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Abstract
Background Decision-makers impose COVID-19 mitigations based on public health indicators such as reported 
cases, which are sensitive to fluctuations in supply and demand for diagnostic testing, and hospital admissions, which 
lag infections by up to two weeks. Imposing mitigations too early has unnecessary economic costs while imposing 
too late leads to uncontrolled epidemics with unnecessary cases and deaths. Sentinel surveillance of recently-
symptomatic individuals in outpatient testing sites may overcome biases and lags in conventional indicators, but the 
minimal outpatient sentinel surveillance system needed for reliable trend estimation remains unknown.

Methods We used a stochastic, compartmental transmission model to evaluate the performance of various 
surveillance indicators at reliably triggering an alarm in response to, but not before, a step increase in transmission 
of SARS-CoV-2. The surveillance indicators included hospital admissions, hospital occupancy, and sentinel cases 
with varying levels of sampling effort capturing 5, 10, 20, 50, or 100% of incident mild cases. We tested 3 levels of 
transmission increase, 3 population sizes, and conditions of either simultaneous transmission increase or lagged 
increase in the older population. We compared the indicators’ performance at triggering alarm soon after, but not 
prior, to the transmission increase.

Results Compared to surveillance based on hospital admissions, outpatient sentinel surveillance that captured at 
least 20% of incident mild cases could trigger an alarm 2 to 5 days earlier for a mild increase in transmission and 6 
days earlier for a moderate or strong increase. Sentinel surveillance triggered fewer false alarms and averted more 
deaths per day spent in mitigation. When transmission increase in older populations lagged the increase in younger 
populations by 14 days, sentinel surveillance extended its lead time over hospital admissions by an additional 2 days.

Conclusions Sentinel surveillance of mild symptomatic cases can provide more timely and reliable information on 
changes in transmission to inform decision-makers in an epidemic like COVID-19.
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Background
COVID-19 is a contagious disease with more than 
6 million deaths reported within two years of the global 
pandemic starting in early 2020 [1, 2]. Prior to the wide-
spread availability of vaccines, policymakers relied on 
non-pharmaceutical interventions or mitigative actions, 
such as lockdowns and business restrictions, to curb the 
spread of SARS-CoV-2 [3–7]. These actions “flatten the 
curve”, allowing governments to reduce the COVID-19 
burden on the healthcare system, maintain the quality 
of care, and save lives. Timely introduction of interven-
tions is important because imposing mitigations too early 
has unnecessary economic costs while imposing too late 
often fails to control the epidemics and leads to many 
preventable cases and deaths. The decision criteria for 
imposing mitigations are often based on public health 
indicators such as reported cases and hospital admissions 
[8].

These commonly-used indicators have limitations 
when used to estimate transmission trends. Cases can be 
biased because they are sensitive to fluctuations in sup-
ply and demand for diagnostic testing [9–11]. Because 
the data needed to adjust for this bias is unavailable, 
cases often provide unreliable approximations of the 
transmission trend. Although hospital admission data are 
less sensitive to fluctuations in testing demands, hospi-
tal admissions lag infection by up to two weeks [12–16]. 
Decisions made based on trends in hospital admissions 
thus may result in delayed action to mitigate an incoming 
epidemic wave. Furthermore, most COVID-19 patients 
do not require hospitalization, making admissions data 
prone to high variability due to small numbers and 
reducing its suitability for decision-making.

Sentinel surveillance of recently-symptomatic people 
in outpatient testing sites could overcome these biases 
and lags [17]. Under outpatient sentinel surveillance, 
symptom status, symptom onset, and date of testing site 
visit are recorded for each case. Sentinel cases here are 
defined as recently symptomatic people with symptom 
onset within 4 days of testing. By focusing on outpatient 
symptomatic cases, the influence of asymptomatic testing 
is removed, and the impact of fluctuations in test avail-
ability is reduced, each of which can introduce selection 
bias. With known symptom onset dates, we can remove 
care-seeking and reporting delays, and more accurately 
infer the infection time series and trends in transmission.

Compared to hospital admissions, sentinel cases 
have a shorter delay between the point of infection and 
detection by the surveillance system. In the event of an 
increase in transmission, sentinel cases should thus 
provide a more timely alarm and enable earlier action 
against a new epidemic wave. The city of Chicago, USA, 
evaluated this surveillance scheme during the COVID-19 
pandemic. Even with few participating testing sites, the 

Chicago Department of Public Health found that sentinel 
cases were indeed more timely than hospital admissions 
in estimating transmission trends [17]. However, the 
estimated trends were less certain due to low sampling 
effort, defined as the proportion of incident symptomatic 
infections captured in the surveillance system.

Understanding the effects of sampling effort is critical 
in evaluating the potential feasibility and benefits of using 
sentinel surveillance to guide decision-making. More-
over, because hospitalization rates are lower in younger 
populations, sentinel surveillance may be especially use-
ful when transmission surges in younger populations 
first, before it surges in older populations, as it had been 
observed in several epidemic waves in the USA and UK 
[18, 19].

Mathematical transmission models can provide insight 
into the potential benefits of an outpatient sentinel sur-
veillance system by assessing the effects of sampling 
effort. Mechanistic models have been used to understand 
disease dynamics, forecast hospital needs, and evalu-
ate intervention scenarios throughout the COVID-19 
pandemic [20–25]. Modeling has been used to inform 
decision-makers about the optimal lockdown, reopen-
ing, and mitigation strategies [26–29]. While mathemati-
cal models have been used to compare testing strategies 
[26, 30–32], few modeling studies have been conducted 
to compare surveillance designs for the timely and appro-
priate imposition of COVID-19 mitigations [33].

To characterize the minimal sampling effort for which 
an outpatient sentinel surveillance system is needed for 
reliable estimation of trends in transmission, we use a 
stochastic compartmental model of SARS-CoV-2 trans-
mission to evaluate the performance of various surveil-
lance indicators and sampling efforts at reliably triggering 
an alarm in response to, but not before, a step increase in 
transmission rate.

Methods
SEIR model and simulation framework overview
We used a published stochastic SEIR compartmental 
model [33] to simulate SARS-CoV-2 transmission and 
COVID-19 disease states (Fig.  1A, see also the model 
description in SI). The model included multiple symp-
tom statuses (asymptomatic, presymptomatic, mild, and 
severe), and multiple severe disease outcomes (requir-
ing hospitalization, critical illness requiring intensive 
care unit (ICU) admission, and deaths). We simplified 
the model by assuming that only severely ill individu-
als would isolate, and that isolation led to lowered 
infectiousness.

We use the model parameters from the previous study 
[33] which set the hospital and ICU lengths of stay 
based on data from Chicago and from literature dur-
ing the first COVID-19 wave beginning in March 2020 
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[34, 35]. This previous study also fitted a time-varying 
transmission rate to the daily ICU census, hospital cen-
sus, and reported deaths in Chicago. See SI for details of 
parameterization.

The original model was simulated using Compartmen-
tal Modeling Software [36, 37]. To improve the com-
putation efficiency in a high-performance computing 
environment, we rewrote and ran the model using a cus-
tom program written in C++ [38] available at [39].

The model state in August 2020, when the transmis-
sion was steady and low [33, 40], was used as a starting 
point for all scenarios. We introduced a step increase in 
transmission (transmission hike) on 17 September 2020 
to induce a new epidemic wave (Fig. 1B). We tested three 
strengths of the transmission hike (mild, moderate, and 
strong). The fitted transmission rate in August 2020 was 
0.116. We hiked the parameter by 18, 36, and 54% to 
0.137 (mild), 0.156 (moderate), and 0.179 (strong). The 
strong transmission hike was based on fitting to Chica-
go’s September 2020 wave, with moderate and weak hikes 
set to 2/3 and 1/3 of the strong hike.

We considered multiple surveillance scenarios for each 
strength of transmission hike. Each scenario tracked one 
surveillance indicator: sentinel cases, hospital admis-
sions, or hospital occupancy. Sentinel cases were drawn 
from incident cases in the mild symptomatic compart-
ment. For sentinel cases and hospital admissions, each 
indicator was used to calculate the daily instantaneous 
reproductive number (Rt). When Rt exceeded 1.05 for 
5 consecutive simulation days, an alarm was triggered. 
We tested several different numbers of days required 
to trigger the alarm (See Figure S1 in SI) and found 
that the 5-day threshold could trigger mitigations early 
enough to prevent a transmission surge with a relatively 
low rate of triggering mitigative action too early (false 

alarm rate, defined below). For hospital occupancy, the 
alarm was triggered based on a threshold number of 
patients in beds. We assume that it would take two days 
for mitigation to be implemented after an alarm. Once 
implemented, mitigation immediately reduced the trans-
mission rate to pre-hike levels, and the transmission rate 
remained the same for the remainder of the simulation 
period. The drop in transmission to the pre-hike level was 
based on the fitted transmission rates in Chicago after a 
new round of mitigation policy was imposed to curb the 
September 2020 wave.

All simulations started 50 days before and ended 150 
days after the transmission hike.

Simulated surveillance and response scenarios
We considered three types of surveillance indicators to 
guide decision-making: sentinel cases, hospital admis-
sions, and hospital occupancy. For sentinel cases, we 
considered sampling efforts of 5, 10, 20, 50, and 100%. 
Sampling effort was defined as the percentage of all 
mildly symptomatic cases (Sm), regardless of isolation 
status, that was captured by surveillance. Sentinel cases 
were calculated by downsampling daily new incident 
mild symptomatic cases by symptom onset date using a 
binomial random draw with corresponding probability. 
Hospital admissions were measured as the daily new inci-
dent admissions to the H compartment on each simula-
tion (i.e., the daily rate of flow from compartment SSi to 
compartment H). Hospital occupancy was the total num-
ber of people in the H and Hp compartments.

On each simulation day, the time series of sentinel sur-
veillance indicators from the simulation start to 3 days 
prior was used to calculate Rt and to evaluate if mitiga-
tions should be imposed. The 3-day offset accounted for 
delays in data collection. For any given symptom onset 

Fig. 1 The model framework used in this study. (A) SEIR model structure to simulate SARS-CoV-2 transmission. S = Susceptible, E = Exposed, A = Asymp-
tomatic, P = Presymptomatic, Sm = Mild symptomatic, Ss = Severe symptomatic, H = Requires hospitalization, C = Critically ill (ICU), Hp = Hospitalization 
post-ICU, D = Death, R = Recovered. All severely symptomatic persons were isolated (SSi) a few days after entering the state and become less infectious. 
(B) Simulated transmission rate begins low and steady, then experiences a step increase (transmission hike) at 3 possible magnitudes to create different 
strengths of epidemic waves. When the surveillance indicator reaches a predetermined threshold, mitigative actions are triggered in the simulation and 
the transmission rate is decreased to its baseline rate
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date, completing the data would require at least 6 days: 
a person who experienced symptoms on that date could 
have tested 4 days later and still be counted as a senti-
nel case. Since we assumed 2 days of test turnaround 
time, this case would only be reflected in the data 6 days 
after the symptom onset date. However, this delay can 
be shortened to 3 days with statistical nowcasting [17, 
41, 42], and that the full numbers of symptomatic cases 
can be reliably estimated from symptomatic cases within 
1 day of symptom onset.

We assumed that the data collection delay was 5 days 
for hospital admissions, based on delays associated with 
admission data in Chicago [17]. We assumed the data 
collection delay for hospital occupancy was only one day. 
The threshold number of patients in beds for triggering 
the alarm was met when occupancy exceeded 152 per 
1  million people for the last 3 days. Occupancy thresh-
olds were chosen based on levels observed in Chicago in 
October 2020 when mitigative actions were announced.

We estimated Rt using the Python package epyestim 
[43–45]. In this package, the input data series is first 
bootstrapped and a locally weighted scatterplot smooth-
ing (LOWESS) filter is applied to each of the boot-
strapped data series for smoothing. We used a smoothing 
window of 21 days for all indicators except sentinel sur-
veillance with a sampling effort of 5%, which required a 
28-day smoothing window to stabilize the Rt trajectory. 
We approximated the generation time using the serial 
interval distribution estimated by [35]. The time between 
infection and symptom onset or hospitalization was esti-
mated using Chicago data (see SI for details).

We simulated 500 realizations for each combination of 
the 3 transmission hike strengths (mild, moderate, and 
strong); 7 indicators (sentinel cases with a sampling effort 
of 5, 10, 20, 50, and 100%, hospital admission and hospital 
occupancy); and 3 population sizes (1.25 million, 2.5 mil-
lion, and 5 million); for a total of 31,500 simulations.

Timeliness, false alarm rate, deaths averted, and extra days 
in mitigation
We compared the performance of each indicator by mea-
suring how timely they were in triggering the alarm for 
taking mitigative actions. Performance was evaluated by 
calculating the median and 90th percentile of the day of 
triggering alarm among the 500 realizations for each sur-
veillance scenario, as well as the false alarm rate. A lead 
time of one indicator over another was calculated from 
the number of days between the median dates (or 90th 
percentile dates) of triggering the alarm. The 90th per-
centile metric reflected the tail-end performance of the 
indicators and was less perturbed by false alarms than 
by using the median. False alarm rates were the propor-
tion of realizations (out of 500) that met the criteria for 

triggering an alarm before the date of the transmission 
hike, hence too early.

To quantify the benefits and costs of using the surveil-
lance indicators in our experiment, we calculated the 
number of deaths averted and the number of extra days 
in mitigation in each simulation run. We used hospital 
occupancy as the reference scenario as it was the slow-
est to trigger the alarm. Each realization in a surveillance 
scenario was compared against the realization with the 
same random number seed in the hospital occupancy 
scenario. We calculated the total number of deaths that 
occurred throughout the simulation period (50 days 
before and 150 days after the transmission hike). Deaths 
averted was the difference between the deaths in the ref-
erence and the comparison realizations. The number of 
extra mitigation days was calculated by subtracting the 
day of triggering the alarm in the comparison realization 
from that of the reference, which is matched by the ran-
dom number generator seed. The mean deaths averted 
and extra mitigation days among all 500 realizations were 
used to characterize the performance of the surveillance 
indicator. In addition, we paired the metrics among the 
six surveillance indicators and conducted paired t-test for 
comparison. We used a Bonferroni correction to control 
for the multiple comparison problem.

We measured the efficiency of each surveillance indica-
tor by calculating the number of deaths averted per extra 
day of mitigation relative to hospital occupancy. This was 
calculated by dividing the average deaths averted by the 
average extra mitigation days.

Age-structured SEIR model
The age-structured model consisted of two SEIR sub-
models, representing two age groups: below and above 40 
years old. The two age groups have a similar size in Chi-
cago (55% vs. 45%), according to American Community 
Survey 2016 to 2020 5-year estimates [46]. The structure 
of each submodel was the same as in Fig. 1A.

We assumed 80% of contacts were within-group and 
20% were between-group. That is, at any time point, the 
force of infection exerted on an age group consists of 80% 
of its own group and 20% of another age group. The force 
of infection is the product of the transmission rate, the 
proportion of the infectious population, and the infec-
tiousness modifiers for asymptomatic or isolated popu-
lations. This inter-group contact rate is lower than that 
estimated from the pre-pandemic period [47, 48] and 
was chosen to maintain distinctive transmission trends 
between age groups such that we could evaluate the abil-
ity of outpatient sentinel surveillance to detect distinct 
trends in younger ages.

As informed by [23], the probability of asymptomatic 
infection given exposure was 59% and 19% for the under-
40 and above-40 age groups, respectively. The probability 
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a symptomatic infection was severe was 3% and 12% for 
the under-40 and above-40 age group, respectively, based 
on CDC’s risk by age group estimates [49]. See SI for 
more details on the parameterization. We assumed that 
the transmission rate for the above-40 age group was 65% 
of that of the below-40 age group due to a lower over-
all level of social contact. All other parameters were the 
same across age groups.

We considered the same scenarios of transmission 
hikes and surveillance indicators as in the base model. 
We simulated transmission under two scenarios: one 
where both age groups experienced the transmission hike 
simultaneously and one where the hike for the above-40 
group lagged the hike in the under-40 group by 14 days. 
We used a population of 2.5  million individuals and a 
moderate transmission hike. We ran 500 realizations for 
each surveillance scenario, 2 lags, and 6 surveillance indi-
cators resulting in 500 × 2 × 6 = 6000 simulations. Indica-
tors and criteria for mitigative action were defined as in 
the base model scenarios. We exclude the hospital occu-
pancy indicator since the purpose of this experiment is to 
compare the timeliness between sentinel cases and hos-
pital admissions and no costs and benefits analysis was 
conducted.

Results
To compare the performance of sentinel surveillance of 
outpatient COVID-19 cases compared to hospital-based 
indicators, we simulated a step increase in transmission 
(“transmission hike”) and evaluated how quickly and 
reliably each indicator could trigger an alarm for taking 
mitigative action while avoiding premature alarms. We 
compared sentinel surveillance systems that captured 
between 5% (low sampling effort) and 100% (high sam-
pling effort) of all mild symptomatic cases. For sentinel 
surveillance and hospital admissions, each data series 
was used to estimate the instantaneous reproductive 
number Rt and the threshold for alarm was met when Rt 
> 1.05 for the previous 5 days. For hospital occupancy, 
the thresholds were set at exceeding 152 per 1 million for 
the previous 3 days and were based on levels observed in 
Chicago in October 2020 when mitigative actions were 
announced.

Sentinel surveillance has an operational recency 
advantage over hospital admissions
Before the transmission hike, all indicators remained 
steady (Fig. 2A). Simulated data series of hospital admis-
sions and sentinel cases with low sampling effort were 
noisier relative to the mean than for hospital occupancy 
or sentinel cases with high sampling effort. After the 
transmission hike, all indicators increased until miti-
gative action was taken. Sentinel surveillance indica-
tors, which report on newly symptomatic individuals, 

generally peaked the earliest, followed by hospital admis-
sions and hospital occupancy.

Data from hospital admissions and sentinel surveil-
lance with a 10% sampling effort produced Rt estimates 
that fluctuated more than Rt estimates produced from 
data from sentinel surveillance with a 100% sampling 
effort (Fig.  2B). In Fig.  2B before the transmission hike, 
Rt estimated from hospital admissions or sentinel surveil-
lance with 10% sampling effort ranged from 0.97 to 1.03 
and from 0.99 to 1.04, fluctuating substantially above 1 
and below 1 while Rt estimated from sentinel surveillance 
with 100% sampling effort remained flat at close to 1 (1.0 
to 1.02).

On a given evaluation date, Rt cannot be estimated for 
the most recent 8 days for sentinel surveillance (Fig. 2C). 
For hospital admissions, the most recent 16 days cannot 
be estimated because the infection-to-hospitalization 
and the hospitalization-to-report lags are both greater. 
The modeled 8-day operational recency advantage of 
sentinel surveillance over hospital admissions is sensi-
tive to the assumed lags and could decrease if data collec-
tion delays for hospital data or lag between infection and 
admission were reduced.

Sentinel surveillance raises alarms sooner and with a lower 
false alarm rate
To reduce time spent under mitigation, a good indicator 
should consistently meet the threshold for triggering an 
alarm closely after, but not before, the transmission hike. 
False alarms are situations where the threshold was met 
before the transmission hike. For each simulation, we 
extracted the day on which the criteria for triggering the 
alarm were met.

Compared to hospital admissions or hospital occu-
pancy indicators, the use of sentinel surveillance indica-
tors could result in sooner alarms after the transmission 
hike and a lower rate of false alarms, depending on a 
few key factors (Fig.  3). Sentinel surveillance most out-
performed hospitalization indicators for larger changes 
in transmission, larger populations, or higher sampling 
effort. In a population of 2.5 million, sentinel surveillance 
with 10 to 100% sampling effort led hospital admissions 
in triggering alarms by a median of 2 to 5 days for a mild 
transmission hike and 6 days for moderate and strong 
transmission hikes. Although sentinel surveillance with a 
5% sampling effort led hospital admissions by even more 
days, this was mainly because of the high false alarm rate. 
When comparing the 90th -percentile day of trigger-
ing the alarm, sentinel surveillance led hospital admis-
sions by 4 to 7 days for a mild transmission hike and 7 
to 9 days for moderate and strong transmission hikes. 
The lead time of sentinel surveillance with 5 to 100% 
sampling effort over hospital admissions was similar for 
populations of 2.5 and 5 million. The lead time advantage 
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in terms of the median day of triggering an alarm disap-
peared in the population of 1.25  million, due to higher 
rates of false alarms. Nevertheless, the lead time advan-
tage in terms of the 90th -percentile day of triggering the 
alarm remained similar to other population sizes under 
moderate and strong transmission hikes.

The false alarm rate, or percentage of realizations that 
raised a false alarm, was substantial for sentinel surveil-
lance with a 5% or 10% sampling effort and for hospital 
admissions. The false alarm rate was similar regardless 
of the size of the transmission hike and decreased with 
increasing sentinel surveillance sampling efforts. Across 
all transmission hikes tested and in a population of 
2.5 million, the false alarm rate was 27 to 28%, 8 to 9%, 
and 17 to 18% respectively for sentinel surveillance 

sampling efforts of 5%, 10%, and for hospital admissions. 
The false alarm rate was lower in a simulated population 
of 5 million: sentinel surveillance with 5% sampling effort 
and hospital admissions each had only a 1 to 2% false 
alarm rate and other indicators had negligible false alarm 
rates. In a smaller population of 1.25 million, false alarm 
rates were higher: even sentinel surveillance with a 20% 
sampling effort had a false alarm rate of 7%.

The hospital occupancy indicator resulted in the latest 
alarm of all indicators considered and did not result in 
any false alarms. Under the mild transmission hike, the 
alarm was raised 80 days after the transmission hike for 
63, 86, and 54% of realizations for populations of 1.25, 
2.5, and 5 million respectively.

Fig. 2 Example trajectories of COVID-19 indicators and their derived Rt, from a single, representative simulation with a population of 2.5 million, moderate 
transmission hike, and alarm triggered by hospital occupancy. (A) Indicators are steady before and rise rapidly after the transmission hike. Arrows: peak for 
each indicator. Vertical dashed line: day of transmission hike. (B) Rt estimated based on each indicator, evaluated on day 60 after the transmission hike. Rt 
could not be estimated using hospital occupancy. Horizontal dotted line: threshold (Rt=1.05) for triggering the alarm. Arrows: day alarm would have been 
triggered based on monitoring Rt for each indicator. (C) Real-time evaluation of Rt demonstrates the operational recency advantage of sentinel surveil-
lance over hospital admissions. Example shown for evaluation day of 20 days after the transmission hike
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These results assume that detecting mild symptomatic 
cases does not lead to isolating behavior and hence low-
ered infectiousness. We modified the model such that 
30% of the mild symptomatic cases were detected and 
isolated, and that 2/3 of these detected mild cases were 
captured by the sentinel surveillance system. We com-
pared the performance of sentinel surveillance with 20% 
sampling effort and hospital admissions. We found that 
the outcomes were similar to that of previous results 
(Figure S2 in SI), suggesting the timeliness advantage of 
sentinel surveillance persists regardless of isolation.

Sentinel surveillance of 20% or more effort averts more 
deaths with fewer extra days of mitigation
To assess the costs and benefits of using sentinel surveil-
lance or hospital admissions indicators to trigger alarms 
and hence mitigation actions, we compared the number 
of additional days spent under mitigation (cost) and the 
number of deaths averted (benefit) relative to a baseline 
scenario with hospital occupancy as the indicator. Days 
under mitigation and deaths were each aggregated over 
the period from 50 days before to 150 days after the 
transmission hike. The most efficient indicator would 
be one that maximizes deaths averted while minimizing 
extra days of mitigation.

As expected, there was a positive relationship between 
the number of additional days of mitigation and deaths 

averted (Fig. 4A). Spending more time under mitigation 
always had a positive impact on deaths averted. Senti-
nel surveillance with 20, 50, and 100% sampling effort 
resulted in similar deaths averted and additional days 
of mitigation, indicating that increasing sampling effort 
above 20% did not substantially change system outcomes. 
Using paired t-tests, we found that Bonferroni adjusted 
p-values ranged from larger than 0.05 to 0.003 among 
using these indicators. Although they are statistically sig-
nificant, the effect size is very small with differences in 
deaths averted smaller than 10 and additional mitigation 
days smaller than 0.5, across all hike strengths.

Within the same size of transmission hike, decreas-
ing sampling effort for sentinel surveillance, or the use 
of hospital admission resulted in larger variation in both 
deaths averted and additional days of mitigation. Using 
sentinel surveillance with 5% sampling effort resulted 
in significantly more deaths averted (80 to 310) and 
more mitigation days (7 to 17) across all hike strengths 
(adjusted p < 0.001). The higher variability in using hos-
pital admissions can be attributed to a higher false alarm 
rate, which imposes mitigation too soon, and late imposi-
tion of mitigations. As a result, the differences in deaths 
averted and mitigation days over sentinel surveillance 
with 20% or more sampling effort are mixed. There was 
no significant difference in deaths averted for mild hike, 
but significantly lower (53 to 124, p < 0.001) for moderate 

Fig. 3 The cumulative distribution of the day on which criteria to trigger alarm was met, by indicator, strengths of transmission hike (columns), and 
population size (rows)
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and strong hike. There were significantly more mitigation 
days for mild hike (4 to 5 days, p < 0.001), but no signifi-
cant difference for moderate and strong hike.

As the size of the transmission hike increased, the num-
ber of deaths averted also increased, whereas additional 
days of mitigation decreased. The mean deaths averted 
per mean additional day spent in mitigation, which 
demonstrates the efficiency of mitigation, are shown in 
Fig.  4B. Deaths averted per additional day of mitigation 
decreased with higher false alarm rates under moderate 
and strong transmission hikes. For sentinel surveillance 
with 20% or more effort, the average deaths averted per 
additional day of mitigation was 10.3, 26.5, and 46.1 for 
mild, moderate, and strong transmission hikes respec-
tively. For hospital admissions, the average deaths averted 
per additional day of mitigation was 9.7, 23.1, and 36.0; 
for sentinel surveillance with 5% effort average deaths 
averted per additional day of mitigation were 9.5, 21.8, 
and 34.8 for mild, moderate, and strong transmission 
hikes respectively.

The timeliness advantage of sentinel surveillance widens 
when transmission increases first in younger ages
Changes in transmission may not affect all age groups 
simultaneously. We simulated SARS-CoV-2 transmission 
in an age-structured model that included two age groups, 
one below and one above 40 years of age. We considered 
two scenarios: one where both age groups experienced 
the step increase in transmission simultaneously and one 
where the step increase for the above-40 group lagged 
by 14 days (Fig.  5A). We compared the performance of 
sentinel surveillance with various sampling efforts to hos-
pital admissions at responding quickly while minimizing 
false alarms.

The alarm was triggered later in scenarios when the 
transmission hike occurred first in the under-40 age 
group (Fig.  5B). When the age groups experienced the 
transmission hike simultaneously, sentinel surveillance 
with 20% or more effort triggered alarm sooner than hos-
pital admissions by a median of 6 days, and a 90th -per-
centile of 7 days. When the transmission hike occurred 
first in the under-40 group, sentinel surveillance with 
greater than 20% sampling led hospital admissions by a 
median of 7 days, with a 90th percentile lead time of 9 

Fig. 4 Deaths averted and additional days spent in mitigation for using sentinel surveillance or hospital admissions indicators as the trigger for impos-
ing mitigation measures, under 3 levels of transmission hikes in a population of 2.5 million, compared with using hospital occupancy. (A) Mean and 90% 
confidence interval of deaths averted and additional days of mitigation, from 500 stochastic realizations per indicator. (B) Average deaths averted per 
average additional day in mitigation for each indicator and its relationship with false alarm rate. False alarm rate is the proportion of simulations in which 
action is taken before the transmission hike.
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days. Overall, staggering the transmission hike to occur 2 
weeks earlier in the younger age group increased the lead 
time of sentinel surveillance over hospital admissions by 
1 to 2 days.

Discussion
Sentinel surveillance of outpatient recently-symptomatic 
cases provides a useful indicator to alert decision-makers 
about increases in SARS-CoV-2 transmission. Compared 
with hospital admissions, sentinel surveillance is less 
variable, reduces the false alarm rate, and provides data 
with shorter lag times, which allows faster reactions to 
changes. The minimal sampling effort required for reli-
able sentinel surveillance indicators varies according to 
the population size and size of transmission increase, 
but generally capturing 20% of mild symptomatic cases 
within the surveillance system was sufficient.

The 8-day operational recency of outpatient sentinel 
surveillance over hospital admissions—that sentinel sur-
veillance can provide up to 8 days warning of changes 
in transmission compared with hospital admissions 
data—can be attributed to shorter delay between infec-
tion and symptom onset, as well as the use of statistical 
nowcasting. Nowcasting has been widely used to esti-
mate the complete case count using incomplete time 
series for COVID-19 and other diseases [41, 42, 50–52]. 
In Chicago, nowcasting could be applied to shorten the 

data collection delay for sentinel cases, but not hospital 
admissions due to inconsistent backfilling [17]. Improve-
ments in reporting speed of hospital admissions data 
would reduce the operational recency of sentinel surveil-
lance to as little as 5 days.

Our study highlights that indicators with small counts, 
e.g., less than 50 per day, can have limited utility in deci-
sion-making due to their high variability, which leads to a 
high false alarm rate. These factors can result in unneces-
sary restrictions, reduce decision-makers’ confidence in 
taking action, and harm public trust in the health system. 
At a given population size, small counts in sentinel sur-
veillance can be overcome by increasing sampling effort. 
On the other hand, hospital admissions are inherently 
limited by severe disease rates of COVID-19.

We defined the threshold for triggering an alarm as 
Rt > 1.05 for 5 consecutive days. Setting the threshold 
higher would have reduced the number of deaths averted 
and decreased the number of days spent in mitigation, 
whereas a lower threshold would have led to more false 
alarms (See Figure S1 in SI, in which we alter the number 
of consecutive days). 1.05 was selected as an acceptable 
middle ground. We expect that factors affecting sentinel 
surveillance performance would be similar if a different 
threshold were chosen.

While false alarms may incur economic costs or reduce 
public confidence in the decision-making process, they 

Fig. 5 Performance of sentinel surveillance and hospital admissions indicators under scenarios when two age groups (below and above 40 years of 
age) simultaneously experience a transmission hike or when a transmission hike occurs 14 days earlier in people below 40 years of age. (A) Transmission 
rate profile for the two scenarios modeled in the age-structured SEIR model. (B) The cumulative distribution of the day on which criteria to trigger the 
alarm was met, using each indicator under the two transmission hike scenarios. Simulations are conducted on a population of 2.5 million experiencing a 
moderate transmission hike with 500 realizations
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resulted in the most deaths averted. However, false 
alarms reduced the efficiency of mitigative action, mea-
sured as deaths averted per additional day spent in miti-
gation. When we removed simulations with false alarms, 
the efficiency of surveillance based on hospital admis-
sions increased or slightly surpassed the efficiency of 
sentinel surveillance (Figure S3 in SI). Nevertheless, the 
overall deaths averted for hospital admissions were 25 to 
35% lower than for high-effort sentinel surveillance under 
a moderate or strong increase in transmission. At similar 
efficiency, the operational recency of sentinel surveillance 
over hospital admissions led to saving more lives.

Hospitalization indicators are more effective at moni-
toring the transmission in older age groups than in the 
population at-large. For example, 80% of all COVID-19 
hospitalizations in Chicago were older than 40 years old 
whereas only 50% of the general population was older 
than 40 years [53]. Outpatient sentinel surveillance thus 
holds an additional timeliness advantage over hospital 
admissions when the younger population experiences 
an increase in transmission earlier than the older popu-
lation. Situations like this were common throughout 
this pandemic, e.g., in Illinois and Florida, USA, during 
their winter and summer 2020 wave [18], and in England 
UK during the Omicron wave in late 2021 [19]. Sentinel 
surveillance for early warning could be especially use-
ful when transmission first increases in a demographic 
group less prevalent in hospitalization data.

We chose a between-age group contact rate of 20% 
to ensure that cases and hospitalizations in those aged 
below 40 were distinctively elevated before those above 
40. More contacts between age groups would disintegrate 
this pattern and erase the additional advantage conveyed 
by the sentinel surveillance over hospital admissions; 
fewer contacts would boost the advantage. This between-
group contact rate is lower than the estimate of 30% that 
is inferred from pre-pandemic age contact matrices [47, 
48], which might have changed significantly due to the 
impact of public health measures and the reduction of 
the number of social contacts [54].

A major challenge in implementing sentinel surveil-
lance is to achieve the minimal sampling effort needed 
for decision-making. In the USA and other countries 
where tests were increasingly abundant after the early 
weeks of the pandemic, attaining a 20% sampling effort 
could have been feasible provided that all outpatient 
testing sites were reliably recording symptom status and 
onset dates. The ascertainment rate for symptomatic ill-
nesses exceeded 30% in these countries [55–59]. How-
ever, this sentinel surveillance system would be impacted 
once at-home antigen testing becomes widely available. 
The visits to outpatient testing sites and the surveil-
lance sampling effort would be reduced. Unless there are 
ways for people to report their home-based test results, 

sentinel surveillance data could become increasingly 
variable and unreliable. New approaches to surveillance 
would be needed. For example, a population-based sur-
vey of symptom information, such as that of the UK’s 
Office of National Statistics [60], could be implemented 
to aid this sentinel surveillance model. Self-reported 
symptom tracking programs such as the ZOE health 
study [61], COVID Symptom [62], and COVID Control 
[63] may complement the surveillance model, although 
maintaining their longevity and public interest remain 
challenging [64].

If questions on patients’ symptom status and symptom 
onset date were embedded into patient intake forms since 
the inception of the testing programs, then the cost of 
implementing outpatient sentinel surveillance would be 
very low. However, changing an existing system to incor-
porate new questions may incur significant technological 
and coordination costs, as it would require a change in 
front-end surveys and databases across multiple testing 
vendors.

Our study setting is based on the first year of the 
COVID-19 pandemic when interventions against trans-
mission were more limited and sentinel surveillance 
would have played the most vital role in decision-mak-
ing. New variants and mass vaccinations could affect our 
findings, as both variants and vaccination can affect the 
likelihood that an infection induces mild but not severe 
symptoms. Furthermore, a variant with higher disease 
severity such as Alpha and Delta [65–69] could reduce 
variability in hospital admission indicators and thus the 
false alarm rate. On the other hand, shortened latent/
incubation period such as that observed for the Omicron 
variant [70, 71] would have shifted the epidemic curve 
earlier without changing the qualitative conclusion, if the 
probability of mild symptoms and severe illness remains 
similar. Although initial vaccine efficacies against mild 
and severe infection were very high [72–74], protection 
against mild infection waned faster than that against 
severe infection, as new variants emerged [75–77]. We 
believe mass vaccinations would make it challenging to 
understand the transmission trend based on any of the 
surveillance indicators alone, especially on hospitaliza-
tion. Surveillance of disease and vaccination status would 
be needed.

Our study did not compare the utility of sentinel sur-
veillance against reported cases and test positivity rates, 
despite the latter two indicators’ prominent role in the 
COVID-19 pandemic. Simulating the time-varying biases 
in cases and test positivity rate is challenging due to the 
lack of understanding of these indicators’ biases over 
time, and demand for tests can fluctuate in response 
to population perception of transmission rates. Imple-
menting outpatient sentinel surveillance can provide 
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important data to correct the biases in cases and test pos-
itivity rates, increasing their utility for decision-making.

Conclusions
Our study shows that sentinel surveillance of recently-
symptomatic cases in outpatient testing sites could be 
feasible, prudent, and effective for informing situational 
awareness in an epidemic like COVID-19. With adequate 
sampling effort of at least 20% of mild symptomatic cases 
captured by surveillance, sentinel cases provide accu-
rate, timely warning of increases in transmission, even 
under heterogeneous transmission conditions. In prac-
tice, decisions should not be based on only one indicator: 
cross-checking with other indicators will provide more 
confidence that action should or should not be taken.
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