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Abstract 

Background  This study adopted complete meteorological indicators, including eight items, to explore their impact 
on hand, foot, and mouth disease (HFMD) in Fuzhou, and predict the incidence of HFMD through the long short-term 
memory (LSTM) neural network algorithm of artificial intelligence.

Method  A distributed lag nonlinear model (DLNM) was used to analyse the influence of meteorological factors on 
HFMD in Fuzhou from 2010 to 2021. Then, the numbers of HFMD cases in 2019, 2020 and 2021 were predicted using 
the LSTM model through multifactor single-step and multistep rolling methods. The root mean square error (RMSE), 
mean absolute error (MAE), mean absolute percentage error (MAPE) and symmetric mean absolute percentage error 
(SMAPE) were used to evaluate the accuracy of the model predictions.

Results  Overall, the effect of daily precipitation on HFMD was not significant. Low (4 hPa) and high (≥ 21 hPa) daily 
air pressure difference (PRSD) and low (< 7 °C) and high (> 12 °C) daily air temperature difference (TEMD) were risk 
factors for HFMD. The RMSE, MAE, MAPE and SMAPE of using the weekly multifactor data to predict the cases of HFMD 
on the following day, from 2019 to 2021, were lower than those of using the daily multifactor data to predict the cases 
of HFMD on the following day. In particular, the RMSE, MAE, MAPE and SMAPE of using weekly multifactor data to pre-
dict the following week’s daily average cases of HFMD were much lower, and similar results were also found in urban 
and rural areas, which indicating that this approach was more accurate.

Conclusion  This study’s LSTM models combined with meteorological factors (excluding PRE) can be used to accu-
rately predict HFMD in Fuzhou, especially the method of predicting the daily average cases of HFMD in the following 
week using weekly multifactor data.
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Background
Hand, foot, and mouth disease (HFMD) is a common 
infectious disease in children caused by enterovirus 
infection. Its symptoms are mainly oral pain, anorexia, 
fever, and minor herpes or ulcers in the hands, feet, 
mouth, and other body parts. It can lead to fatal compli-
cations in severe cases, such as myocarditis, pulmonary 
oedema, and aseptic meningoencephalitis [1, 2].

HFMD can be transmitted through contact with respir-
atory secretions, droplets, and pollutants from infected 
individuals or through the faecal-oral route, which can 
easily cause school aggregation events, thus affect-
ing children’s everyday life and learning. HFMD has led 
to many outbreaks worldwide and has become a public 
health problem in Asia [3]. In recent years, the reported 
incidence of HFMD ranks second only to viral hepatitis 
among infectious diseases classified under the Infectious 
Disease Control and Prevention Act in Fujian Prov-
ince, China, with a substantial significant social impact 
that has attracted considerable attention from relevant 
departments.

Meteorological factors have been recognized as risk 
factors associated with HFMD epidemics [4-7]. Research-
ers from various countries and regions have studied the 
impact of climate on HFMD, including air temperature, 
sunshine, relative humidity, wind speed, and precipita-
tion. The findings, however, have not been entirely con-
sistent. For instance, several studies have shown that 
the incidence of HFMD significantly increases as the air 
temperature increases. Nevertheless, in some studies that 
concluded that HFMD was not significantly affected by 
air temperature, the air temperature range that affects 
HFMD was not exactly the same [7-14]. It has been 
reported that the impact of sunshine on HFMD increases 

with increasing sunshine intensity. However, another 
study showed a negative correlation between sunshine 
duration and the risk of HFMD infection [15-17]. The 
reasons for these differences include different analysis 
model schemes [e.g., generalized linear model (GLM), 
spatiotemporal zero-inflated negative binomial (ZINB) 
models, generalized additive mixed model (GAMM), dis-
tributed lag nonlinear models (DLNMs)], data types (e.g., 
daily data, weekly data and monthly data), and region-
specific characteristics (e.g., socioeconomic factors, liv-
ing environment, etc.) that may change the impact of 
meteorological factors on HFMD [7-18].

Fuzhou is the capital of Fujian Province in China and 
the province’s political, economic, and cultural centre 
(Fig. 1). It is an important city along the southeast coast 
of China and the gateway of the maritime Silk Road. The 
meteorological characteristics of Fuzhou are character-
ized by high wind, air pressure, and relative humidity. 
Fuzhou has the greatest incidence of HFMD among cities 
in Fujian Province. There has been no report on the influ-
ence of meteorological factors on HFMD and incidence 
prediction in Fuzhou. Therefore, considering the impor-
tance of Fuzhou and its representativeness in Fujian, it is 
necessary to understand the specific regional impact of 
meteorological factors on HFMD in Fuzhou.

The advantages of DLNM include that it can solve the 
nonlinear time-delay correlation problems such as expo-
sure-delay-response through the cross-basis function, 
and it can also automatically deal with the regression 
functions linear model (lm), glm and gam. Zero-inflated 
model cannot examine how or which covariates signifi-
cantly affect the non-occurrence Zero-inflated regions 
[12]. In this study, DLNMs were proposed to analyse 
the relationship between the daily values of HFMD and 

Fig. 1  The geographical location of Fuzhou city
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meteorological factors in Fuzhou for 12 years from 2010 
to 2021. There were eight meteorological indicators used 
in this study, including common indicators such as air 
temperature, relative humidity, precipitation, and sun-
shine, and other indicators that researchers do not com-
monly use. At present, there has been no research report 
on the impact of air pressure differences and air tempera-
ture differences on HFMD.

Compared with traditional machine learning meth-
ods, long short-term memory (LSTM) produces bet-
ter results in the deep learning model [19-24]. Previous 
reports included comparisons between LSTM and other 
prediction methods, as well as between single-factor and 
multifactor LSTM predictions. To the best of our knowl-
edge, no studies have compared the prediction accuracy 
for HFMD using different meteorological multifactor 
LSTM methods. In this study, the cases of HFMD were 
combined with meteorological variables, and the cases of 
HFMD were predicted using the LSTM model through 
multifactor single-step and multistep rolling methods, 
and the prediction effect was evaluated. The purpose was 
to provide a basis and technical support for construct-
ing an HFMD prediction and early warning system in 
Fuzhou city and Fujian Province, and to help relevant 
departments detect and respond to possible HFMD out-
breaks in advance.

Materials and methods
Data sources
The HFMD and population data of Fuzhou from Janu-
ary 1, 2010, to December 31, 2021, were derived from the 
China Disease Prevention and Control Information Sys-
tem, and the daily meteorological data were derived from 
the meteorological data network of the China Meteoro-
logical Administration (http://​data.​cma.​cn). The miss-
ing data were proofread and completed by the Fujian 
Climate Center. The population with HFMD was strati-
fied by sex (male and female), age (0 ~ 3 years, 4 ~ 6 years, 
and ≥ 7  years) and area (urban and rural), of which the 
age-stratified population was divided according to the 
epidemiological characteristics of HFMD in Fuzhou. 
The meteorological factors in this study included 8 indi-
cators: air pressure (PRS, hPa), air pressure difference 
(PRSD, hPa), relative humidity (RHU, %), precipitation 
(PRE, mm), air temperature (TEM, °C), air temperature 
difference (TEMD, °C), wind speed (WIN, m/s), and sun-
shine duration (SSD, h). PRS, RHU, TEM and WIN were 
measured as daily averages, PRE was measured as the 
daily cumulative precipitation, SSD was measured as the 
number of sunshine hours in one day, PRSD was defined 
as the difference between the maximum and minimum 
values of daily air pressure, and TEMD was defined as the 
difference between the highest and lowest values of daily 

air temperature. The number of lag days in this study 
was defined as the number of days delayed by the date of 
HFMD onset compared to the statistical date of the cor-
responding meteorological factors.

Statistical analysis of the data
The regional map of Fig. 1 was drawn using ArcGIS 10.2 
software (ESRI, Redlands, CA, USA).

R 4.1.0 software (R Foundation for Statistical Com-
puting, Vienna, Austria) was used to analyse the daily 
HFMD and meteorological data. First, a simple analysis 
of the HFMD and meteorological factors was conducted, 
and the time series for the variables were plotted. Then, a 
Spearman correlation analysis and correlation coefficient 
significance test map between the meteorological indi-
cators and HFMD were generated, and differences with 
P < 0.05 were considered statistically significant. Finally, a 
DLNM was used to analyse the influence of meteorologi-
cal factors on HFMD.

The DLNM incorporates both nonlinear depend-
ency and delay effects, with the essential goal of adding 
a lag dimension to the exposure–response relationship 
through a cross-basis function, thereby describing the 
variation distribution of its effects in both the independ-
ent and lagging dimensions [25]. A cross-base matrix for 
daily meteorological and HFMD data was established, 
and the quasi-Poisson connection function was used for 
estimation. After controlling for the effects of day of the 
week, seasonality and long-term trends [26, 27], the rela-
tionship between meteorological factors and HFMD was 
fitted using the DLNM. The basic model is as follows:

Yt is the t-day cases of HFMD, α is the constant term, 
xi is the influencing factor, βi is the coefficient, Zj is the 
potential confounding factor, Dow is the dummy vari-
able for the effect of the day of the week, df is the degrees 
of freedom, and NS (⋯) is a natural spline function. Lag 
days and df are determined by the Akaike information 
criterion (AIC) minimum criterion, which ultimately 
determined that the df of meteorological factors in this 
study were all 3. Accounting for the epidemic character-
istics, incubation period, and pretest results of HFMD, 
the maximum lag days were determined to be 14  days, 
and the cumulative effects of meteorological factors on 
the risk of HFMD in each population were measured 
with lags of 3 d, 7 d and 14 d. The average of each mete-
orological factor was used as a reference value.

Python 3.8.13 software (Python Software Foundation, 
Delaware, USA) and Tensorflow 2.8.0 software (Google 
Brain Team, Mountain View, CA, USA) were used to pre-
dict the daily and weekly cases of HFMD through LSTM 

(1)log[E(Yt)] = α + βixi + NS(Zj, df )+ Dow

http://data.cma.cn
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combined with meteorological factors, and the results 
were plotted.

LSTM is an artificial intelligence deep learning algo-
rithm that is suitable for time series data analysis. Its 
key feature is the ability to connect the network model 
in front of and behind neurons so that the network can 
process the time series data from both directions. The 
neurons change their state information with the previ-
ous data flow, process the current input data according 
to the current state and output the results. This struc-
ture gives neurons a certain memory ability. LSTM has 
a well-designed structure called a gate to remove or add 
information to the neuron state to avoid the problem of 
long-term dependence and retain the long-term infor-
mation in the sequence. Gates provide a means for infor-
mation to be passed selectively. LSTM has three gates, a 
forgetting gate, an input gate and an output gate, to pro-
tect and control the state of neurons.

The core idea of LSTM is shown in Fig. 2.
The first step is to decide what information to discard 

from the neuron state, which is done through the sigmoid 
layer of the "forgetting gate". ht−1 represents the output 
of the previous neuron state, Xt represents the input of 
the current neuron state, and σ represents the sigmoid 
function. The sigmoid layer outputs a numeric value 
between 0 and 1, denoting how much of each part can 
pass through, with 0 representing complete discard and 

1 representing complete retention. The expression is as 
follows:

The second step is to determine what kind of new infor-
mation is stored in the neuron state. There are two parts 
here: first, the sigmoid layer of the "input gate" deter-
mines which value will be updated; then, the tanh layer 
creates a new candidate value vector t (a value between 
-1 and 1) that is added to the state and multiplied by the 
value of the sigmoid function, updating the old neuron 
state; Ct-1 is updated to Ct, and finally, the output deter-
mines the part to output.

The expression is as follows:

Finally, the output must be determined by the "output 
gate". First the sigmoid layer is run to determine which 
part of the neuron state to output; then, the neuron state 
is processed by tanh (given a value between -1 and 1) 
and multiplied by the output of the sigmoid gate, and 

(2)ft = σ
(
Wf [ht−1, xt ]+ bf

)

(3)it = σ(Wi · [ht−1, xt ]+ bi)

(4)Ct = tanh (Wc · [ht−1, xt ]+ bc

(5)Ct = ft · Ct−1 + it · C̃t

Fig. 2  LSTM core idea structure diagram
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finally, the determined part is output. The expression is 
as follows:

The root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE) 
and symmetric mean absolute percentage error (SMAPE) 
were used to quantify the accuracy of the model’s predic-
tions, and the smaller the value was, the higher the pre-
diction accuracy and the higher the confidence [28-31].

The RMSE calculation formula is as follows:

The MAE calculation formula is as follows:

The MAPE calculation formula is as follows:

The SMAPE calculation formula is as follows:

In the above formulas, Pi is the observed daily inci-
dence of influenza cases on the i day, and Xi is the pre-
dicted daily incidence of influenza cases on the i day 
where i = 1…, n [30].

In this study, we designed a prediction algorithm 
based on LSTM to capture the temporal relationship in 

(6)ot = σ(Wo · [ht−1, xt ]+ bo)

(7)ht = ot · tanh(Ct)

(8)RMSE =

√
1

n

∑n

i=1
(Pi − Xi)

2

(9)MAE =

∑n
i=1

∣∣∣Xi − X̂i

∣∣∣
n

(10)MAPE =
100%

n

∑n

i=1

∣∣∣∣
Pi − Xi

Pi

∣∣∣∣

(11)SMAPE =
100%

n

∑n

i=1

|Pi − Xi|∣∣∣ |Pi|+|Xi|

2

∣∣∣

the sequence. The network model was trained with his-
torical data until it converged. The historical time series 
data were multifactorial, including time, climate data 
and HFMD data. After coding, LSTM was input to cap-
ture the timing relationship, and then the fully connected 
layer was entered after coding and splicing to output the 
timing prediction. A brief description of the operation is 
shown in Fig. 3.

First, the meteorological and HFMD data from 2010 to 
2018 were trained and modelled to predict the cases of 
HFMD in 2019. Then, the data from 2010 to 2019 were 
trained and modelled to predict the cases of HFMD in 
2020. Finally, the data from 2010 to 2020 were trained 
and modelled to predict the cases of HFMD in 2021. The 
prediction was realized by single-step and multistep roll-
ing. Three schemes were adopted in this study. The first 
method was to input the multifactor value of 1  day to 
predict the cases of HFMD on the next day. The second 
method was to input the multifactor value of 7  days to 
predict the cases of HFMD on the next day. The third 
method was to input the multifactor value of 7  days to 
predict the daily average cases of HFMD in the next 
7  days. These prediction methods required continuous 
rolling.

Results
Descriptive statistics
In total, 161,477 HFMD cases were reported in Fuzhou 
over the study period, with an incidence rate of 
187.42/100,000 people and 16 deaths. The incidence 
rates (1/100000) among males and females were 222.97 
and 143.70, respectively. The incidence rates (1/100000) 
among children aged 0 ~ 3 years, children aged 4 ~ 6 years 
and children aged ≥ 7  years were 3321.40, 1030.99 and 
7.19, respectively.

Table 1 shows significant differences between the sex, 
age, and area groups of the HFMD-affected population 

Fig. 3  A brief analysis of the LSTM operation process in this study
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(P < 0.001). Table  2 reports the descriptive statistics for 
the daily cases of HFMD and meteorological variables.

Figure 4 shows the time series of HFMD and meteoro-
logical factors, with a specific seasonal periodicity that 
shows consistency in their fluctuations, thus indicating a 
correlation and lag between HFMD and meteorological 
factors.

Correlation analysis
The correlation analysis demonstrated a curved correla-
tion between most meteorological factors and HFMD 
and between the meteorological factors (P < 0.05). RHU, 
PRE, TEM, WIN, and SSD were significantly posi-
tively correlated with HFMD (r > 0, P < 0.01), while PRS 
and PRSD were significantly negatively correlated with 
HFMD (r < 0, P < 0.01). Among them, TEM, PRS, and 
PRSD had the most significant relationship with HFMD, 

while the relationship between TEMD and HFMD was 
not noticeable. PRS, PRE, and TEM were significantly 
correlated with other meteorological factors (P < 0.05). 
The detailed correlation between HFMD and meteoro-
logical factors is presented in Fig. 5.

DLNM analysis
The risk effect of PRS on HFMD increased gradually in 
waves with the increase in PRS. Medium PRS (993–
1005 hPa) and high PRS (> 1015 hPa) were risk factors for 
HFMD. The cumulative effect increased with the increase 
in lag days, and the correlation peaks were 998 hPa (lag 
14 d, RR: 1.36, 95% CI: 1.24–1.48) and 1026 hPa (lag 14 d, 
RR: 7.59, 95% CI: 4.45–12.95), respectively. The cumula-
tive effects of PRS on the risk of HFMD among male chil-
dren aged 4 ~ 6  years and rural populations were more 
significant. However, the cumulative risk effect of PRS on 

Table 1  Stratified HFMD characteristics of populations based on daily cases

Variables Sex Age (years) Area

Males Females 0 ~ 3 4 ~ 6  ≥ 7 Urban Rural

Cases 99,424 62,053 130,261 25,535 5681 51,234 110,243

Constituent ratio(%) 61.57 38.43 80.67 15.81 3.52 31.73 68.27

t/F 80.29 2664.00 74.86

p 0.00 0.00 0.00

Table 2  Descriptive statistics for the daily cases of HFMD and meteorological variables

Min stands for minimum value, Max stands for maximum value, SD stands for standard deviation, P25 stands for 25th percentile, P50 stands for 50th percentile and 
P75 stands for 75th percentile

Variables Min P25 M50 P75 Max Mean ± SD

HFMD(cases) 0.00 9.00 23.00 49.00 319.00 36.84 ± 40.53

  Sex

    Male 0.00 6.00 14.00 31.00 217.00 22.68 ± 25.27

    Female 0.00 4.00 9.00 19.00 122.00 14.16 ± 15.75

  Ages(years)

    0 ~ 3 0.00 7.00 19.00 41.00 281.00 29.72 ± 32.93

    4 ~ 6 0.00 1.00 3.00 7.00 84.00 5.83 ± 7.95

    ≥ 7 0.00 0.00 1.00 2.00 16.00 1.30 ± 1.89

  Area

    Urban 0.00 3.00 7.00 16.00 105.00 11.69 ± 12.94

    Rural 0.00 6.00 16.00 33.00 229.00 25.15 ± 28.35

PRS(hPa) 978.50 998.90 1005.00 1011.00 1026.20 1005.00 ± 7.49

PRSD(hPa) 1.40 3.60 4.50 5.60 24.50 4.80 ± 1.75

RHU(%) 27.00 65.00 73.00 82.80 100.00 73.45 ± 12.53

PRE(mm) 0.00 0.00 0.00 2.10 244.40 4.22 ± 12.37

TEM(°C) 2.30 15.00 21.40 27.20 33.40 20.83 ± 7.02

TEMD(°C) 0.60 4.80 7.50 9.70 17.70 7.41 ± 3.25

WIN(m/s) 0.55 1.70 2.10 2.60 9.10 2.20 ± 0.74

SSD(h) 0.00 0.00 3.40 7.80 12.40 4.10 ± 3.90
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HFMD among children aged 4 ~ 6  years first decreased 
and then increased with the increase in lag days. At the 
same time, the cumulative risk effect of HFMD among 
children aged 0 ~ 3  years and ≥ 7  years continued to 
increase.

Low (4 hPa) and high (≥ 21 hPa) PRSDs were risk fac-
tors for HFMD, and the related peak existed at 24  hPa 
with a lag of 0 days (RR: 1.06, 95% CI: 0.77–1.45). With 
the increase in lag days, the cumulative risk effect of a 
low PRSD did not decrease significantly, while that of a 

high PRSD decreased rapidly. The cumulative effects of 
PRSD on the risk of HFMD among female children aged 
4 ~ 6 years and urban populations were more significant. 
However, the cumulative risk effect of PRSD on HFMD 
in the ≥ 7-year-old population first decreased and then 
increased with the increase in lag days, and the RR rose 
to 17.12 after a lag of 14 days at 24 hPa.

Low (27–56%) and high (> 73%) RHU were risk factors 
for HFMD. With the increase in lag days, the cumulative 
effect of low RHU (< 35%) on the risk of HFMD increased 

Fig. 4  Time series of HFMD cases and meteorological factors. (Note: Some extremely high meteorological factor values were not included in this 
map)
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rapidly (27%, lag 14 d, RR = 2.68, 95% CI: 1.44–4.99), 
while that of medium RHU (> 35%) decreased gradually, 
and that of RHU (41–56%) faded gradually. The cumula-
tive effects of RHU on the risk of HFMD in female and 
rural populations were more significant.

Overall, the effect of PRE on HFMD was not sig-
nificant, although high PRE (> 82 mm) had a significant 
effect on HFMD among males, children aged 4 ~ 6 years, 
and rural populations.

Low (≤ 3  °C) and high (> 21  °C) TEMs were risk fac-
tors for HFMD. With the increase in TEM and lag days, 
the cumulative effect of high TEM on the risk of HFMD 
increased rapidly (33  °C, lag 14 d, RR = 3.51, 95% CI: 
2.84–4.34). The cumulative effects of TEM on the risk 
of HFMD among children aged 0 ~ 3 years and ≥ 7 years 
and rural populations were more significant. However, 
the risk of HFMD was not significantly different between 
men and women.

Low (< 7  °C) and high (> 12 °C) TEMDs were risk fac-
tors for HFMD. With the increase in TEMD and lag 

days, the cumulative effect of a low TEMD on the risk of 
HFMD decreased (1 °C, lag 3 d, RR = 1.27, 95% CI: 1.12–
1.43), while the cumulative risk effect of a high TEMD 
continued to increase (17  °C, lag 14 d, RR = 2.04, 95% 
CI: 1.31–3.19). Compared with that observed in urban 
populations, the cumulative effect of TEMD on HFMD in 
rural populations was more prominent.

With the increase in WIN, its cumulative effect on the 
risk of HFMD first decreased and then increased. The 
RR value of the cumulative effect of WIN on the risk of 
HFMD lagging for 14 days decreased from 1.21 at 1 m/s 
to 0.93 at 3 m/s and then gradually increased rapidly to 
955.45 at 9  m/s. The cumulative effects of WIN on the 
risk of HFMD among males, the ≥ 7-year-old population, 
and urban populations were more significant.

Low (2–4 h) SSD was a risk factor for HFMD, and the 
cumulative effect increased with increasing lag days (3 h, 
lag 14 d, RR = 1.06, 95% CI: 1.01–1.12).

More meteorological characteristics related to HFMD 
are presented in Fig. 6, Fig. 7, and Table 3.

Fig. 5  Spearman grade correlation analysis between HFMD and meteorological factors. (Note: ’***’: P < 0.00, ’**’: P < 0.01, ’*’: P < 0.05, ’.’: P < 0.10)
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Fig. 6  3-D plots and cumulative lag effect plots of the impacts of meteorological factors on the risk of HFMD
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LSTM forecast
All, rural and urban HFMD cases were predicted and 
evaluated respectively. Figure 8 shows that the cases of 
HFMD predicted by the three methods from 2019 to 
2021 were in good agreement with the actual values, 
and had high accuracy. Figure 9 shows that the RMSE, 
MAE, MAPE and SMAPE of using the weekly multifac-
tor data to predict the cases of HFMD on the next day, 
from 2019 to 2021, were lower than those of using the 
daily multifactor data to predict the cases of HFMD on 
the next day. In particular, the RMSE, MAE, MAPE and 
SMAPE of using weekly multifactor data to predict the 
next week’s daily average cases of HFMD were much 
lower, and similar results were also found in rural and 

urban areas, which indicating that this approach was 
more accurate.

Discussion
Figure 4 shows that the time series fluctuations of HFMD 
and PRE had obvious consistency. Nevertheless, the 
DLNM showed that, overall, the effect of PRE on the 
risk of HFMD was not significant. However, high PRE 
(> 82 mm) significantly affected HFMD risk among male 
children aged 4 ~ 6 years and in rural populations. These 
results seemed contradictory. However, through Fig.  4, 
we found that the number of cases of HFMD in the peak 
period of PRE from 2020 to 2021 were substantially fewer 
than those in previous years. With the emergence of the 
coronavirus disease 2019 (COVID-19) pandemic, protec-
tive and control measures such as restricted movement, 
reduced physical contact in public places, frequent hand 
washing, appropriate ventilation, and disinfection of pub-
lic areas were initiated. All these measures carried out to 
prevent coronavirus transmission reduced the probability 
of contracting HFMD. More importantly, the suspension 
of classes because of the COVID-19 pandemic substan-
tially reduced the number of HFMD outbreaks, especially 
in 2020. Due to the impact of the COVID-19 pandemic, 
the incidence of HFMD decreased abnormally for two 
consecutive years from 2020–2021, which may have 
affected the accuracy of the assessment of the cumulative 
effect of PRE on HFMD through the DLNM.

Figure 5 shows the results of Spearman grade correla-
tion analysis, which showed that PRE was significantly 

Fig. 7  Cumulative effects of meteorological factors on the risk of HFMD in each population. (Note: a When RR > 5, it was counted as 5. b 
Meteorological values were divided into four grades, and the details are presented in Table 3. c The number of lag days was divided into three 
grades: 3 d, 7 d, and 14 d)

Table 3  Grading values of meteorological factors

The values of different grades of meteorological factors for the cumulative effect 
analysis of population-stratified HFMD risk were set according to their minimum 
value, median value, mean value, maximum value, and the value when the 
pretested risk ratio (RR) was large

Variables 1 2 3 4

PRS(hPa) 979 998 1010 1026

PRSD(hPa) 2 4 12 24

RHU(%) 27 65 83 100

PRE(mm) 1 3 50 244

TEM(°C) 3 13 25 33

TEMD(°C) 1 4 9 17

WIN(m/s) 1 3 6 9

SSD(h) 0 3 7 12
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Fig. 8  Predicted true HFMD values from 2019 to 2021 based on LSTM. (Note: Day-Daily: The multifactor value of 1 day was input to predict the 
cases of HFMD on the next day. Week-Daily: The multifactor value of 7 days was input to predict the cases of HFMD on the next day. Week-Weekly: 
The multifactor value of 7 days was input to predict the daily average cases of HFMD in the next 7 days)

Fig. 9  Evaluation indicators based on LSTM prediction
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positively correlated with the risk of HFMD. In contrast, 
the relationship between TEMD and HFMD risk was not 
apparent. Nevertheless, DLNM analysis showed that the 
effect of PRE on HFMD risk was not significant, while 
low (< 7 °C) and high (> 12 °C) TEMDs were risk factors 
for HFMD. The DLNM integrates nonlinear dependence 
and delay effects and considers the control of potential 
confounding factors, while Spearman rank correlation 
analysis lacks these functions, which means that using a 
DLNM to analyse the impact of meteorological factors 
on infectious diseases can obtain more practical and spe-
cific results.

In this study, there was no significant correlation 
between PRE and HFMD risk. This result was consistent 
with those of some research reports [32, 33] but incon-
sistent with other research reports [13, 34]. This may be 
due to regional heterogeneity or the abnormal reduc-
tion in HFMD cases caused by COVID-19 prevention 
and control measures in recent years. Numerous stud-
ies have also emphasized the importance of temporal 
and spatial heterogeneity in meteorological impacts on 
infectious diseases [27, 35, 36]. In addition, this may be 
caused by differences in the analysis model scheme and 
data type. For example, in this study, RHU was signifi-
cantly associated with HFMD risk, consistent with the 
findings of several daily value-based research reports [18, 
37, 38], while some monthly value-based research reports 
showed no significant correlation between them [39, 40]. 
However, our results showed that the characteristics and 
value range of RHU affecting HFMD risk were different 
from those reported in other studies; it was not that the 
higher the humidity was, the more significant the impact. 
Moreover, this study showed that lower relative humid-
ity is also a risk factor for HFMD. HFMD in Fuzhou has 
two peak outbreak periods in summer and autumn every 
year. Fuzhou has a typical subtropical monsoon climate. 
It is dominated by sunny, hot, and high-temperature 
weather in summer, with ample rainfall and high humid-
ity. In autumn, the sky is clear and clouds are scarce, with 
sufficient sunshine, reduced humidity, and appropriate 
temperatures. During humid days, the HFMD virus could 
easily attach to small particles in the air or to toy sur-
faces; therefore, sharing toys and other supplies among 
children might promote the spread of the disease [41, 
42]. In summer, increased RHU is usually accompanied 
by heavy rainfall in Fuzhou, so outdoor public facilities 
are frequently washed by rainwater, which reduces the 
attachment of pathogens and reduces children’s outdoor 
activities when RHU is high. Thus, high (> 73%) RHU 
was a risk factor for HFMD in Fuzhou, and the cumula-
tive risk effect increased first and then decreased with 
increasing RHU. Therefore, high (> 73%) RHU may be 
mainly due to the high incidence of HFMD in summer, 

and low humidity may be mainly due to the high inci-
dence of HFMD in autumn.

There are few reports on the impact of PRS on HFMD. 
However, we found that the impact of PRS on the risk of 
HFMD increased gradually in waves with increasing PRS. 
Medium PRS (993–1005 hPa) and high PRS (> 1015 hPa) 
were risk factors for HFMD. In principle, the influenc-
ing factors of PRS include temperature, altitude, and 
air movement. PRS decreases with increasing TEM and 
increases with decreasing TEM. Fuzhou is mainly char-
acterized by severe cold winters and a subtropical cli-
mate in summer and autumn. PRS increases the density 
of harmful gas and viruses floating in the air, allowing 
them to fall on the ground or objects quickly. For exam-
ple, as one of the main pollutants, nitrogen dioxide (NO2) 
increases the risk of HFMD by affecting immunity, result-
ing in inflammation and weakening the body’s resistance 
to viral infection [37]. The peak of PRS in Fuzhou is dis-
tributed in winter. However, this peak is accompanied 
by low temperatures (the average temperature in win-
ter is 11 °C), and low temperatures are not conducive to 
the growth and transmission of the HFMD virus in the 
external environment. Therefore, the incidence of HFMD 
in winter is not high. In addition, the cumulative effect 
of PRS on HFMD risk increased with the increase in lag 
days, showing that the impact did not easily subside, 
which may play a chronic role.

This study showed that with the increase in TEM, the 
cumulative impact of high TEM (> 21  °C) on the risk of 
HFMD increases rapidly. Several studies have shown 
that the incidence of HFMD significantly increases as 
the temperature increases [33, 40, 43-46]. High tem-
peratures can increase enterovirus growth and interfere 
with the inactivation and recovery of enteroviruses [47, 
48]. Temperature can also affect the behavioural patterns 
of the host population; for instance, warm weather may 
encourage children to go out to public entertainment 
areas more often, thereby increasing their frequency of 
contact with each other and leading to more exposure to 
pathogens [49, 50]. In addition, the hands easily sweat in 
high temperatures, which is conducive to the breeding 
and cross-infection of viruses when in contact with the 
public. Children are even more active and sweat easily. 
However, in this study, we found that a low (≤ 3 °C) TEM 
was also a risk factor for HFMD. The possible underlying 
mechanism of HFMD can be explained by interactions of 
pathogens, host population structure, and environmental 
factors [34, 51, 52]. When the temperature is low, inter-
actions often occur in relatively closed public places with 
poor ventilation and among people with poor handwash-
ing habits. Moreover, in Fuzhou, RHU is usually very 
high in low-temperature seasons, such as the end of win-
ter and early spring (not caused by heavy precipitation), 
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which is conducive to the breeding and transmission of 
the virus.

The impact of the PRSD and TEMD on HFMD has not 
been reported, but in this study, we found that their low 
and high values were risk factors for HFMD. The cumula-
tive effect of PRSD on the risk of HFMD among females 
was more significant, showing that immunity among 
females may be more susceptible to changes in air pres-
sure. We also found that, compared with urban popula-
tions, the cumulative effect of TEMD on HFMD risk in 
rural populations was more prominent. Many rural areas 
in Fuzhou are distributed in mountainous regions, with 
apparent diurnal body temperature differences. In con-
trast, the differences in the TEMD and diurnal body 
temperature in urban areas are negligible due to the heat 
island effect. Nevertheless, the meteorological data meas-
ured in this study were from the same meteorological sta-
tion. In other words, the meteorological values of urban 
and rural areas came from one meteorological station, 
and the measured values were the same, but the differ-
ence between the two meteorological environments was 
obvious, which may affect the meteorological evaluation 
of the HFMD risk effect.

To predict the incidence of HFMD more accurately 
through meteorological factors, we studied and evaluated 
various prediction methods. The methods commonly 
used in the prediction, such as the susceptible-infectious-
recovery (SIR) model, autoregressive integrated moving 
average (ARIMA) model, and the recurrent neural net-
work (RNN), have exhibited good performance, but they 
are still not satisfactory for the following reasons. The 
SIR model cannot fully use the information in the multi-
dimensional input data; the ARIMA requires time series 
data to be stable after differential differentiation and can 
only capture linear relationships, not nonlinear relation-
ships. At the same time, gradient extinction easily occurs 
in RNNs, and the problem of long-distance dependence 
cannot be handled [22-24, 29, 53].

LSTM is an advanced RNN with the ability to learn 
time patterns and store valuable memories longer [3]. 
Due to its unique design structure, LSTM can solve gra-
dient extinction problems and nonlinear relationships. 
In addition, it can incorporate meteorological factors 
and is also suitable for predicting important events with 
very long intervals and delays in time series. It has been 
reported that the accuracy of using LSTM model to pre-
dict HFMD was better than other models [28, 54].

This study showed that the RMSE, MAE, MAPE and 
SMAPE values of the cases of HFMD predicted using the 
Day-Daily, Week-Daily, and Week-Weekly methods were 
low. This indicates that it was more accurate to predict 
HFMD cases using weekly multifactor data, especially 
to predict the daily average cases in the next week. The 

prediction of rural and urban areas also presented a simi-
lar situation, which further supports this result. Moreo-
ver, it was more in line with the actual work to predict 
the daily average cases of HFMD in the next week by 
using weekly multifactor data. At the same time, this also 
indicates that the meteorological indicators in this study 
can accurately predict the incidence of HFMD through 
LSTM models.

However, overfitting should be avoided during mod-
elling. LSTM models involve the risk of underfitting or 
overfitting, which often results in poor prediction per-
formance [28, 55]. In addition, the model’s performance 
deteriorates when the number of memory neurons is less 
than 32 or the number of training rounds is less than 250 
[28].

In summary, we introduced more abundant mete-
orological factors and screened out the common mete-
orological factor PRE in this study, which makes the 
multifactor parameter setting more comprehensive and 
reasonable. We also built a multifactor and multistep 
LSTM prediction model for infectious disease prevention 
that can flexibly adapt to the input parameters in differ-
ent scenarios. In this study, combined with the common 
prediction methods of infectious disease prevention and 
control, the LSTM model was adapted to the input of the 
three prediction methods, and the incidence of HFMD 
cases in Fuzhou achieved accurate prediction results. 
We also recognize that using weekly multifactor data to 
predict HFMD cases, especially the daily average cases in 
the next week, is most accurate. Of course, according to 
the different needs of practical work, daily forecasts and 
weekly forecasts can be combined. These meteorologi-
cal factors and prediction models can be incorporated 
into the HFMD early warning and prediction system of 
Fuzhou city and Fujian Province to provide a reference 
for formulating prevention strategies. They can also be 
used as risk predictions for adjusting people’s lifestyles.

However, this study also has some limitations. First, 
although meteorological factors are very important for 
the spread of HFMD, social behaviours, the economy, 
population mobility and air quality may also affect the 
occurrence and spread of HFMD. Especially when com-
paring regions, such as urban and rural regions, the 
spread of infection is affected by differences in personal 
hygiene, including hand-washing, toileting habits, food 
handling habits and food handling personnel, although 
the prediction of urban and rural regions in this study 
is very accurate. Therefore, it may be more accurate to 
include more relevant influencing factors to predict 
HFMD. However, the influence of these factors can be 
reflected in the number of cases of HFMD to a certain 
extent. Therefore, when using HFMD and meteorologi-
cal factors as multiple factors, it is necessary to regularly 



Page 14 of 16Zhu et al. BMC Infectious Diseases          (2023) 23:299 

incorporate the latest HFMD and meteorological data 
into the revised prediction model within a short period of 
time and then repredict HFMD cases; half a year or one 
year may be appropriate. Second, in the past two years, 
COVID-19 prevention and control measures, such as the 
suspension of classes and reduction in outdoor activi-
ties, have substantially reduced the incidence of HFMD; 
thus, the impact of meteorology on HFMD and predic-
tion research may have been affected, and the degree of 
impact needs to be further studied and evaluated. Third, 
the pathogenic stratification analysis of HFMD was not 
carried out in this study because most cases were clini-
cally diagnosed and lacked laboratory results. Because 
the HFMD cases used in this study were reported by 
medical and health institutions, whereas laboratory test 
cases were scarce, the use of cases with laboratory test 
results for meteorological impact assessment would 
cause bias in the analysis results. Fourth, the topogra-
phy and vertical structure are complex in Fuzhou; there-
fore, the meteorological conditions have also changed 
greatly. However, the meteorological data in this study 
came from one station, while the HFMD cases came from 
various medical and health institutions in the city, which 
may have affected the research results. Therefore, more 
meteorological station data need to be included in future 
studies.

Conclusion
Meteorological factors such as PRS, PRSD, RHU, TEM, 
TEMD, WIN, and SSD significantly impact HFMD risk in 
Fuzhou. LSTM models combined with the meteorologi-
cal factors in this study can accurately predict the risk of 
HFMD. It is more accurate to predict HFMD cases using 
weekly multifactor data, especially to predict the daily 
average cases in the next week. These meteorological 
factors and prediction models can be incorporated into 
an early warning and prediction system for HFMD in 
Fuzhou city and Fujian Province and could be used as a 
reference in other regions.
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