social activity level ratio φc . However, it follows from 
Fig. 5(b) that the situation seems to be the opposite for 
the total number of reported cases Isum(φc, tN ) , which is 
more sensitive to the swift relaxation timing tN . This was 
mainly attributed to the earlier relaxation timing being 
correlated with a larger susceptible population, which 
may cause more infections once the NPIs were swiftly 

Fig. 5 Contour plots of (a) the resurgence risk P(φc , tN) in June 2022, (b) the cumulative number of daily reported cases in June 2022, with respect 
to the resumed social activity level ratio φc and the swift relaxation timing tN . The green dotted curve in (a) below which the resurgence risk 
P(φc , tN) was always 0. Taking strategy 4 as a case, the red points represented the location of ( φc , tN ), namely, φc = 0.6 , tN was 1 June
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released. We also observed that given the preset value 
of φc , postponing tN between 18 May and 1 June would 
significantly reduce the cumulative number of reported 
cases in June while had little impact on the resurgence 
risk. That is, later unlocking of the city would not reduce 
the resurgence risk. This illustrated that a declining trend 
of the daily number of reported cases should not be taken 
as the only index to inform the unlocking timing.

Feasibility of regional linked release of NPIs
In the above analysis, the feasibility of various relaxation 
strategies was investigated by taking Shanghai city as a 
whole. However, the baseline estimation results showed 
that the 16 districts in Shanghai could be further divided 
into two groups according to the time when the number 
of newly reported cases dropped to 5, the geographical 
location and the population density, as shown in Table 
S5. In the 6 districts whose population density was less 
than 2000 persons/km2 and located on the boundary 
of Shanghai city (including Jiading, Songjiang, Jinshan, 
Fengxian, Qingpu, Chongming), the number of newly 
reported cases had dropped to less than 5 before 24 May 
(17 May on average). We named these 6 districts the 
boundary-region group (all of them are located on the 
boundary of the city). For the other 10 districts, whose 
population density was relatively higher (more than 2000 
persons/km2) and located in the centre of the city, the 
newly reported cases had dropped to less than 5 after 
25 May. We named theses 10 districts the centre-region 
group. Then it is reasonable to discuss whether it is fea-
sible to resume social activity between/in districts in the 
boundary-region group in advance [40, 43, 44].

Based on the baseline estimation in each district, we 
assumed that NPIs were completely relaxed once the 
number of daily reported cases in the corresponding 
district dropped below 5, that is, the social activity level 
was resumed to the normal ( φc = 1 ) in each district suc-
cessively, as shown in Fig.  6(a). The results showed that 
a resurgence would not occur and the total number of 
cumulative reported cases in June Isum for the bound-
ary-region group was 187 (95%CI: [176–199]), which 
was 150 cases more than that in the situation without 
relaxing the NPIs (37 cases in total). Furthermore, we 
considered that the linked relaxation strategy of resum-
ing social activity in the boundary-region group to a 
normal level on 11, 17 and 24 May, respectively, which 
were the earliest, average, latest times for the succes-
sive relaxation strategy, as shown in Fig. 6(b). The results 
revealed that, the total number of reported cases in June 
adopting the linked relaxation strategy on 11 and 24 
May would be 355 (95%CI: [330–379]) and 66 (95%CI: 
[62–70]), respectively. However, if the boundary-region 
group adopted the strategy of linked relaxation of NPIs 

completely ( φc = 1 ) on 17 May, there would be only a 
6% chance of resurgence, and the total number of cases 
reported in June Isum would be 156 (95%CI: [146–167]), 
close to the successive relaxation strategy. This indicated 
that Shanghai could safely relax NPIs to resume normal 
social activity levels in the boundary-region group by 
mid-May. In addition, the contour plots of the resurgence 
risk P(φc, tN ) (Fig. 6(c)) and the total number of reported 
cases Isum  (Fig.  6(d)) in the boundary-region group in 
June with respect to the resumed social activity level ratio 
φc and the regional linkage release timing tN , showed a 
similar conclusion as that in the city-wide relaxation 
strategy (Fig. 5). The relaxation timing of the boundary-
region group could be brought forward two days if the 
social activity levels were resumed to 90% of the normal 
level, to avoid a resurgence and maintain a low number of 
reported cases.

In both the regional linked and the city-wide relaxation 
strategies, we aimed to design effective strategies to relax 
NPIs as much and early as possible, to avoid a resurgence. 
To prepare for a long-term fight against the COVID pan-
demic, a shifting policy aiming to maintain the epidemic 
below a certain level may be preferred rather than the 
zero-COVID policy accounting for the continuous muta-
tions of SARS-CoV-2 variants and frequent local out-
breaks caused by imported cases. This will be analyzed in 
depth in the next section.

Results of optimal control in flattening the epidemic curve
In this section, we explored optimal solutions of the con-
tact rate to maintain the number of daily reported cases 
below a pre-set threshold within the control duration, 
under different scenarios with varying testing intensi-
ties (different values of the diagnosis rate). Firstly, given 
a pre-set threshold of 10 of the daily number of reported 
cases and the control duration of 12 months, we obtained 
the optimal solutions of the contact rate c(t) in Fig. 7(b) 
to maintain the daily number of reported cases below 
the threshold within the control duration with various 
diagnosis rates of 0, 0.2δ , 0.4δ , 0.6δ , 0.8δ , δ , where δ = δ3 . 
Here, the initial time for starting the optimal control pro-
gram was 104 days after 1 March. The corresponding 
time-varying number of daily reported cases is shown in 
Fig. 7(a), which decreased at first and then increased, but 
was maintained below the threshold of 10 throughout 
the control duration. This phenomenon was mainly due 
to the activation of optimal control with relaxed NPIs by 
resuming the contact rate to a relative high level. Then 
both the optimal contact rate and the number of daily 
reported cases tended to be constant. Furthermore, a 
higher diagnosis rate was correlated with a higher opti-
mal contact rate while the number of daily reported cases 
remained almost unchanged. If the testing strategy was 
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implemented every week (the diagnosis rate ≈ 0.4δ3 ), 
then social activity could only be resumed to about 55% 
of the normal level, to maintain a low epidemic level. 
However, if the testing strategy was implemented about 
every 2.6 days (the diagnosis rate was set as δ3 ), the daily 
number of reported cases could be maintained below 
10 within 12 months even if social activity were to be 
resumed at 95% of the normal level ( φc = 0.95 ). This 
meant that, with a more intensive testing strategy, more 
social activities could be resumed and people could 
return to normal life as much as possible but still ensure 

the epidemic was maintained at a relatively low level, 
which indicated the necessity of the normalized test-
ing program in helping the resumption of social activity 
under the optimal control framework. The partial picture 
showed the comparison between the optimization results 
of the first 30 days and the real data of Shanghai in June. 
Obviously, the reported numbers of cases in Shanghai did 
indeed follow a low-level epidemic pattern in the average 
sense.

We also present the optimization results when the 
acceptable threshold was preset as 100 or 1000 (see SI 

Fig. 6 a Different situations of relaxation with φc = 1 in each district in the boundary-region group when the number of daily reported cases is 
maintained below 5, b the boundary-region group relaxations with φc = 1 as a whole by 11, 17 and 24 May, respectively, after the regional linked 
relaxation, a 10% disturbance was added to the epidemic curve as a shadow to distinguish it. The red points indicate the situation of regional linked 
relaxations (RR) on 17 May. Contour plots of c the resurgence risk P(φc , tN) in June 2022, d the cumulative number of daily reported cases in June 
2022, with respect to the resumed social activity level ratio φc and the swift relaxation timing tN . Taking one of the linked relaxation strategies as a 
case, the red points represented the location of ( φc , tN ), namely, φc = 1 , tN was 17 May
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Fig. 2). A similar phenomenon to that of the daily number 
of reported cases decreasing at first and then increasing 
was observed during the first two months of the control 
duration. The results showed that for the case of a thresh-
old of 10 or 100, the optimal contact rate was supposed 
to be almost c1 with δ = δ3 , while for the case of a thresh-
old of 1000, the optimal contact rate was supposed to be 
less than 80%  c1 with δ = δ3 . This indicated that, if the 
goal was to maintain the number of daily reported cases 
below 10 or 100, then the social activity level could be 
resumed to almost 100% ( φc ≈ 95% ) of the normal level. 
However, if the goal was to maintain the number of daily 
reported cases below 1000, the social activity level could 
only be resumed to 80% of the normal level at most, even 
with a strict testing strategy.

Retrospective analysis in the city‑based pattern
We observed the obvious feature of the current round 
of the epidemic in Shanghai is that the government 
responded late in the early stage, which led to the rapid 
growth of the index in the early stage, resulting in such 
a huge scale of the epidemic, compared to other epi-
demics in China in the past two years. We therefore did 
some retrospective analysis by assuming that the control 
interventions were implemented τ days in advance with 
τ = 0,3,5,7,10,14., as shown in SI Fig. 3. It was found that 
if all control interventions were brought forward by two 
weeks, the cumulative numbers of cases are reduced by 
around 96.4%. We further verified the importance of the 
diagnosis rate in the retrospective analysis of SI Fig. 4(a)
(b). If the diagnosis rate is only 0.5δ3 from the beginning 

Fig. 7 a Curves of daily reported numbers of cases optimized with a threshold of 10 cases with different diagnosis rates. The small inset graph 
shows a comparison between the optimization results of the first 30 days and the real data in Shanghai in June. b The optimized contact rate curve
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of the epidemic, then even if the social activity rate φc has 
been maintained at the level of 0.7, it will lead to a total 
of 7.44  million people infected. If the diagnosis rate is 
maintained at δ3 from the beginning, then even without 
any restrictions on social activities, the infection peak of 
the Shanghai epidemic will not exceed 25,000. In other 
words, this will not be worse than the current situation. 
SI Fig.  4(c) simulates that when NPIs are strict enough 
with q = q3, δ = δ3 , even if the government responds late 
within a certain range, it will not cause a huge outbreak 
of the epidemic which will be out of control. Our discus-
sion of switching time points for tightening or loosening 
control interventions is presented in SI Fig. 4(d), where it 
is shown that when both the diagnosis rate δ = δ3 and the 
isolation rate q = q3 are at their highest levels, the con-
trol of the social activity rate can be adjusted according 
to the number of daily reported cases being dynamically 
adjusted to control the epidemic at a certain low level.

Discussion
The aggressive zero-COVID policy was shown to work 
remarkably well before the Omicron variants swept 
through mainland China [4, 9, 45, 46]. However, the high 
transmissibility of SARS-CoV-2 variants is persistently 
increasing the social and economic costs of control, even 
challenging the affordability of the control and preven-
tion measures [47, 48]. This drives researchers to explore 
the possibility of relaxing the control interventions as 
much and as early as possible while keeping the epidemic 
under control, i.e., avoiding big upsurges of infected 
cases. Correspondingly, in this study, we considered two 
different controlling targets. One was to still control the 
cases down to zero with no resurgence, but choosing to 
partially and gradually relax the interventions at the cost 
of prolonging the epidemic duration and slightly increas-
ing the cumulative number of infected cases. The other 
was to maintain the epidemic at a low level rather than 
controlling the cases down to zero.

A mathematical model was proposed to investigate 
the feasibility of various relaxation strategies of the out-
break caused by the SARS-CoV-2 Omicron variant in 
Shanghai city focusing on the two different control tar-
gets. We firstly calibrated the model by employing multi-
source data (Fig. 3) and estimated the parameters of the 
epidemic in Shanghai city and in each district (Tables 1 
and S1-S4), respectively. A long tail of the epidemic in 
Shanghai was observed and the 16 districts were divided 
into two groups according to the baseline estimation and 
prediction results. Our fitting results on the data can be 
mutually verified with two studies [40, 49], including the 
simulation results based on deep neural networks. Then 
to avoid a big resurgence, we considered a step-by-step 
relaxation strategy with two patterns: the city-based and 

the regional linked (district-based) relaxation strategies 
after 28 April. For the city-based relaxation strategy, we 
initially designed 16 strategies centred on gradual relaxa-
tion of control interventions in two or three stages. We 
observed that there were strategies allowing more social 
activity or later relaxation timings while ensuring zero 
resurgence risk at the cost of a slightly increased number 
of reported cases (strategies 4, 5, 7, 8, 10, 11, 12 shown 
in Fig. 4; Table 2) compared with the baseline situation. 
We found that strategy 4, in which NPIs were swiftly 
released on 1 June to resume the social activity level to 
0.6 times of the normal level, was the closest relaxation 
strategy to that adopted by Shanghai. The contour plots 
in Fig.  5 revealed that the social activity level could be 
further resumed to higher social activity levels without 
causing resurgence or causing more reported cases. For 
the district-based release strategy, the 16 districts were 
divided into boundary-region and centre-region groups. 
We found that the social activity in 6 of the 16 dis-
tricts (the boundary-region group) could be completely 
resumed (to 100% of the normal level) 14 days in advance 
compared with the city-based relaxation strategy. Even 
if people were allowed to flow freely between different 
districts in the boundary-region group, no resurgence 
occurred. The results reflected that there was supposed 
to be a more adventurous relaxation strategy by resuming 
more social activity in Shanghai. A regional linked release 
strategy of unleashing several districts (the boundary-
region group) in advance was recommended and more 
attention should be paid to controlling the epidemic in 
the centre-region group, which is in accordance with 
the results given by a retrospective statistical investiga-
tion [40, 43, 44]. With a purpose to control the epidemic 
at a low level, we also searched for optimal solutions of 
the contact rate using optimal control theory. Given a 
pre-set threshold of 10 of the daily numbers of reported 
cases and a control duration of 12 months, we obtained 
the optimal solutions of the contact rate c(t) to maintain 
the daily number of reported cases below the threshold 
within the control duration with various diagnosis rates. 
We found that a higher diagnosis rate correlated with a 
higher optimal contact rate while the number of daily 
reported cases remained almost unchanged. This means 
that more social activities can be resumed through more 
intensive detection strategies, so that people can resume 
their normal lives as much as possible, while ensuring 
that the epidemic remains at a low level. This showed 
that it is necessary for the normalized testing program / 
regular nucleic acid testing to be maintained in order to 
help to restore social activities under the optimal control 
framework [50–52]. However, this was different from the 
case where the threshold was 10 when the threshold is 
too large, say 1000, then even if we keep the maximum 
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detection rate, the social activity rate will not recover to 
80%. Thus, only when the number of daily reported cases 
is controlled to a very small number and then through 
optimization measures to transition the zero-COVID 
policy to a low-level epidemic can we obtain the expected 
effect, otherwise social activities will still be significantly 
restricted. It is also worth noting that the various levels of 
contact rates given in this paper are only the simulation 
results at the mathematical level, and policy makers may 
refer to the contact rates c1 to c4 of different periods in 
the model fitting part as a reference.

From an overall perspective, we found that the expo-
nential growth in the early stage of the epidemic in 
Shanghai led to such a large scale epidemic, which is 
closely related to the late response of the government in 
the early stage, and thus reflects a new feature that has 
not been seen in other outbreaks in China in the past two 
years. Faced with this dilemma, Shanghai’s lockdown was 
necessary [53]. The retrospective analysis shows that the 
cumulative number of cases in this outbreak could have 
been reduced by about 96.4% if all control measures had 
been implemented two weeks in advance as a whole. 
Lou et al. [54] reached similar conclusions in their retro-
spective analysis of the Shanghai outbreak. If the testing 
strategy was implemented about every 2.6 days, the peak 
number of reported infections per day will not exceed 
25,000, even if there are no restrictions on social activi-
ties. These results highlight the effectiveness and impor-
tance of early nucleic acid testing [51]. In addition, it 
has also shown that as long as NPIs are strong enough, 
that is, the diagnostic rate δ and isolation rate q are both 
high, then the government’s response time is much less 
sensitive to outbreaks. This indicates that strong con-
trol efforts have quite significant inhibitory effects on 
the spread of COVID-19 [55]. Under the same condi-
tions, social activity control can be dynamically adjusted 
according to the daily number of reported cases to keep 
the outbreak at a low level. A retrospective analysis of the 
diagnosis rate confirms its importance.

It is worth noting that our step-by-step relaxation strat-
egies are designed based on linear functions, which is an 
idealized situation. It is well known that the effect of pol-
icy implementation is not direct reality, and any policy has 
a certain lag. In reality, the relaxation of control measures 
is likely to be reflected by nonlinear or even non-mono-
tonic change functions. For Eqs.  (3) and (4) with simple 
forms, the selection of more complex and exquisite func-
tions may need further attempts. In addition, the optimi-
zation problem considered in this paper does not take into 
account economic benefits, while the cost of nucleic acid 
screening in practical scenarios and other factors should 
not be ignored by policy makers. The optimal results 
given by the model may still be a short distance from the 

real implementation, which is of course a crucial issue 
in the connection between mathematics and real life. In 
particular, the time-varying control strength (i.e., contact 
rate) which is measured in 30 days, as shown in Fig. 7(b), 
still appears insufficient for the precision of the control. 
As for the control of dynamically adjusted social activi-
ties in the retrospective analysis, the scenario we consid-
ered still appears to be slightly limited, and for example, 
SI Fig. 4(d) shows only a tiny fraction of the exploration of 
dynamic optimization. A more flexible approach to tim-
ing and thresholds would help, but it is also a challenge. 
It should not be overlooked that all of the above suggest 
some needs and directions for future research.

Conclusions
Appropriate release strategies could allow earlier and 
more resumption of social activity without causing resur-
gence in the local outbreak caused by the SARS-CoV-2 
Omicron variant in Shanghai. Particularly, a regional 
linked release strategy was recommended to completely 
relax the boundary-region group earlier and more atten-
tion should be paid to the centre-region group. The 
results of optimal control provide a viable case for the 
transformation of the COVID-19 epidemic from pan-
demic to endemic. It is necessary to maintain the nor-
malized testing program in helping the resumption of 
social activity. With a more intensive testing strategy, 
more social activities could be resumed and people could 
return to normal life as much as possible but still ensure 
that the epidemic was maintained at a relatively low level.
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