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Abstract 

Background  A pertinent risk factor of upper respiratory tract infections (URTIs) and pneumonia is the exposure to 
major ambient air pollutants, with short term exposures to different air pollutants being shown to exacerbate several 
respiratory conditions.

Methods  Here, using disease surveillance data comprising of reported disease case counts at the province level, high 
frequency ambient air pollutant and climate data in Thailand, we delineated the association between ambient air 
pollution and URTI/Pneumonia burden in Thailand from 2000 – 2022. We developed mixed-data sampling methods 
and estimation strategies to account for the high frequency nature of ambient air pollutant concentration data. This 
was used to evaluate the effects past concentrations of fine particulate matter (PM2.5), sulphur dioxide (SO2), and car-
bon monoxide (CO) and the number of disease case count, after controlling for the confounding meteorological and 
disease factors.

Results  Across provinces, we found that past increases in CO, SO2, and PM2.5 concentration were associated to 
changes in URTI and pneumonia case counts, but the direction of their association mixed. The contributive burden 
of past ambient air pollutants on contemporaneous disease burden was also found to be larger than meteorological 
factors, and comparable to that of disease related factors.

Conclusions  By developing a novel statistical methodology, we prevented subjective variable selection and discre-
tization bias to detect associations, and provided a robust estimate on the effect of ambient air pollutants on URTI 
and pneumonia burden over a large spatial scale.
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epidemiology, Mixed data sampling methods

†Esther Li Wen Choo and A. Janhavi contributed equally to this work.

*Correspondence:
Borame L Dickens
ephdbsl@nus.edu.sg
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-023-08185-0&domain=pdf


Page 2 of 13Choo et al. BMC Infectious Diseases          (2023) 23:379 

Introduction
Upper Respiratory Tract Infections (URTIs), such as 
pneumonia and influenza, are usually characterised by 
irritation and swelling of the upper airways. They are 
caused by a variety of bacteria and viruses and the infec-
tion can vary from a mild cold to life-threatening pneu-
monia [1]. Being one of the most common diseases, the 
global burden of URTI in 2019 is estimated to be 17.2 
billion [2]. Although a majority of URTIs are quite harm-
less, the estimated economic burden of non-influenza 
related viral URTIs in the United States alone is esti-
mated to be 22.5 billion USD [3] and an estimated 2 bil-
lion USD is spent on over-the-counter treatments for 
URTIs [4].

A pertinent risk factor of URTIs is the exposure to 
major ambient air pollutants, such as carbon monoxide 
(CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), 
particulate matter (PM) and ozone (O3) [5]. Short term 
exposures to different air pollutants have shown to have 
detrimental immunological effects, and can exacerbate 
several respiratory conditions, including URTIs [6–10]. 
Whereas long-term exposures to different air pollutants, 
accounted through averaging pollutant measurements 
of past years and looking across large spatial scales, also 
found similar relationships between URTIs and ambient 
air pollutants [11]. Apart from linear relationships, previ-
ous research has also found non-linear effects of PM on 
URTI relative risk [12, 13].

Environmental variables, such as ambient air pollut-
ant and climate measurements, can be collected almost 
instantaneously, but disease case counts are collated on 
daily or lower frequencies due to inherent limitations of 
disease surveillance systems. Exposures to environmental 
variables are also continuously occurring in nature, while 
the exposure and generation time to disease is disjointed. 
The differences in sampling frequencies and the relation-
ships between exposure and response variables therefore 
complicates the analysis of environmental variables with 
that of disease case counts.

As evidenced from previous work looking at dis-
ease cases and ambient air pollution, a common way to 
account for variables of different frequencies comprise of 
averaging the values of higher frequency variables to that 
of a lower frequency [11]. In the case of time series analy-
sis, to further account for the different ways each lagged 
covariate influence disease case counts, multiple lags of 
the covariate of interest may be included into a regres-
sion specification [11]. Crucially, the former leads to the 
loss of valuable information within the higher frequency 
variable, and the latter may lead to overfitting and errors 
in estimation due to the inclusion of many correlated 
parameters. It is thus important to bridge this discrep-
ancy in data sampling frequencies in some optimal way.

To circumvent overfitting and model over-specifica-
tion, mixed data sampling (MIDAS) models deal with 
resolving data collected at different frequencies by tak-
ing the weighting scheme of the higher frequency vari-
able as unknown and parameterized by a function to be 
estimated. It also has several attractive properties, which 
include (1) model parsimony – requiring a small number 
of parameters to incorporate a large number of high fre-
quency lagged observations and (2) flexibility – using a 
flexible, data driven weighing scheme for high frequency 
variables which reduces the possibility for omitted vari-
able bias and model misspecification.

When frequencies are resolved among variables, a cen-
tral related problem is inferring the exposure–response 
functions or curves. In literature, this translates to (1) 
choosing the number of lags in time-series models and 
(2) the number of terms to place into splines or kernels 
within non-linear regression models [14] through diagnos-
tic tests [15], model selection criteria [16] and prior epide-
miological information. Centrally, these measures tradeoff 
between a modeller’s prior on disease and being agnostic 
about assumptions on disease transmission dynamics – 
due to them comparing the discrepancy between the esti-
mated model and observed data. MIDAS incorporates the 
full range of observed exposures as explanatory variables 
into the regression specification and allows the estimation 
procedure to decide appropriately on the temporal impor-
tance of exposures, thereby circumventing either problem.

In this paper, using disease surveillance and ambient 
air pollutant data collected for 2 decades, we employ 
MIDAS to understand the short to medium exposure–
response between URTIs, pneumonia and major ambient 
air pollutants. We compared the ability of MIDAS to fit 
to disease case data versus standard time series models, 
map the subsequent exposure–response curves between 
URTIs, pneumonia and major ambient air pollutants 
across all provinces. By exploiting the large contiguous 
scale on which the data is collected, we also examined 
how these exposure-responses are heterogenous.

Methods
Disease surveillance data
Disease surveillance data was obtained from Thailand’s 
Ministry of Public Health (MOPH) disease surveil-
lance system [17] where we obtained reported disease 
case counts from 2000 to 2022 at the province level. Sus-
pected cases of pneumonia and influenza in provincial 
public health offices, hospitals and all health stations 
were reported through the disease surveillance system 
to the Bureau of Epidemiology, MOPH. Suspected cases 
were defined as patients who had symptoms matching 
the clinical criteria. Private hospitals were not covered by 
the surveillance system. Diagnoses were recorded using 
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10th revision of the International Classification of Disease 
(ICD) codes. As Bueng Khan was split from Nong Khai in 
2011 to form a separate province, we have merged disease 
case counts from Bueng Khan back to Nong Khai from 
2011 onwards, to allow consistent analysis over the time-
frame of the dataset.

Demographic data
Data on annual population size for each province from 
2000 to 2022 was obtained from the Official Statistics 
Registration Systems of Thailand [18]. Similarly, as Bueng 
Khan was split from Nong Khai in 2011 to form a separate 
province, we have merged the population numbers from 
Bueng Khan back to Nong Khai from 2011 onwards, to 
allow consistent analysis over the timeframe of the dataset.

Climate data
Climate data was obtained from ERA5, published by 
the European Centre for Medium-Range Weather 
Forecasts [19]. Each data point covers a 30  km grid, 

which we spatially averaged across each province. 
Mean, median and maximum of total precipitation, 
vegetation index, air temperature at 2 m and dew point 
temperature at 2  m was collected. Relative humidity 
and average humidity were calculated using standard 
formula.

Ambient air pollutants data
Ambient air pollutant data was obtained from NASA’s 
Goddard Earth Sciences Data and Information Services 
Center, GES DISC. The 1-Hourly CO Column Bur-
den, CO Surface Concentration, and 1-Hourly Aerosol 
diagnostics were obtained from Global Modeling And 
Assimilation Office [20] to derive PM2.5 surface con-
centration. The surface model layer of the 3d 3-Hourly 
Aerosol Mixing Ratio was obtained from Global Mod-
elling and Assimilation Office [21] to derive PM1 and 
PM10 surface concentration. These datasets are a part 
of Modern-Era Retrospective Analysis for Research 
and Applications, version 2 (MERRA 2), which is a rea-
nalysis of the modern satellite data, and is produced 
by NASA’s Global Modelling and Assimilation Office 
(GMAO) [22].

Mixed data sampling (MIDAS)
Consider reported disease case counts yτ+1 which 
is observed at the discrete time point between τ 
and τ + 1 and supposed that we have additional 
information arising from a set of V predictors 
x
(m)
τ = (x

(m)
1

, x(m)
τ , . . . , x

(m)
V ) which are observed m times 

between τ and τ + 1 . The variables yτ+1 and x(m)
τ  can 

thus be said to be observed at different frequencies. The 
traditional and simplest manner of dealing with mixed 
frequency data would be averaging the high frequency 
predictors to the same frequency of the dependent vari-
able yτ+1 . However, this approach may result in omit-
ted variable bias and model mis-specification if the 
true weighting scheme is not a simple average [11]. 
The mixed frequency data sampling (MIDAS) frame-
work provides an alternative estimator that can account 
for different weighting schemes in the high frequency 
predictors. Specifically, the approach plugs in the high 
frequency lagged terms of predictors x(m)

τ  in a regres-
sion for the low frequency dependent variable yτ+1 as 
follows:

where yτ−j denotes past disease case counts for a maxi-
mum of py − 1 lags. We can additionally place S exoge-
nous variables zτ−j,s recorded at time τ − j with the same 
frequency as y for a maximum of pz − 1  lags. The high 
frequency predictors x(m)

τ ,v  are shrunk to the same fre-
quency as y and z by a polynomial term B to be defined 
later. α is an intercept term, py autoregressive terms, γ ′

j+1,s 
coefficients denoting the effect of past zs on y and βv are 
coefficients which capture the overall effect of B

(

L
1
m ; θv

)

 
on yτ+1 . We further assume i.i.d and normally distributed 
errors, with mean zero and finite variance σ 2

ǫ :

The polynomial term is given by:

where Lk/m is a lag operator such that L1/m = x
(m)
τ−1/m.θv 

are parameters which provide the shape of the polyno-
mial term. We use the normalized beta probability den-
sity function on the polynomial term B(k , θv) :
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where xk = (k − 1)/(K − 2) . The beta polynomial was 
used as it only requires two parameters θv ∈ {γ1, γ2} to 
specify and generate a large variety of weighting shapes 
[23]. In particular, further restrictions such as { γ1 = 1,γ2 } 
or {1 + γ1, 1 + γ1  + γ2 } allow the weighting structure to 
form only downward sloping and hump-shaped weights 
respectively, which were also explored.

Implementing the MIDAS specification
In order to implement MIDAS, we consider the Bayesian 
paradigm and estimate parameters based on Markov chain 
Monte Carlo (MCMC) methods, which alleviates certain 
issues in frequentist parameter estimation. First, uncer-
tainty and standard errors can be characterized easily using 
credible intervals. Second, the MCMC approach facilitates 
easy modification to allow shrinkage and sparsity, thereby 
allowing unimportant variables to be shrunk closer to zero.

Briefly, we first placed diffuse, conjugate priors 
on both the parameters of the observation equation 
{pj+1, γ

′

j+1,s,βv} and error variance  σ 2
ǫ  . Gibbs sampling 

was used as conditional posterior distributions for these 
parameters were well defined. We also modified the base-
line procedure of sampling parameters in the observation 
equation to induce shrinkage, through incorporating the 
structure of Bayesian Lasso [24]. This comprised chang-
ing the prior for the variance of the error term, to enable 
more probability weight to be placed on 0 for the param-
eters of the observation equation.

Following Ghysels [23], a Gamma distribution is placed 
as a prior on the parameters of the polynomial terms 
{ γ1, γ2} with both shape and scale parameters being 1, 
which amounts to a flat weighting scheme that puts equal 
weight on the high frequency data. The polynomial terms 
were sampled using a random walk Metropolis-in-Gibbs 
step. The Metropolis step is an accept-reject step which 
takes a candidate draw from some proposal distribution, 
with acceptance for that draw is given by a probability 
that depends on the likelihood, parameter’s prior dis-
tribution and the proposal density. In this case, we use 
the Gamma proposal distribution as a proposal density, 
as it corresponds to the functional form of the MIDAS 
weighting polynomial. Full details for the estimation 
strategy are outlined in the supplementary information.

Assessing model performance
Convergence of MCMC chains was first assessed by visual 
inspection of trace plots and Gewecke convergence diag-
nostic checks. Residual autocorrelation is computed for up 

B(k , θv) =
x
γ1−1

k (1− xk)
γ2−1

∑K−1

k=1
x
γ1−1

k (1− xk)
γ2−1

to 20 week lags to ensure that the transmission dynamics are 
properly accounted for in each specification, across models. 
Quantile–quantile plots are used to see whether the specifi-
cations adequately account for the data structure. We addi-
tionally computed 4 other statistics on in-sample model fit, 
namely, the R2 and in-sample mean-squared error to look at 
whether overall variations in data are captured, the adjusted  
R2 to look at whether overall variations in data are captured 
while penalizing larger models. Lastly, the deviance infor-
mation criterion [25] look at whether overall variations in 
data are captured while penalizing larger models with larger 
uncertainty in posterior distributions.

Results
We first merged at the province level, with either monthly 
URTI or pneumonia case counts, climate confounders 
such as mean temperature total precipitation, absolute and 
relative humidity for the past 2 months, as well as ambient 
air pollutants for the past 40 days, recorded at the 6 hourly 
level (Table 1). MIDAS models were estimated with each 
ambient air pollutant taken separately in respective poly-
nomial terms, while controlling for past climate measure-
ments and past disease case counts for up to two months. 
We estimated (1) a baseline autoregressive model consist-
ing of no MIDAS terms and only disease case counts and 
climate measurements for the past 2 months (2) MIDAS 
models with no variable shrinkage (3) MIDAS models with 
variable shrinkage. For (2), (3), we also explored separately 
the utility of placing no restrictions on MIDAS weights, 
downward sloping restrictions on MIDAS weights and 
hump-shaped restrictions on MIDAS weights. These help 
us understand whether constraints or the lack thereof in 
MIDAS weights would provide superior model perfor-
mance compared to alternatives.

Impact of major ambient air pollutants on URTI 
and pneumonia
After adjustment for confounders, SO2, PM2.5, and CO 
over a 40-day period were estimated to be positively 

Table 1  Summary statistics for dependent variables of interest 
and covariates used for MIDAS specification

Variable (unit) Mean Range

Influenza Case Counts (Monthly) 102.13 (0, 13,214)

Pneumonia Case Counts (Monthly) 203.88 (0, 3144)

Absolute Humidity 26.78 (15.7, 40.98)

Relative Humidity (%) 76.36 (45.87, 91.68)

Total Precipitation (mm) 0.18 (0, 1.24)

Temperature (K) 300.08 (290.79, 307.65)

CO Surface Concentration (ppb) 172.19 (50.56, 1090.3)

SO2 Surface Concentration (mu/g) 5.07 (0.05, 59.52)

PM2.5 Surface Concentration (mu/g) 19.05 (1.51, 367.24)
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associated to monthly URTI case counts in 41, 15 and 31 
of 76 provinces, with their 95% credible intervals away 
from zero. In other provinces, ambient air pollutants were 
negatively associated to monthly URTI case counts. On 

average, greatest influence of ambient air pollutants were 
estimated to be around the 20th day mark across prov-
inces (Fig. 1A1-3), but the range of values differed greatly, 
where the 7 – 36, 6 – 41 and 7 – 40 day measurements 

Fig. 1  A1 – A3 Posterior mean estimates of duration where the highest MIDAS weights were placed on the importance of respective ambient 
air pollutant measurements for each province on influencing URTI disease case counts the following month. Darker red and blue shaded regions 
represent that ambient air pollutant measurements beyond 20 – 40 days are deemed more important in determining URTI disease case counts. 
B1 – B3 2.5th quantile value for MIDAS weights drawn from MCMC samples C1 – C3 97.5th quantile value for MIDAS weights drawn from MCMC 
samples
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for SO2, CO and PM2.5 (Fig. 1) were ascribed the greatest 
influence on case counts across provinces respectively. 
Exposure–response shapes were also highly heterog-
enous across provinces but were mainly hump-shaped 
across the 40-day period (See supplementary material).

Whereas PM2.5, SO2 and CO over a 40-day period 
were positively associated to monthly pneumonia case 
counts in 15, 31 and 49 of 76 provinces (Fig.  2A1-3, 
B1-3, C1-3). Similar to URTI, we found on average that 
the greatest influence of ambient air pollutants were 

Fig. 2  A1 – A3 Posterior mean estimates of duration where the highest MIDAS weights were placed on the importance of respective ambient 
air pollutant measurements for each province on influencing pneumonia disease case counts the following month. Darker red and blue shaded 
regions represent that ambient air pollutant measurements beyond 20 – 40 days are deemed more important in determining pneumonia disease 
case counts. B1 – B3 2.5th quantile value for MIDAS weights drawn from MCMC samples C1 – C3 97.5th quantile value for MIDAS weights drawn 
from MCMC samples
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estimated to be in the 20th day mark across provinces, 
but the range was noticeably narrower compared to 
case of URTIs, at the 0 – 32, 3 – 30 and 7 – 33 day mark 
for SO2, CO and PM2.5 respectively. Similarly, expo-
sure–response shapes were highly heterogenous across 
provinces for ambient air pollutants and pneumonia 

case counts. These shapes were however mainly hump-
shaped across the 40-day period (See supplementary 
material).

Controlling for all other variables, on average, a 1 μg/
m3 rise in SO2 over the past 40  days would lead to an 
expected 1624.1 (Fig.  3, A2, B2, C2) increase in URTI 

Fig. 3  A1 – A3 Posterior mean estimates of mean exposure–response of respective ambient air pollutants over the past 40 day period on 
contemporaneous URTI disease case counts for a specific region. Red shades represent regions where a one unit increase in ambient air pollutant 
surface concentrations in the respective region for the past 40 days are associated to an increase in contemporaneous, monthly URTI disease case 
counts. B1 – B3 2.5th quantile value for exposure response drawn from MCMC samples of MIDAS weights C1 – C3 97.5th quantile value for exposure 
response drawn from MCMC samples of MIDAS weights
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case counts. However, an expected change of -15.1 
(Fig.  3, A1, B1, C1) and -406.3 (Fig.  3, A3, B3, C3) in 
URTI case counts respectively are expected to occur 
with a 1 ppb rise in CO and 1 μg/m3 rise in PM2.5 surface 
concentrations over the past 40 days respectively across 
provinces.

Whereas a 1  ppb rise in CO surface concentrations 
over 40  days would lead to an expected 39.3 change 
(Fig. 4, A1, B1, C1) in monthly pneumonia case counts, 
a 1  μg/m3 increase in SO2 and PM2.5 surface concen-
tration would lead to an expected -943 (Fig.  4A2, B2, 
C2) and -401.8 (Fig. 4) change in monthly pneumonia 

Fig. 4  A1 – A3 Posterior mean estimates of mean exposure–response of respective ambient air pollutants over the past 40 day period on 
contemporaneous pneumonia case counts for a specific region. Red shades represent regions where a one unit increase in ambient air pollutant 
surface concentrations in the respective region for the past 40 days are associated to an increase in contemporaneous, monthly pneumonia case 
counts. B1 – B3 2.5th quantile value for exposure response drawn from MCMC samples C1 – C3 97.5th quantile value for exposure response drawn 
from MCMC samples
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case counts across provinces respectively. Comparing 
the range of posterior mean effect sizes and quantile 
values across provinces for major ambient air pollut-
ants on monthly pneumonia and URTI case counts 
showed that associations between ambient air pollut-
ants on pneumonia were far more variable compared 
to that of URTI (Figs. 3 and 4).

Contributive effects and burden of climate, past disease 
and ambient air pollutants on URTI and pneumonia
Across provinces, controlling for past disease case 
counts and the effects of ambient air pollutants, 
increases in climate measurements the past two 
months have mixed associations to monthly URTI and 
pneumonia case counts. In particular, an increase in 
mean absolute humidity over the past 1 and 2  month 
was associated to decreases in contemporaneous URTI 
case counts in 22 and 9 of 76 provinces respectively. 
Whereas an increase in mean relative humidity 1 and 
2 months prior was associated to decreases in contem-
poraneous URTI case counts in only 2 and 1 provinces 
respectively. However, in 8 provinces, increases in 
mean relative humidity 1  month prior was associated 
to increases in contemporaneous URTI case counts. In 
all provinces, higher temperature 1 and 2 months prior 
were associated to decreases in URTI in all provinces. 
Lastly, increases in total precipitation the past month 
were associated to increases and decreases in contem-
poraneous conjunctivitis case counts in 21 and 10 prov-
inces respectively.

Similarly, increases in temperature for the past 1 
and 2  months were associated to decreases in pneu-
monia case counts in 74 and 73 provinces respectively. 
Increases in absolute humidity the past 1 and 2 months 
were associated to decreases in contemporaneous 
pneumonia case counts in 16 and 11 provinces respec-
tively. Whereas in only 3 provinces, changes in relative 
humidity were associated to any increase or decrease 
in contemporaneous pneumonia case counts.

Comparing the contributive effect of past disease 
case counts, ambient air pollutants and climate on dis-
ease case counts suggests that the mean impact of past 
climate variables across provinces on contemporane-
ous URTI case counts is minor, ranging from -0.7 – 
0.17% (Fig. 5A2), while the mean impact of past climate 
variables across provinces on pneumonia case counts 
is higher at -27.8% – 15.8% (Fig.  5B2). Whereas the 
impact of ambient air pollutants were greater in influ-
encing contemporaneous URTI and pneumonia case 
counts at -14.8% – 4.96% (Fig.  5A1, B1) and -79.78% 
– 107.5% (Fig. 5A3, B3) respectively. Lastly, the impact 

of past case counts in influencing contemporaneous 
URTI and pneumonia case counts at -17.4% – -0.16% 
(Fig.  5A1, B1) and -118.4% – 17.9% (Fig.  5A3, B3) 
respectively. For the case of pneumonia, wide estimates 
for contributive effect were partially attributed to the 
timepoints where case counts were low in some prov-
inces (See supplementary material) and model predic-
tions were pulled in separate directions by case count 
and ambient air pollutant measurements.

Effects of normalizing disease case counts by annual 
population 
All analysis was repeated using case counts normal-
ized by population size. That is, disease case counts per 
100,000 individuals was used as the dependent vari-
able of interest for the analysis. Similar to the analysis 
using raw disease case counts as the dependent variable 
of interest, we found that CO and SO2 surface concen-
trations the past 40  days were more likely to be posi-
tive associated to increases in disease case counts for 
the contemporaneous month. Mean duration where the 
pollutants were taken to be most important by MIDAS 
weights were also around the 18 – 21th day mark. The 
contributive burdens of different confounders on dis-
ease case counts were also similarly found to be higher 
on past disease case counts and ambient air pollutant 
measurements, rather than climate (See supplementary 
material).

Effect of higher frequency data and variable shrinkage 
on model performance 
Quantile–quantile plots showed that models considered, 
with or without MIDAS terms, in general could cap-
ture distributional characteristics of disease case counts 
well. Visual diagnostics of trace-plots also showed that 
MCMC procedures have converged for all parameters in 
each model.

Overall, we found that incorporating MIDAS weights 
provided overall improvements over the baseline model 
where no MIDAS weights were incorporated, with overall 
lower model mean absolute errors, deviance information 
criterion and coefficients of determination. Further-
more, the model incorporating no restrictions on MIDAS 
weights worked better compared to models incorporat-
ing downward sloping or hump-shaped weights. These 
models had better model fit as demonstrated by the 
mean-squared error as well as the deviance informa-
tion criterion in 40.8% and 37.5% of provinces across all 
models considered. Imposing restrictions for MIDAS 
weights to be downward sloping weights also performed 



Page 10 of 13Choo et al. BMC Infectious Diseases          (2023) 23:379 

reasonably well, as demonstrated by their comparatively 
better mean-squared error as well as the deviance infor-
mation criterion in 34.9% and 40.8% of provinces across 
all models considered.

Incorporating variable shrinkage to the overall regres-
sion specification also improved model performance in 
terms of mean-squared error, unadjusted and adjusted 
coefficients of determination as well as the deviance 

information criterion in almost all provinces. These tests 
are reported in the supplementary information section.

Given these diagnostic tests, the model incorporating 
shrinkage in regression parameters, as well as no restric-
tions on MIDAS polynomials was taken as representative 
to infer exposure–response curves between ambient air 
pollutants and URTI/pneumonia case counts across all 
provinces.

Fig. 5  A1 – A3 Average absolute contribution of disease case counts the past two months, climate measurements the past two months (i.e. 
temperature, total precipitation, absolute humidity, relative humidity) as well as ambient air pollutants as weighted under MIDAS over the past 
40 day period on predicted contemporaneous URTI case counts B1 – B3 Average absolute contribution of disease case counts the past two 
months, climate measurements the past two months (i.e. temperature, total precipitation, absolute humidity, relative humidity) as well as ambient 
air pollutants as weighted under MIDAS over the past 40 day period on predicted contemporaneous pneumonia case counts
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Discussion
Heightened exposure to ambient air pollutants the past 
40  days was shown to have mixed associations with 
contemporaneous monthly URTI and pneumonia case 
counts across provinces (Figs.  3  and  4). Specifically, 
heightened SO2 and CO concentrations the past 40 days 
were shown to have a positive association with URTI 
and pneumonia case counts in around half the regions, 
with or without controlling for population size, and con-
trolling for past disease case counts and climate data 
(Figs. 3 and 4). These associations also had credible inter-
vals which crossed the zero bound.

SO2 and PM2.5 have been shown to have negative 
effects on the respiratory system and exacerbate breath-
ing problem [26, 27]. In mouse models, SO2 exposure was 
observed to cause DNA damage and oxidative damage in 
the lungs [28, 29]. PM2.5 also leads to inflammation and 
cell damage, through the production of free radicals and 
reactive oxygen species [30]. The potential excess inflam-
mation and respiratory system damage from PM could 
increase one’s susceptibility and severity to pneumonia 
and URTI [31, 32]. However, we found that the asso-
ciation of past SO2 and PM2.5 exposure on disease case 
counts were mixed across different provinces. Although 
SO2 is mostly known as an air pollutant, several studies 
suggested that SO2 had beneficial impacts on mammals, 
including anti-inflammatory effects [33–35]. Low levels 
of SO2 was suggested to have a protective effect on bac-
teria-induced pulmonary infections [36]. Furthermore, 
a study in mice found that low doses of SO2 exposure 
reduced the amount of pneumonia [37].

CO has been shown to be toxic on a systemic level [38]. 
In excess, CO causes hypoxia by decreasing the oxygen 
carrying capacity and O2 release in tissues [39]. Excessive 
CO can also lead to systemic immunological or inflam-
matory damage [39, 40]. While there is no clear direct 
biological mechanism between CO exposure and pneu-
monia, CO is a product of incomplete combustion [41]. 
Hence, CO might be a marker for other harmful inflam-
matory combustion products such as soot, which poten-
tially explains the positive association found between CO 
and pneumonia [42]. However, an inverse association 
was also found in some provinces. While CO is toxic at 
high levels, low levels of CO have been found to possess 
anti-inflammatory effects and have been suggested for 
therapeutic use [38]. Low-dose CO could reduce lung 
inflammation and possibly decrease one’s susceptibil-
ity to pneumonia, resulting in the mixed associations 
observed [43].

In contrast, there is a stronger consensus in literature 
that PM2.5 has a positive relationship with URTI and 
pneumonia [44, 45]. Exposure to heightened PM2.5 can 
cause the development and progression of acute and 

chronic lung diseases, such as tracheal and pulmonary 
inflammation [46, 47]. In outpatient, emergency, and 
hospitalization-related data on respiratory infections 
showed that PM2.5 exposure was positively associated 
with the increased respiratory infections. Other stud-
ies showed that PM2.5 exposure was positively correlated 
with outpatient visits for upper respiratory tract infec-
tion [44]. While in certain provinces, especially in highly 
urbanized central Thailand (Fig.  3A1, 4A1) our analysis 
demonstrated a positive exposure–response between 
heightened PM2.5 concentrations and URTI/Pneumo-
nia case counts, in other provinces we estimated con-
verse associations between PM2.5 concentrations and 
URTI/Pneumonia case counts. To discern the reason 
for the difference in direction and effect sizes for asso-
ciations between SO2 and PM2.5 and URTI/pneumonia 
case counts, the surface concentrations of SO2 and PM2.5 
across the time period over the provinces could be com-
pared to the National Ambient Air Quality Standards 
established by the United States Environmental Protec-
tion Agency (EPA) [48]. SO2 and PM2.5 levels that are 
consistently lower than the EPA requirements were likely 
to have less or varying effects on URTI and pneumonia 
case counts.

Lastly, past disease case counts were found to have a 
significant contributive effect on disease case count. This 
is unsurprising as case counts tend to co-move. Addi-
tionally, we found that the effects of weather had little 
contribution on URTI and pneumonia case counts. This 
is perhaps due to the lack of large variations in weather 
in our study setting, which has a tropical climate. This is 
in contrast to climates with stark variations in weather, 
where colder months would lead to physiological and 
behavioural changes, such as spending more time indoors 
in poorly ventilated spaces, which would increase res-
piratory disease transmission risk [49, 50]. This changing 
behaviour and the resultant changing transmission risk 
would not be observed in tropical climates, explaining 
the lack of contribution of weather variables to URTI and 
pneumonia cases.

Our proposed MIDAS methodology has several 
strengths, it enables us to incorporate higher frequency 
ambient air pollutant measurements to infer their respec-
tive associations with future disease burden. This is con-
ducted by first defining a flexible specification where the 
importance of each ambient air pollutant’s lagged high 
frequency observations are decided by data, rather than 
taking a simple average to aggregate these variables to 
the same frequency as disease case counts. This prevents 
subjective lag selection in a model specification to detect 
associations [51–53] as all past pollutant measurements 
can be placed in a model, with their importance post-hoc 
decided. Furthermore, having a flexible weighting scheme 
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reduces discretization bias due to simple averaging and 
increases the statistical efficiency of the model. Empiri-
cally, this is demonstrated from overall better model fit 
to observed data using the MIDAS framework across all 
provinces (See supplementary material).

Furthermore, while we used data over a large spa-
tial scale, collected over a long period to delineate to 
historical impact of air pollutant concentrations on 
overall ambient air pollutant burden, the air pollutant 
concentrations in the study could not be representative 
of individual exposures, and the ecological design may 
cause ecological fallacy. Subgroup analyses by age and 
sex were not undertaken and should be considered in 
future studies. Also, while a primary strength of this 
study is the delineation of association on the provincial 
rather than national scale, conducting the analysis with 
national-level case counts could produce a generalized 
insight into the nationwide association of pneumonia 
and URTI with air pollutant exposure. Results could 
however be biased by spatial confounding. Unmeas-
ured variables may be potentially confounded with the 
exposures of interest, such as income levels. Future 
directions could also comprise using more structured 
penalties, such as the group or fused LASSO [54, 55] to 
shrink MIDAS terms in a more informative manner, as 
well as consider MIDAS as a means to forecast instead 
of explain disease burden. National level analyses could 
also be undertaken, when additional spatial covariates 
are measured to adjust for unobserved confounding.

Conclusion
In summary, we developed a novel statistical method-
ology to delineate the impacts of air pollutant concen-
trations on disease burden. Over a large spatial region, 
we found mixed but generally positive associations 
between increased O3, SO2, and PM2.5 concentrations 
on URTI and pneumonia case counts.
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