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Abstract 

Background Epidemic zoning is an important option in a series of measures for the prevention and control of infec-
tious diseases. We aim to accurately assess the disease transmission process by considering the epidemic zoning, 
and we take two epidemics with distinct outbreak sizes as an example, i.e., the Xi’an epidemic in late 2021 and the 
Shanghai epidemic in early 2022.

Methods For the two epidemics, the total cases were clearly distinguished by their reporting zone and the Bernoulli 
counting process was used to describe whether one infected case in society would be reported in control zones or 
not. Assuming the imperfect or perfect isolation policy in control zones, the transmission processes are respectively 
simulated by the adjusted renewal equation with case importation, which can be derived on the basis of the Bellman-
Harris branching theory. The likelihood function containing unknown parameters is then constructed by assuming 
the daily number of new cases reported in control zones follows a Poisson distribution. All the unknown parameters 
were obtained by the maximum likelihood estimation.

Results For both epidemics, the internal infections characterized by subcritical transmission within the control 
zones were verified, and the median control reproduction numbers were estimated as 0.403 (95% confidence 
interval (CI): 0.352, 0.459) in Xi’an epidemic and 0.727 (95% CI: 0.724, 0.730) in Shanghai epidemic, respectively. In 
addition, although the detection rate of social cases quickly increased to 100% during the decline period of daily 
new cases until the end of the epidemic, the detection rate in Xi’an was significantly higher than that in Shanghai in 
the previous period.

Conclusions The comparative analysis of the two epidemics with different consequences highlights the role of the 
higher detection rate of social cases since the beginning of the epidemic and the reduced transmission risk in control 
zones throughout the outbreak. Strengthening the detection of social infection and strictly implementing the isola-
tion policy are of great significance to avoid a larger-scale epidemic.
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Background
Multiple human cases of novel coronavirus disease 2019 
(COVID-19) caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) were first reported 
in Wuhan, China, from late 2019 to early 2020, although 
the natural source of the pathogen remains unknown [1]. 
Since then, more cases have also been identified in other 
countries or regions of the world, and the trend of trans-
mission has worsened. The World Health Organization 
(WHO) declared the COVID-19 outbreak a pandemic 
on 11 March 2020 [2]. As of November 2022, the global 
spread of COVID-19 has caused more than 631 million 
human infections and 6.5 million deaths worldwide [3]. 
At the same time, with the large-scale spread of COVID-
19, the continuous mutation of the SARS-CoV-2 genome 
has evolved into multiple virus variants, labeled the 
Alpha, Beta, Gamma, Delta and Omicron variants by the 
WHO in chronological order of discovery [4].

To prevent or delay the spread of the disease, different 
countries have adopted different control strategies based 
on their unique sociopolitical backgrounds [5]. In addi-
tion to developing new drugs to relieve the symptoms of 
infected individuals, nonpharmaceutical interventions 
(NPIs) and vaccination are the most effective protec-
tion measures for vulnerable populations in epidemic 
prevention and control [6]. Given that the enhanced 
transmissibility and weakening lethality of SARS-CoV-2 
variants have led to a continuously increased infection 
scale and a reduced mortality rate due to infection [7], 
some countries have adjusted their strategies to live with 
COVID [5].

However, adhering to a strict and strong strate-
gic policy of “dynamic zero COVID”, COVID-19 has 
never become uncontrollable nationwide in China. 
Strict entry quarantine, repeated nucleic acid tests, 
and even enforcing the lockdown of an entire high-risk 
city have been commonly used in past local outbreaks. 
Such strict measures have indeed succeeded in clearing 
infections and thus resulted in an anti-epidemic situa-
tion with Chinese characteristics [8–11]. To reduce the 
adverse impact on economic life caused by the frequent 
implementation of the above measures, the government 
has constantly adjusted the available options as well 
[12]. In particular, similar to green zoning in Europe 
[13, 14], the division of the administrative region as a 
“closed zone”, “control zone” and “prevention zone” has 
been employed in China [15]. The closed zones are the 
communities where the infected individuals live and 
the surrounding areas with frequent activities of the 
infections. Regional closure, staying at home and door-
to-door service are implemented in closed zones. The 
control zone includes regions such as workplaces and 
activity areas, where infected individuals visit two days 

before they develop symptoms or test positive. In con-
trol zones, people cannot leave the area, and gatherings 
are strictly prohibited. The prevention zones are the 
areas outside the closed zone and control zones within 
a specific administrative region, where gatherings are 
strictly limited. Throughout the article, we will collec-
tively refer to the closed zones and the control zones 
as the control zone. In epidemic practice, once a new 
case is reported, the control zone would be expanded 
to cover all the consequent close contacts to ensure 
that any potential infection is epidemiologically con-
trolled. Following epidemic zoning, new cases can also 
be reported in a more detailed manner. Therefore, to 
accurately analyze transmission dynamics, it is neces-
sary to reasonably simulate this dynamic division of 
epidemic zones when establishing infectious disease 
models. It is worth noting that China has greatly eased 
epidemic restrictions on travel and production related 
to COVID-19 in the late 2022. As a result, the identifi-
cation and categorization of infected groups are aban-
doned due to the canceling of the large-scale nucleic 
acid testing. In spite of the policy adjustment, we 
believe that the retrospective analysis of epidemic zon-
ing is still of epidemiological significance, thus enrich-
ing the modeling methods of infectious diseases.

At present, the epidemic zones in infectious disease 
models are mostly described in the form of a network. 
The importance of containment zones within the city 
in containing outbreaks of either animal infectious dis-
eases or human infectious diseases has been verified 
by using a dynamical network-based infectious disease 
model [16, 17]. Liu et  al. [18] proposed the method 
of landscape network entropy, which is a model-free 
method using only the topological structure of the 
district network and daily new case data, and they 
successfully detected the early warning signals of 
COVID-19 outbreaks. Hunter et  al. [19] analyzed the 
influence of commuters between towns on disease 
spread by dividing a region into a network of towns. 
For the epidemiological control of infected cases, the 
susceptible–infectious–removed (SIR) model and its 
variants are commonly used in modeling the transfer 
of infected individuals between different population 
groups. Tang et al. [20] quantified the effectiveness of 
quarantine and isolation by means of an adjusted sus-
ceptible–exposed–infectious–removed (SEIR) model 
that took the isolation of cases into account. A novel 
SEIR-testing, tracing and isolation (TTI) model has 
been proposed to assess the effectiveness of other 
NPIs, where the individuals who are diagnosed would 
be isolated [21].

Although the above models effectively solve the 
problems they were designed to, the construction 
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of the models requires sufficient epidemiological 
knowledge and modeling skills. As Bertozzi et al. [22] 
emphasized, parsimonious models have unique advan-
tages in understanding epidemics, now that they are 
characterized by simplicity and the capacity to isolate 
key epidemiological topics of interest. In the current 
study, we develop a novel parsimonious model that 
takes epidemic zoning into account, thereby accurately 
assessing the time-varying transmission risk of the epi-
demic and providing policy-relevant insights into its 
course.

Materials and methods
To identify the epidemiological difference behind the 
different outbreak sizes, we developed a parsimonious 
model to accurately assess the disease transmission pro-
cess by taking into account the epidemic zoning. First, 
we derived the adjusted renewal equation with continu-
ous case importation by virtue of the Bellman-Harris 
branching theory, and the derivation procedures are 
detailed in the appendix. The adjusted renewal equation 
can be used to describe the iterative process of diseases 
transmission with case migration between zones. Sec-
ond, based on the adjusted renewal equation, we built 
a novel transmission model with epidemic zoning, and 
we comparatively analyzed the transmission dynamics 
of two COVID-19 epidemics involving epidemic zoning, 
so that the driving factors causing the varying outbreak 
sizes can be discovered.

Transmission model with epidemic zoning
Let I st  be the total number of individuals who are infected 
in society. Because of the imperfect coverage of case 
ascertainment efforts, only part of I st  would be reported 
as social cases, i.e., I srt  . On the other hand, the close trac-
ing of newly confirmed cases led to the expansion of the 
control zone, which brings the unidentified cases I sct  into 
epidemic control. We assume that the enlarged con-
trol zone can cover all potentially infected individuals 
except the reported cases so that I srt  and I sct  make up all 
the socially infected cases I st  . If we denote a time-vary-
ing function βt as the proportion of the reported cases 
among all the social infections, then the daily number of 
unreported cases I sct  can be assumed to follow the nega-
tive binomial distribution with the reported cases I srt  , i.e.,

Here, the function βt can be understood as the detec-
tion rate of infected cases in society following its 
definition.

For the control zone, the source of cases can be clas-
sified into two scenarios according to whether there is 
internal infection: (a) perfect isolation policy and (b) 
imperfect isolation policy, which are shown in Fig. 1.

Scenario (a): perfect isolation policy
When the implementation of prevention and control 
measures in the control zone can completely isolate all 
infected individuals, no internal infections occur. That 

(1)I sct ∼ NB(I srt ,βt).

Fig. 1 Scheme plot of case transmission between the control zone and the social zone. The left panel (a) corresponds to Scenario (a) with a 
perfect isolation policy; the right panel (b) corresponds to Scenario (b) with an imperfect isolation policy. The blue arrow indicates that the cases 
are transferred from the social zone to the control zone due to epidemiological control. The red arrow represents the transmission direction, i.e., 
the individual indicated by the arrow is infected by the individual behind the arrow. The green color in the box means that the population number 
is known; the orange color means that the population number is not directly known. The black arrow refers to the inclusion relation of the case 
classification



Page 4 of 11Yuan et al. BMC Infectious Diseases          (2023) 23:242 

is, the newly confined cases I sct  within society that are 
brought under control on day t are actually equal to the 
total number of reported cases that are in control Ict  . 
In this way, all cases reported in the social and control 
zones are sourced from social infections. Since the cases 
I sct  did not test positive socially prior to being brought 
under control, it is reasonable to assume that they are 
not contagious during their stay in society. Let Rs1

t  denote 
the effective reproduction number in society, and let gτ 
denote the probability density function of the serial inter-
val (the same below). Thus, the transmission process can 
be expressed as.

Here, the notation of E refers to the expectation and it 
is used throughout the text.

Scenario (b): imperfect isolation policy
Internal infections are bound to arise when isolation 
measures for infected individuals are not perfect, and 
thus, the reported cases in control Ict  can be further 
classified into I sct  , who are individuals infected in society 
and reported to be under control, and Icct  , who are indi-
viduals infected in control zones and reported in con-
trol zones, i.e., the cases of internal infections within the 
control zones.

Considering that two types of epidemic prevention and 
control measures with different intensities are imple-
mented in the control zone and in the social zone, the 
contact patterns between individuals are also different. In 
control zones, the strictest measures were taken through-
out the epidemic, so the constant transmission inten-
sity of infectious individuals over time can be assumed, 
denoted as Rc . Thus, the propagation process in control 
zones can be characterized by the adjusted renewal equa-
tion as follows:

In the social zone, individuals who have not been 
diagnosed as positive can still move freely, but with the 
development of the epidemic, the scope of movement 
will change, so a time-varying transmission intensity 
can be assumed, denoted as Rs2

t  (here, the superscript s2 
is to distinguish it from the social reproduction number 
R
s1
t  in Scenario (a)). If we maintain the assumption that 

I sct   cannot infect other susceptible individuals before 

(2)E(I srt + Ict ) = R
s1
t •

t

τ=0

I srt−τ gτdτ .

(3)E(I srt + I sct ) = Rc
•

∫ t

τ=0

Ict−τ gτdτ

being controlled, the propagation process in society can 
be written as

Parameter estimation
Next, we solve for all the unknown parameters in the 
above models. In Scenario (a), both I srt  and Ict  are known 
data, so Rs1

t  as a function of time can be calculated by set-
ting the parameter values of the distribution gτ.

However, for Scenario (b), we employ the maximum 
likelihood technique to estimate the unknown param-
eters. Assuming that the daily number of new cases 
reported in control zones follows a Poisson distribution 
with E

(

Ict
)

 as the expectation, the following likelihood 
can be constructed:

where σ is the preset distribution parameter of gτ and 
� contains all unknown parameters that need to be esti-
mated. Here, for the time-varying function βt , we do not 
directly estimate its value at each time point but resort to 
the B-spline with fewer unknown parameters to approxi-
mate the βt curve [23, 24].

With the corrected Akaike information criterion (AICc) 
as the criterion for model selection, the technique of maxi-
mum likelihood estimation (MLE) was employed to obtain 
the optimal estimates of βt and Rc on the platform of R 
software [25]. In sequence, the unobserved cases I sct  can 
be generated following Eq. (1), and immediately, the effec-
tive reproduction number in society Rs2

t  can be calculated 
for each day. All the codes to perform the estimation and 
calculation are available from: https:// github. com/ baoyi 
nyuan/ Epide micZo ning. git.

Two COVID‑19 epidemics
In this study, we applied our new transmission models 
with epidemic zoning to two epidemics with different 
outbreak sizes, i.e., the Xi’an epidemic from December 
09, 2021, to January 17, 2022, and the Shanghai outbreak 
from March 16, 2022, to June 01, 2022. In both epidem-
ics, epidemic zoning according to transmission risk was 
implemented, i.e., the cases were reported by their ascer-
tainment areas. Throughout this study, we categorized 
the cases that were detected in the closed zone or con-
trol zone as the cases that were in control zones, and the 
cases that were detected in the prevention zone or other 

(4)E(I srt + I sct ) = R
s2
t •

∫ t

τ=0

I srt−τ gτdτ
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areas as cases in society. Following this categorization 
rule, we collected the daily number of reported cases in 
control zones and in society for both epidemics from 
the local government website, which are available from: 
https:// github. com/ baoyi nyuan/ Epide micZo ning. git. 
In addition, since the Xi’an epidemic was caused by the 
SARS-CoV-2 Delta variant and the Shanghai epidemic 
was caused by the SARS-CoV-2 Omicron variant, the 
distribution parameters of serial intervals were set sepa-
rately. Specifically, a mean of 3.00 days (standard devia-
tion (SD) 2.48 days) for the serial interval distribution of 
Delta and a mean of 2.75 days (SD 2.53 days) for that of 
Omicron were employed [7, 26].

Results
We applied the model framework proposed above to two 
COVID-19 outbreaks in China, i.e., the Xi’an epidemic 
and the Shanghai epidemic. In the Xi’an epidemic, a total 
of 2054 cases were reported, and the Shanghai epidemic 
caused the largest number of infections since the Wuhan 
outbreak in early 2020, with a total of more than 627,000 
reported cases. Although the outbreak intensity of the 
two epidemics, including the magnitude of the num-
ber of infected individuals and the duration of the out-
break, were very different, the reporting locations of the 
citywide cases were divided into control zones and social 
zones during both epidemics. Thus, for the two epidem-
ics, the epidemic curves of the reported cases per day in 
control zones and in society are shown in the bar plot in 
Fig. 2. In the Xi’an epidemic, nearly 30% of all cases were 
reported in society, and in the declining stage after the 
epidemic peak, there were fewer cases reported in society 
compared to the previous rising stage. In the Shanghai 
epidemic, only 4% of cases were reported in society, and 
similarly, most social cases were distributed in the early 
stage of epidemic growth.

In Scenario (a), which assumed a perfect isolation 
policy in control zones, there were no internal infec-
tions in the control zones for the two epidemics. Under 
this assumption, although there were cases reported in 
the control zones, these cases must have been infected 
in society before they were epidemiologically controlled. 
The effective reproduction number Rs1

t  describes the 
time-varying transmissibility in society over time, as 
shown in Fig. 2. The values of Rs1

t  for both epidemics were 
directly calculated following Eq.  (1). In the Xi’an epi-
demic, the resulting Rs1

t  fluctuated between 6 and 10 in 
the early stage before December 20, 2021, and then until 
the last day of the epidemic, Rs1

t  showed a slow downward 
trend but failed to decrease below the threshold of one. 
A different curve shape of Rs1

t  was observed in the Shang-
hai epidemic. After a fluctuation of approximately ~ 10 in 
the early stage, the value of Rs1

t  rapidly increased to the 

highest level at approximately 50 on April 26, 2022, and 
continued to drop to ~ 10 after two weeks.

Alternatively, internal infections did occur in the con-
trol zones for both epidemics due to the imperfect iso-
lation policy. That is, some of the reported cases in the 
control zones were from social infections, while others 
were due to internal infections in the control zones. Con-
sidering the different population contact patterns in the 
control zones and the social zone, the differential trans-
missibility of the two zones was quantified separately 
for the two outbreaks, as shown in Figs.  3 and  4. The 
constant control reproduction numbers Rc in Xi’an and 
Shanghai were estimated to have medians of 0.403 (95% 
confidence interval (CI): 0.352, 0.459) and 0.727 (95% CI: 
0.724, 0.730), respectively. In contrast, Fig. 4 presents the 
time-varying reproduction number Rs2

t  in society for both 
epidemics. In the Xi’an epidemic, in addition to the large 
value of Rs2

t  in the first week, the overall upward trend 
remained, and the median Rs2

t  fell below the threshold 
value on January 9, 2022. This is highly consistent with 
the decline in the reported case number in society, with 
no consecutive socially reported cases since January 
 9th. For the Shanghai epidemic, in the first 10  days, Rs2

t  
fluctuated from 7 to approximately 3.2 and then rapidly 
increased to a maximum of 11 on April 12, 2022. This 
was also the day when the daily number of total reported 
cases and the daily number of reported social cases 
reached their peak. Since then, Rs2

t  decreased to below 
the threshold value of one on May 10, 2022. During the 
decline period of Rs2

t  , the number of reported social cases 
also decreased from a few hundred cases per day to spo-
radic single-digit cases.

In Fig. 3, the daily values of β(t) as the numerical pro-
portion of reported social cases among all social infec-
tions were estimated to be an intermediate variable for 
calculating the reproduction number in society. Esti-
mates of β(t) for both epidemics exhibited greater uncer-
tainty in the early and late stages of the outbreak due to 
the reduced number of reported social cases. For the 
intermediate stage of the Xi’an epidemic from December 
15, 2021, to January 08, 2022, a more accurate estimate of 
β(t) was obtained with a narrower CI (confidence inter-
val). From December 10, 2021, β(t) grew to the maxi-
mum of 0.7 within six days and then gradually decreased 
to the minimum of 0.21 on January 4, 2022; this phase 
was also the period when Rs2

t  gradually declined. Subse-
quently, the proportion rapidly increased to a level near 
one; that is, at the end of the epidemic, all social infec-
tions were discovered and reported in society. However, 
during the Shanghai epidemic, β(t) showed a very dif-
ferent curve shape. The proportion dropped continu-
ously from 0.5 at the beginning to approximately 0.1 on 
April 10, 2022, when the epidemic curves peaked. What 

https://github.com/baoyinyuan/EpidemicZoning.git
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Fig. 2 The panel at the top corresponds to the epidemic in Xi’an, and the panel at the bottom corresponds to the epidemic in Shanghai. Bars in 
light gray and in dark gray represent the number of daily reported cases in control zones and in society, respectively. The black curve is the effective 
reproduction number Rs1t  through time t  in society, which is calculated by assuming that there are no internal infections in the control zone, i.e., the 
scenario (a) in Fig. 1. The size of Rs1t  is measured by the right y-axis. When Rs1t  is above the threshold value of one, i.e., the horizontal dashed line in red, 
the epidemic shows an upward trend; otherwise, it is under control
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Fig. 3 The panel at the top corresponds to the epidemic in Xi’an, and the panel at the bottom corresponds to the epidemic in Shanghai. The step 
lines represent the change in the daily case counts over time, in which blue is the reported case counts in the control zone, green is the reported 
case counts in society, and the red line and light red area are the median and 95% confidence interval of the case counts in the control zone 
predicted by the model. The table in the upper-left corner corresponds to the estimated reproduction number Rc in the control zone. The black 
curve represents the time-varying proportion β(t) of daily reported cases in society among all the daily infections in society. The size of β(t) is 
measured by the right y-axis
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Fig. 4 The top panel corresponds to the epidemic in Xi’an, and the bottom panel corresponds to the epidemic in Shanghai. Bars in light gray 
and in dark gray represent the number of daily reported cases in control zones and in society, respectively. The black curve is the median effective 
reproduction number Rs2t  through time t  in society, which is calculated by assuming that there are internal infections in the control zone. The gray is 
the 95% confidence interval for the predicted Rs2t  . The size of Rs2t  is measured by the right y-axis. When Rs2t  is above the threshold value of one, i.e., the 
horizontal dashed line in red, the epidemic shows an upward trend; otherwise, it is under control
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followed was a period of slow growth to almost 0.25, and 
it remained there for approximately one week until May 
05. Since then, with an increasing number of days that 
reported zero new social cases, the estimates of β(t) had 
greater uncertainty, and by the end of the epidemic, β(t) 
increased again to approximately one. That is, in the late 
stage of the two epidemics, the detection rate of social 
cases reached the highest level of nearly 100%.

Discussion
In this study, we proposed a novel model framework 
to quantify the transmissibility of infectious diseases 
when the division of reported cases into controlled 
cases and social cases is essential. The model was 
applied to two COVID-19 epidemics with different 
magnitudes of case counts in China, i.e., the Xi’an epi-
demic and Shanghai epidemic. According to whether 
there were internal infections in the control zone, we 
quantified the reproduction number of the epidemic. 
In the scenario without internal infection in control 
zones, the Shanghai epidemic showed an extremely 
large social reproduction number over time, while 
the reproduction number of the Xi’an epidemic was 
relatively small, but until the end of the epidemic, the 
social reproduction numbers corresponding to both 
epidemics did not decrease below the threshold of one. 
The model results seem to verify the inevitability of 
internal infection within control zones.

However, once the existence of internal infections in 
control zones was considered, both our models presented 
sound effective reproduction number curves over time 
in society, which accurately reflected the development 
trend of each of the two epidemics. The social reproduc-
tion number in Xi’an showed a downward trend until it 
was below the threshold of one since the beginning of the 
epidemic, while Shanghai’s social reproduction number 
experienced a continuous growth phase for nearly three 
weeks and then gradually decreased to less than one. In 
the control zone, even if internal infections could not be 
eliminated, the estimated reproduction numbers for both 
epidemics were less than one. Furthermore, we estimated 
the time-varying proportion of reported cases in society 
among all the cases who were infected in society. The 
curve shapes of the proportions were very different in the 
Xi’an epidemic and the Shanghai epidemic; on average, a 
larger proportion of social infections were ascertained in 
society in Xi’an.

There are three lessons to be learned from our exer-
cise. First, by virtue of the Bellman-Harris branch-
ing theory [27–29], we derived an adjusted renewal 
equation that included continuous case importation, 
and based on this equation, we constructed a new 
model framework to cover the case migration between 

epidemic zones. The model framework provides a very 
useful analysis tool to accurately quantify the disease 
transmission when epidemic zoning is involved. More-
over, the model framework is not designed to a specific 
outbreak, but is featured with a good generalizability to 
all infectious disease outbreaks involving epidemic zon-
ing. Second, for both the Xi’an epidemic and the Shang-
hai epidemic, the subcritical transmission process did 
exist within the control zone. Moreover, the smaller 
control reproduction number indicates stricter imple-
mentation of isolation measures in Xi’an than in Shang-
hai, thus avoiding larger-scale internal infections in the 
control zones. Third, the curve of β(t) , which is non-
directly measurable, helps us better understand the 
control efforts of the two cities. The difference in curve 
shape of β(t) between the two epidemics also highlights 
the importance of a more effective case detection effort 
in the early stage before the epidemic develops into the 
exponential growth. When the epidemic scale is small, 
the case detection efforts make it easier to pinpoint 
infected cases, thereby increasing the detection rate of 
cases in society, while during the rapid growth period 
of the epidemic, the government is more inclined to 
enlarge the scope of the control zone to bring more 
potential infections under control within the shortest 
time. Although the expansion of the control zones can 
reduce the infection sources in society more quickly, 
it will also affect more uninfected individuals. There-
fore, more emphasis should be placed on the efficien-
tidentification of social cases in the early stage of the 
epidemic.

The present study was not free from limitations. 
First, we did not consider the impact of case report-
ing errors on the modeling analysis. Under current 
nucleic acid detection capability, it takes approxi-
mately one day for routine testing to obtain results 
from sampling. However, frequent mass screening can 
substantially delay the reporting of sampling results as 
the outbreak grows larger. Second, we assumed time-
invariant distribution parameters of the serial interval, 
but the shortened mean length of the serial interval 
during the epidemic has been reported [30]. Thus, the 
reproduction number in our modeling must have been 
underestimated, especially in the late period of the 
epidemic. Third, the case data we used only included 
locally reported cases, involving no imported cases 
from abroad.

In summary, we retrospectively analyzed the trans-
mission dynamics of the Xi’an epidemic in late 2021 
and the Shanghai epidemic in April 2022 by using our 
newly derived renewal equation with continuous case 
importation. The transmissibility in the epidemiologi-
cally control zones and the uncontrolled areas, i.e., the 
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social zones, has been accurately quantified. In both 
epidemics, internal infections characterized by a sub-
critical transmission process within the control zones 
were confirmed by the model. To prevent a large-scale 
outbreak of the epidemic, we emphasize that early 
detection of infected individuals in society is key.
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