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Abstract
Background  Coronavirus disease 2019 (COVID-19) is a rapidly developing and sometimes lethal pulmonary disease. 
Accurately predicting COVID-19 mortality will facilitate optimal patient treatment and medical resource deployment, 
but the clinical practice still needs to address it. Both complete blood counts and cytokine levels were observed to 
be modified by COVID-19 infection. This study aimed to use inexpensive and easily accessible complete blood counts 
to build an accurate COVID-19 mortality prediction model. The cytokine fluctuations reflect the inflammatory storm 
induced by COVID-19, but their levels are not as commonly accessible as complete blood counts. Therefore, this study 
explored the possibility of predicting cytokine levels based on complete blood counts.

Methods  We used complete blood counts to predict cytokine levels. The predictive model includes an autoencoder, 
principal component analysis, and linear regression models. We used classifiers such as support vector machine and 
feature selection models such as adaptive boost to predict the mortality of COVID-19 patients.

Results  Complete blood counts and original cytokine levels reached the COVID-19 mortality classification area under 
the curve (AUC) values of 0.9678 and 0.9111, respectively, and the cytokine levels predicted by the feature set alone 
reached the classification AUC value of 0.9844. The predicted cytokine levels were more significantly associated with 
COVID-19 mortality than the original values.

Conclusions  Integrating the predicted cytokine levels and complete blood counts improved a COVID-19 mortality 
prediction model using complete blood counts only. Both the cytokine level prediction models and the COVID-19 
mortality prediction models are publicly available at http://www.healthinformaticslab.org/supp/resources.php.
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Introduction
The new coronavirus pneumonia (COVID-19) is caused 
by the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) [1]. The disease has spread across 222 
countries and caused more than six million deaths [2].

Because of the severe and rapidly developing symptoms 
of this disease, multiple studies have investigated progno-
sis prediction models for COVID-19 patients. Iwendi C 
et al. collected geographical information, travel histories, 
symptoms, and demographic data for the mortality pre-
diction of COVID-19 patients [3]. The AdaBoost strategy 
boosted a random forest classification model and trained 
it over the collected data to achieve a prediction accuracy 
of 94%. Sankaranarayanan S et al. conducted a retrospec-
tive investigation of the mortality prediction using the 
COVID-19 patients recorded in the Mayo Clinic system 
[4]. A modified gated recurrent unit with trainable decay 
weight (GRU-D) network was established using the elec-
tronic health records of their cohort shortly after their 
confirmation of SARS-CoV-2 infections. Finally, Ko H 
et al. fully used the prediction capabilities of deep neu-
ral networks and random forest (RF) models to build an 
ensemble model and achieved a COVID-19 mortality 
prediction accuracy of 92% [5].

Cytokine storm is one of the major factors leading to 
the exacerbation and even death of COVID-19 patients 
[6]. Children with COVID-19 pneumonia showed higher 
levels of serum interleukin-6 (IL-6), interleukin-10 (IL-
10), and tumor necrosis factors-α (TNF-α) than chil-
dren without pneumonia [7]. The cytokine concentration 
was also observed at admission in deceased COVID-19 
patients [8]. For example, the interleukin-8 (IL-8) levels 
were connected with the in-hospital deaths of severe/
critical COVID-19 patients [9]. Multiple studies have 
shown the powers of these cytokines in predicting the 
severity of COVID-19 patients so that clinical practitio-
ners and medical resources may be optimally deployed 
[10].

This study provided an in silico solution for detect-
ing cytokine levels using complete blood counts [11] of 
COVID-19 patients. The detection of cytokine levels 
relied on specialized medical devices such as the optical 
microfiber reader and nanoplasmonic immunoassay [12, 
13], which are not accessible in economically underdevel-
oped areas. This study conducted a comprehensive evalu-
ation of the quantitative correlations between cytokines 
and complete blood counts. The autoencoder (AE) net-
work was used to filter the noisy background information 
of the complete blood count data. The decoded complete 

blood counts were then enriched using principal com-
ponent analysis (PCA). A regression model based on the 
enriched principal component (PC) features was trained 
for the level of each cytokine. The comparative experi-
ments showed that some cytokines’ in silico estimated 
levels showed even more significant associations with 
COVID-19 mortality than their original levels.

Materials and methods
Datasets
One of the largest COVID-19 datasets was released 
from the Tongji Hospital, and detailed information on 
the recruitment and inclusion/exclusion procedures has 
been described in [14]. The Ethics Committee of Tongji 
Hospital approved the study. The data were collected 
from the patients in Wuhan, China, from January 10 to 
February 18, 2020. The study excluded the data of preg-
nant or lactating women and patients under 18 years of 
age, and the data records with a completeness rate of less 
than 80% were also excluded. Follow-up time is defined 
as the duration from admission to death or discharge.

This study used two feature views of the samples, i.e., 
complete blood counts and cytokine levels. The samples 
without both feature views were excluded from this 
study. Only the first complete blood count data were col-
lected for investigations. Patients with the first tests of 
complete blood counts (dataset A) were split into two 
datasets, i.e., patients with inflammatory cytokine lev-
els (A1) and without cytokine levels (A2). Dataset A1 
was then randomly split into 70% training (A1-Training) 
and 30% testing samples (A1-Testing). The samples in 
each dataset are summarized in Table 1. There were two 
groups of samples, i.e., Deceased and Survived. Datasets 
A1 and A2 used the study’s first complete blood count 
data. The baseline characteristics of dataset A are sum-
marized in Additional File 1: Table S1. Only the complete 
blood counts statistically significantly associated with 
the mortality in the samples, with both complete blood 
counts and cytokine levels were kept for further analysis.

This study investigated the mortality prediction of 
COVID-19 patients, i.e., a deceased patient was a posi-
tive sample, and a patient who survived was regarded as a 
negative sample.

Feature selection and classification algorithms
Three feature selection algorithms were used to find the 
best features for the prediction models. First, the features 
were weighted and ranked in descending order of their 
importance in the trained models using support vector 
machine (SVM), adaptive boost (AdaBoost), and RF [15, 
16]. Then the incremental feature selection (IFS) strategy 
[17] was used to find the best subset of features for pre-
dicting the mortality of COVID-19 patients.

Table 1  Summary of the samples in each dataset
A1 A1-Training A1-Testing A2

Deceased 82 57 25 68
Survived 121 85 36 68
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The chosen features were evaluated for the predic-
tion performances using five classifiers, i.e., SVM, RF, 
K-nearest neighbor (KNN), decision tree (CART), and 
the Bernoulli naïve Bayes (NB). SVM learned the maxi-
mized interval between the two classes of samples and 
showed good classification performances on small datas-
ets [18]. CART constructed a decision tree from the root 
node by iteratively dividing the dataset into relatively 
homogeneous subsets using eigenvalues [19]. RF was an 
ensemble learning method based on multiple baseline 
decision tree models for classification or regression [20]. 
The basic idea of KNN was to assign a test sample to the 
class where most of this test sample’s KNNs belong based 
on the pre-defined similarity measure [21]. Finally, NB 
assumed the inter-feature independence and applied the 
Bayesian theorem to calculate the probability of a test 
sample belonging to each class [22].

Feature engineering
AE consists of two sub-networks, encoder and decoder, 
as illustrated in Fig.  1. The encoder sub-network maps 
the input high-dimensional data x into one or several 
hidden layers. The decoder sub-network reconstructs 
the output data y from the encoded information to mini-
mize the difference between y and x results. AE tends to 
retrain only features with high variabilities [19].

PCA was mathematically defined to achieve orthogo-
nal linearity and was fully invertible. PCA has been 
widely used for various purposes, including dimension-
ality reduction, noise suppression, visualization, and 
data compression [23–25]. This study applied PCA to 
the trained AE network’s hidden and output layers. The 
calculated PCs served as the engineered features of a 
regression model to predict cytokine levels. These regres-
sion algorithms were used, including gradient boosting 
regressor (GBR), random forest regressor (RFR), sup-
port vector regression (SVR), and linear regression (LR) 
[26–29].

Statistical analysis and performance evaluation metrics
The area evaluated a binary classification model under 
the receiver operating characteristic (ROC) curve (AUC), 
accuracy (Acc), sensitivity (Sn), and specificity (Sp) [30]. 
Sn and Sp measured the percentages of the correctly pre-
dicted positive and negative samples, respectively [31]. 
The prediction accuracy (Acc) was defined as the propor-
tion between the number of correctly classified samples 
and that of all the samples [32]. AUC was an assessment 
metric between Sn and Sp and served as a parameter-
independent metric for a binary classification model [33].

All the experiments were implemented using Python 
version 3.8.8, sci-kit-learn version 1.0.2, and PyTorch ver-
sion 1.10.1.

Workflow of this study
This study conducted the experiments as illustrated in 
Fig.  2. First, a regression model for the cytokine levels 
was optimized based on the complete blood counts in 
the A1-Training and was tested in the dataset A1-Testing. 
This study used 70% of the samples in dataset A1 as the 
training set and then trained the prediction model for 
the cytokine levels based on the information of the com-
plete blood count. Then the predicted cytokine levels and 
the real complete blood counts were used to predict the 
prognosis of the disease in the remaining 30% of data-
set A1. Finally, the samples of dataset A2 did not have 
cytokine levels and were used as the independent testing 
dataset to validate the model externally.

Results
Both complete blood counts and cytokine levels are 
important for the COVID-19 mortality prediction task
We evaluated complete blood counts and cytokine levels 
on the COVID-19 mortality prediction task, as shown 
in Fig. 3-the 203 samples in dataset A1 were used in this 
experiment. Three feature sets were evaluated, i.e., com-
plete blood count features only (B), cytokine levels only 
(C), and both feature sets (B + C). Three feature selec-
tion algorithms were used to screen for the mortality-
associated features. The ROC curve was defined as the 
relationship between the metrics Sn and its 1-Sp on the 
testing dataset. The metric AUC was the area under the 
ROC curve, and it is a popularly used metric to measure 
the overall performance of a binary classifier [34–36]. A 
larger AUC value suggests a better classification model. 
Therefore, we used AUC to evaluate the classification 
performance of the five classifiers.

The classifier SVM achieved the best AUC values on 
the two datasets, B and B + C, when collaborating with all 
three feature selection algorithms, as shown in Fig. 3. In 
addition, the best overall AUC = 0.9878 for the COVID-
19 mortality prediction task was achieved by SVM using 
the RF-selected features.Fig. 1  The architecture of the autoencoder
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The classifier RF achieved the best AUC values, namely 
0.9272, 0.9306, and 0.9383, using the cytokine levels 
selected by the three feature selection algorithms, Ada-
Boost, RFE-SVM, and RF, respectively. However, slightly 
decreased AUC values of 0.9111, 0.9056, and 0.9133 were 
achieved by the classifier SVM using the cytokine levels 
selected by the three feature selection algorithms (Ada-
Boost, RFE-SVM, and RF, respectively).

It was also interesting to observe that the complete 
blood count and cytokine level contributed useful infor-
mation for the COVID-19 mortality prediction task. 

Their combination achieved even better prediction per-
formances. The cytokine levels alone facilitated the mor-
tality prediction, with an AUC as large as 0.9383. The 
best mortality prediction (AUC = 0.9678) based on the 
complete blood count was achieved by the classifier SVM 
using the AdaBoost-selected features. If we used both 
complete blood counts and cytokine levels, the overall 
best prediction (AUC = 0.9878) was achieved by the clas-
sifier SVM.

This study hypothesized that we could use the cytokine 
level predicted using the complete blood count for the 

Fig. 2  Experimental workflow of dataset A in this study. A similar workflow was performed on dataset B
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COVID-19 mortality prediction task if the cytokine level 
detection devices were unavailable. Thus, we used the 
combination of the feature selection algorithm AdaBoost 
and the classifier SVM to achieve the best AUC value for 
the complete blood count.

Choice of the regression model in feature construction
Figure  4 illustrates that all four regression models gen-
erated the predicted cytokine levels outperforming the 
original cytokine levels on the mortality classification 
performances. PCA is a linear dimensionality reduc-
tion algorithm that uses variance to measure the differ-
ence of data and projects high-dimensional data into a 

low-dimensional representation space. To reduce the 
dimension of the input features of the regression, we 
used PCA to reduce the impact of data noise for the pre-
diction model. We observed that the model’s classifica-
tion performance differed when the number of PCs was 
selected (Fig. 4). Therefore, we chose the number of the 
top-ranked PCs with the best classification metric AUC 
value for the regression model of prognosis prediction.

The regression algorithm LR delivered the overall 
best mortality classification (AUC = 0.9844) using six 
PCs. RFR used eight PCs to estimate cytokine levels 
and was ranked as the second-best regression algorithm 
(AUC = 0.9700). The cytokine levels estimated by GBR 

Fig. 4  Mortality classifications are based on the cytokine levels estimated by the regression models. The training process of the cytokine level regression 
models was conducted on the dataset A1-Training. First, the AE network filtered the complete blood counts and then enriched them with PCA. Next, 
different PCs were loaded to train the regression model to each cytokine level. Finally, the mortality prediction was conducted on the dataset A1-Testing.

 

Fig. 3  The mortality prediction of COVID-19 patients. This experiment used three feature selection algorithms, i.e., AdaBoost, RFE-SVM, and RF. The clas-
sification models were trained using five classifiers, i.e., NB, CART, KNN, RF, and SVM. The data series B, C, and B + C represent the models using complete 
blood counts only, cytokine levels only, and both datasets, respectively. Each model was trained using the dataset A1-Training and tested on the dataset 
A1-Testing.
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and SVR achieved the best mortality classification (AUC 
values of 0.9589 and 0.9511, respectively). The original 
cytokine levels only achieved an AUC value of 0.9383 
for the prediction of COVID-19 mortality. This study 
used the levels of six cytokines, i.e., interleukin-2 recep-
tor (IL-2R), interleukin-8 (IL-8), interleukin-10 (IL-10), 
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), 
and interleukin-6 (IL-6). The final best mortality predic-
tion model achieved an AUC value of 0.9844 using five of 
the six LR-estimated cytokine levels, and the level of IL-6 
was excluded from the model.

A further evaluation of the regression performances 
of the five cytokine levels was conducted for the best 
regressor LR, as shown in Fig.  5. The heatmap (Fig.  5a) 
shows that the original cytokine levels had skewed dis-
tributions toward 0, while the predicted cytokine levels 
had smoothed distributions (Fig.  5b). In addition, the 
predicted cytokine levels showed a slightly better dis-
crimination power for COVID-19 mortality by the sim-
ple hierarchical clustering in the heatmaps. This might 
be due to the radical fluctuations of the inflammatory 
cytokine levels in COVID-19 patients. In addition, the 
model-corrected cytokine levels showed much stronger 
associations with COVID-19 mortality.

The following sections used LR as the regressor for the 
six cytokine levels, and the mortality prediction model 
used the levels of the five cytokines, i.e., IL-1β, IL-2R, 
IL-8, IL-10, and TNF-α.

Statistical analysis of the original and predicted cytokine 
levels
We evaluated the statistical associations of each cyto-
kine’s original and prediction levels with COVID-19 mor-
tality, as shown in Fig.  6. The Mann-Whitney Wilcoxon 
test was used because there were a limited number of 
samples, and most of the cytokine levels did not strictly 
follow the normal distributions [37]. The original levels 
of five cytokines were statistically significantly associated 
with COVID-19 mortality, i.e., IL-6 (p < 0.001), IL-2R 

(p < 0.001), IL-8 (p < 0.001), IL-10 (p < 0.001), and TNF-α 
(p < 0.05). The original level of IL-1β showed no statistical 
significance (p = 0.9701) with COVID-19 mortality. While 
the predicted levels of all six cytokines showed significant 
associations, their associations with COVID-19 mortality 
were more significant than their original levels.

The statistical analysis suggested that the predicted 
cytokine levels captured the hidden inflammatory parts 
of the cytokine levels with significant associations with 
COVID-19 mortality, while the original cytokine levels 
may also always accomplish, e.g., IL-1β.

Contributions of the predicted cytokine levels
We further evaluated how the predicted cytokine levels 
contributed to the COVID-19 mortality classification 
task, as shown in Fig.  7. First, the classification models 
using only complete blood counts (B) or original cyto-
kine levels (C) achieved the AUC values of 0.9678 and 
0.9111, suggesting that both complete blood counts and 
cytokine levels were important to predict the mortal-
ity of COVID-19 patient. Interestingly, the classification 
models were improved by adding the feature set pC, cal-
culated from the complete blood count. The feature set 
pC alone achieved a COVID-19 mortality classification 
with an AUC value of 0.9844 on the dataset A1-Testing. 
However, if we had already obtained the original cytokine 
levels, the predicted cytokine levels could not improve 
the mortality classification because both the feature 
sets B + C and B + C + pC achieved the best classification 
(AUC = 0.9856).

The experimental data on the independent testing set 
A2 showed that integrating the predicted cytokine levels 
(pC) improved the mortality classification model using 
only complete blood counts (B) by 0.0145 in AUC. Fur-
thermore, even the PC-based classification model out-
performed that by 0.0108 in AUC using only complete 
blood counts.

The classification data suggested that complete blood 
counts and cytokine levels were important for the 

Fig. 5  Visualization of the original and predicted levels of the five cytokines. The heatmaps were generated for the (a) original and (b) predicted levels of 
the five cytokines after the standard scaling. The samples were hierarchically clustered using the respective cytokine levels. The “Deceased” and “Survived” 
samples were colored red and blue, respectively
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Fig. 7  The COVID-19 mortality classifications use different feature combinations. The complete blood counts and cytokine levels were denoted as feature 
sets B and C, respectively. The predicted cytokine levels were denoted as the feature set pC. The cytokine level prediction models were trained using the 
dataset A1-Training. The evaluation was conducted using the dataset A1-Testing and the independent test dataset A2. Because dataset A2 lacked the 
original cytokine levels, some feature combinations did not show the COVID-19 mortality classification AUC values. The vertical axis displays the classifica-
tion AUC value

 

Fig. 6  Statistical analysis of the original and predicted cytokine levels on the dataset A1-Testing. The statistical significance p-value was calculated using 
the Mann-Whitney Wilcoxon (abbreviated as M.W.W.) test. The P-D and P-S groups represented the predicted cytokine levels in the deceased and survived 
COVID-19 patients, respectively. In contrast, the groups O-D and O-S were the original cytokine levels of the deceased and survived patients, respectively. 
IL-2R: Interleukin-2 receptor, IL-8: Interleukin-8, IL-10: Interleukin-10, TNF-α: Tumor necrosis factor-α, IL-1β: Interleukin-1β, and IL-6: Interleukin-6
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mortality risk predictions of COVID-19 patients. Even 
if we did not know the original cytokine levels, we could 
still improve the mortality classification model using the 
predicted cytokine levels based on the easily accessible 
complete blood counts (Fig. 8).

Discussion
Complete blood counts have been widely used in clini-
cal practice and are often performed during the hospi-
talization of COVID-19 patients. However, few studies 
have investigated the prognosis prediction of COVID-19 
patients using only complete blood counts. Cytokines 
(IL-2R, IL-6, IL-8, TNF-α, and IL-10) were significantly 
associated with in-hospital mortality in COVID-19 
patients [38, 39]. Therefore, hematological abnormalities 
such as high cytokine levels became of substantial inter-
est to the research community as potential prognostic 
factors of COVID-19 deterioration [40]. For instance, the 
early and dramatic rise in IL-10 after SARS-CoV-2 infec-
tion may play a harmful pathological role in the sever-
ity of COVID-19 [41, 42]. Thus, this study quantitatively 
investigated the connections between complete blood 
counts and cytokine levels.

We first investigated whether the complete blood count 
and original cytokine level carried useful information for 
the COVID-19 mortality classification task. The experi-
mental data suggested that the complete blood count and 
original cytokine level alone produced mortality classi-
fication AUC values of at least 0.9300. In addition, their 
combination improved the mortality classification AUC 
to values as high as 0.9878.

Then we evaluated the different numbers of PCs using 
the AE-filtered complete blood count for the regression 
estimations of the cytokine level. The experimental data 
showed that the predicted cytokine levels might improve 
the mortality classification models using only complete 
blood counts.

The statistical analysis also suggested that the predicted 
cytokine levels were more significantly associated with 
COVID-19 mortality than the original levels. For exam-
ple, the cytokine IL-1β showed no differential represen-
tation between the deceased and recovered COVID-19 
patients (p = 0.9701), while the model-corrected IL-1β 
level was significantly associated with COVID-19 mortal-
ity (p = 1.161e-3). Research has shown that IL-1β plays a 
major role in the acute inflammatory response of respi-
ratory infections and promotes the elimination of patho-
gens [43, 44].

The clinical deterioration of COVID-19 patients 
involved multiple pathways, including chemotaxis and 
interleukin production [45]. Mulchandani et al. found 
that severe COVID-19 was characterized by significantly 
increased levels of pro-inflammatory cytokines (IL-6, 
IL-8, IL-10, IL-2R, and TNF- α) [46], which was sup-
ported by our observation that several pro-inflammatory 
cytokines in the dead COVID-19 patients had signifi-
cantly higher levels than those in the alive patients. Lu 
proposed that the combined roles of IL-10 in promoting 
systemic inflammatory cytokine production and stimu-
lating T-cell activation and proliferation in COVID-19 
patients may contribute to a lethal immunopathologi-
cal process [41]. The predicted IL-10 levels in this study 
showed much more significant associations with COVID-
19 mortality (p-value = 3.630e-10) than the original levels 
(p-value = 8.787e-6). IL-8 was a potent neutrophil che-
mokine known to have a role in inflammation and host 
defense [47]. The IL-8 levels recovered from the complete 
blood counts improved the COVID-19 mortality associa-
tion from the p-value = 3.305e-5 of the original IL-8 levels 
to the significance p-value = 3.579e-9.

Unfortunately, it is not always possible to have the 
cytokine levels of COVID-19 patients because of the 
additional detection cost of radioimmunoassay or other 
technologies and the availability of detection devices. 

Fig. 8  Visualizations of the experimental procedure. (a) Flowchart for predicting COVID-19 patients’ survival status using only the complete blood count 
data. (b) Flowchart for predicting COVID-19 patients’ survival status when the complete blood count data and the whole cytokine levels are available

 



Page 9 of 11Wang et al. BMC Infectious Diseases          (2023) 23:622 

However, cytokines play an important role in the prog-
nosis of COVID-19 and other immunological diseases. 
Therefore, this study presented a proof-of-concept 
method to predict the cytokine levels based on the com-
plete blood counts when the cytokine levels cannot be 
measured for the investigated patients.

Comparing the samples with (A1-Testing) and with-
out (A2) the complete blood counts suggested that the 
predicted cytokine levels did not improve or worsen the 
COVID-19 mortality classification. However, the pre-
dicted cytokine levels could improve the mortality clas-
sification if we only had the complete blood counts. Since 
the complete blood counts were more economically 
acceptable than the other clinical diagnosis technologies 
like cytokine detection or medical imaging, the technol-
ogy proposed in this study may be regularly used in clini-
cal practice.

The main limitation of this study was its small sample 
size. This study used one of the largest publicly available 
COVID-19 datasets, but more external validation datas-
ets with spatial-temporal diversities may further improve 
the validity and generalizability of the proposed model. 
In addition, many existing datasets provided fewer fea-
tures than the dataset used in this study. For example, 
some researchers explored clinical and laboratory data 
commonly used in clinical practice to quickly screen 
COVID-19 patients [48]. Similarly, Gök and Avila used 
the available blood analysis data of COVID-19 patients to 
predict their mortality [49, 50]. Lorenzo Famiglini used 
complete blood counts to predict admission to the inten-
sive care unit in the next 5 days [11]. Huyut et al. stud-
ied 2,597 samples to predict the mortality of COVID-19 
patients, but they only had 12 indicators that overlapped 
with our study [51].

Conclusions
This study presented a proof-of-principle investiga-
tion for predicting cytokine levels using complete blood 
counts and demonstrated that the COVID-19 mortality 
classification task could be significantly improved using 
these predicted cytokine levels. It is also interesting to 
observe that the predicted cytokine levels were much 
more significantly associated with COVID-19 mortality 
than the original ones. This suggested that the prediction 
model might have reduced the noise in the original cyto-
kine levels. The exploratory investigation in this study 
suggested that even the test of complete blood counts 
alone could deliver satisfying COVID-19 mortality clas-
sification performances.

The proposed proof-of-principle model was trained 
using the patient samples from the beginning of the 
COVID-19 pandemic and might need to fit better the 
clinical situations in the current post-pandemic phase. 
However, the modeling procedure showed the predicted 

cytokine levels’ positive contributions to the mortality 
prediction of coronavirus-infected populations.
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