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Abstract 

Background  Coronavirus disease 2019 is a type of acute infectious pneumonia and frequently confused with 
influenza since the initial symptoms. When the virus colonized the patient’s mouth, it will cause changes of the oral 
microenvironment. However, few studies on the alterations of metabolism of the oral microenvironment affected by 
SARS-CoV-2 infection have been reported. In this study, we explored metabolic alterations of oral microenvironment 
after SARS-CoV-2 infection.

Methods  Untargeted metabolomics (UPLC-MS) was used to investigate the metabolic changes between oral secre-
tion samples of 25 COVID-19 and 30 control participants. To obtain the specific metabolic changes of COVID-19, we 
selected 25 influenza patients to exclude the metabolic changes caused by the stress response of the immune system 
to the virus. Multivariate analysis (PCA and PLS-DA plots) and univariate analysis (students’ t-test) were used to com-
pare the differences between COVID-19 patients and the controls. Online hiplot tool was used to perform heatmap 
analysis. Metabolic pathway analysis was conducted by using the MetaboAnalyst 5.0 web application.

Results  PLS-DA plots showed significant separation of COVID-19 patients and the controls. A total of 45 differential 
metabolites between COVID-19 and control group were identified. Among them, 35 metabolites were defined as 
SARS-CoV-2 specific differential metabolites. Especially, the levels of cis-5,8,11,14,17-eicosapentaenoic acid and hexa-
noic acid changed dramatically based on the FC values. Pathway enrichment found the most significant pathways 
were tyrosine-related metabolism. Further, we found 10 differential metabolites caused by the virus indicating the 
body’s metabolism changes after viral stimulation. Moreover, adenine and adenosine were defined as influenza virus-
specific differential metabolites.
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Conclusions  This study revealed that 35 metabolites and tyrosine-related metabolism pathways were significantly 
changed after SARS-CoV-2 infection. The metabolic alterations of oral microenvironment in COVID-19 provided new 
insights into its molecular mechanisms for research and prognostic treatment.

Keywords  COVID-19, Metabolomics, Influenza, Metabolic pathways, Oral microenvironment

Background
Coronavirus disease 2019 (COVID-19) is a novel severe 
acute respiratory syndrome caused by acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) that has a serious 
impact on global public health. The initial symptoms of 
COVID-19 patients are similar to influenza, such as fever, 
cough, fatigue, shortness of breath, and dyspnea [1]. But 
SARS-CoV-2 could induce variations of cell metabolism 
and severe acute respiratory syndrome, kidney failure, 
and even death [2]. The major entry gateways for SARS-
CoV-2 are the oral and nasal cavities. When the SARS-
CoV-2 invades the oral cavity, it triggers the variations of 
microenvironment and the alterations of oral metabo-
lism. However, the oral metabolic changes of COVID-19 
patients remain unknown until now. As a result, study-
ing the metabolic alterations of oral microenvironment 
following SARS-CoV-2 infection will provide a new per-
spective on exploring the metabolic disorders caused by 
SARS-CoV-2, as well as a novel method of subsequent 
prevention and treatment [3].

Metabolomics is one of the developing “-omics” 
technologies, depicting the basic characteristics and 
main activities of life, which presents a clear and com-
prehensive description of the internal life activities of 
organisms and the development state of diseases [4, 5]. 
When the organism is stimulated by external factors, 
it will cause a series of small endogenous molecular 
substances changes. As a consequence, metabolomics 
can be widely utilized to find the changing features of 
small molecules, discover biomarkers and molecular 
mechanisms of disease. Because of the wide application 
of metabolomics, scientists have carried out a series of 
studies on COVID-19 metabolomics, such as serum, 
plasma, urine, exhaled breath, nasopharyngeal swabs, 
etc. [6–11]. For analysis of serum metabolomics, Shi 
D found the butyric acid, 2-hydroxybutyric acidand 
l-glutamic acid were distinctive from those of healthy 
controls, some of which might be used for predicting 
severe patients [6]. Shen B noted that massive amino 
acids and derivatives were significantly decreased in 
COVID-19 patients compared with healthy controls, 
which might be used in the selection of potential blood 
biomarkers [7]. Studies on plasma metabolomics have 
shown the lipid alterations were significantly corre-
lated with the process of COVID-19, indicating that the 

development of COVID-19 affected systemic metabo-
lism [8]. The research of urine metabolomics revealed 
the distinct changes of energy metabolism and purine 
metabolism in patients with and without acute kidney 
injury [9]. In addition, Grassin-Delyle S studied the 
metabolomics of the exhausted breath and discovered 
the signatures associated with COVID-19, which indi-
cated that the breathprint could distinguish COVID-19 
patients from healthy individuals [10]. Liu explored the 
metabolomics study of nasothroat and discovered two 
declining metabolites of benzoate and prostaglandin 
H2 (PGH2), as well as five decreasing metabolic path-
ways associated with PGH2 in COVID-19 [11]. The 
above results illustrated the metabolic changes caused 
by SARS-CoV-2, and also partly involved the body’s 
regulation of immune function against virus invasion. 
However, the specific metabolic changes caused by 
SARS-CoV-2 have not been well studied.

Although some researches have been done to study 
the relationship between metabolomics and SARS-
CoV-2 infection, few studies were performed on the 
oral cavity [3]. The oral cavity is an excellent source of 
easy access to biological materials, such as saliva and 
oral cells, which can be employed in genetics, proteom-
ics, metabolomics, and microbiome research [12–20]. 
Metabolomics of oral secretion samples collected from 
pharyngeal mucosa cells can accurately reflect meta-
bolic changes and well explain the relationship between 
oral microenvironment and SARS-CoV-2 colonization.

Herein, we conducted the metabolomics study on oral 
secretion samples, including 25 COVID-19 patients and 
30 healthy controls. Especially, we selected 25 influenza 
patients to eliminate the metabolic changes caused by 
the stress response of the immune system to the virus. 
Further, we analyzed the specific metabolites and meta-
bolic pathways between COVID-19 and healthy con-
trols and found that there were 35 specific metabolites 
and 2 tyrosine-related metabolism pathways. In addi-
tion, by analyzing the metabolic changes of the body 
caused by the virus, it was found that 10 differential 
metabolites were caused by virus-induced changes in 
body metabolism, and 2 were influenza-specific differ-
ential metabolites. All of the findings provided novel 
insights into the oral metabolic changes impacted by 
SARS-CoV-2.
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Materials and methods
Reagents and chemicals
Methanol with HPLC grade were bought from Fisher 
(Waltham, MA, USA); formic acid and ammonium for-
mate (HPLC grade) were purchased by Sigma-Aldrich 
(St. Louis, MO, USA); deionized water was produced by a 
Milli-Q ultrapure water system (Millipore, Billerica, MA, 
USA).

Enrollment of participants
All patients were recruited and pathologically confirmed 
from Heilongjiang Provincial Hospital and this study was 
approved by the Medical Ethics Expert Committee of 
Heilongjiang Provincial Hospital for Ethics Review (2020) 
No. 004. Informed consents were obtained from all the 
enrolled participants before taking part in this study. The 
basic clinical information of all the participants recruited 
in this study is shown in Table 1. The participants were 
categorized into three groups, 30 healthy controls (Con-
trol), 25 influenza patients (Influenza) and 25 COVID-19 
patients (COVID-19). The samples of recruiters in the 
control group were all negative and disease-free samples 
from the hospital physical examination center. Among all 
the COVID-19 patients, 23 were mild COVID-19, and 
the remaining 2 severe patients with one or more of the 
following criteria: respiratory distress greater than or 
equal to 30 breaths/min, oxygen saturation no more than 
93% at rest, arterial partial pressure of oxygen/fraction of 
inspired oxygeno more than 300 mmHg or chest imaging 
showing obvious lesion progression within 24–48 h more 
than 50% or even organ failure requiring intensive care 
unit admission [3].

Sample collection
The sample collection time of patients with COVID-19 
was 4–11  days after admission. First of all, the recruits 
were gargled with clean water for three times, then a 
doctor applied disposable sterile swabs by swipping 
three to five times to collect mucosal cells of the poste-
rior pharynx, lateral wall, and crypts of the tonsil of the 
participants.Then, the swabs were placed into oral swab 
preservation tubes (purchased from Kangwei Century 
Biotechnology Co., Ltd.) and stored at 4 °C for next pro-
cedure of metabolites extraction. Quality control samples 
(QCs) were prepared by mixing all the tested samples in 

equal quantities, which provided a mesasurement of sta-
bility and performance of the system.

Metabolites extraction
After taking out the throat swab samples stored at 4 °C, 
soaking in 1.5 mL methanol for 20 min, the samples were 
centrifuged at 25,000 rpm for 15 min at 4  °C, 600 μL of 
the supernatant was collected into a new EP tube and 
stored at − 80 °C, for further analysis.

UPLC‑MS analysis
The experiment was performed with a Waters Acquity™ 
ultra-performance liquid chromatography (UPLC) sys-
tem (Waters, Milford, MA, USA) coupled with a Q 
Exactive mass spectrometer equipped with a dual elec-
trospray ion source (Thermo Fisher Scientific, USA) with 
BEH C18 (2.1  mm × 100  mm, 1.7  µm) column (Waters, 
Milford, USA) operated in the positive (ESI+) and nega-
tive (ESI−) mode. In positive mode, the mobile phase 
consisted of A (water with 0.1% formic acid) and B 
(methanol with 0.1% formic acid). In negative mode, the 
mobile phase consisted of A (water with 10 mM ammo-
nium formate) and B (methanol with 10 mM ammonium 
formate).The optimized UPLC elution gradient was set 
as follows: 2% B for the initial 1.0 min, 2–98% B from 1 
to 9 min, maintenance at 98% B from 9 to 12 min, pro-
gression of the gradient back to 2%B from 12 to 12 min 
and finally maintenance at 2%B from 12.1 to 15  min in 
both positive and negative mode. The flow rate was set at 
0.3 mL/min, with the temperature of the autosampler of 
4 °C. The volume was injected 5 μL for each run, and the 
column temperature was maintained at 45 °C.

Data acquisitions including MS acquisition and MS/MS 
identification were collected by Q exactive mass spec-
trometer (Thermo Fisher Scientific, USA). The mass scan 
range was from 70 to 1050  m/z with the max injection 
time 100  ms. For MS/MS analysis, the collision energy 
(CE) used was ranged from 20 to 60 eV as a function of 
molecular weight (MW) with the max injection time 
50 ms. The capillary temperature was 320 °C and Aux gas 
heater temperature was 350 °C.

Data processing
Data pre-processing, including peak detection, noise fil-
tering, feature alignment and data normalization [Proba-
bilistic Quotient Normalization (PQN) method] were 
performed by using the XCMS package in R-project 
platform. The parameters were applied as follows: the 
bandwidth was set at 15 s, and the peak width was ranged 
from 5 to 30  s; other parameters are selected as default 
values.

Table 1  Demographic details of participants recruitment

Statistical description of age was presented as Mean ± Standard Deviation

Characteristic COVID-19 
(n = 25)

Influenza 
(n = 25)

Health (n = 30)

Age (year) 46.9 ± 12.3 50.9 ± 20.4 40.7 ± 13.2

Sex (M/F) 15/10 19/6 13/17



Page 4 of 13Ma et al. BMC Infectious Diseases           (2023) 23:42 

Compound identification
For metabolites identification, the process was based on 
compound identification principles proposed by MSI 
(Metabolomics Standards Initiative, proposed by the 
Association of Metabolomics) in 2007. The structural 
information was firstly matched in databases for m/z and 
MS/MS spectrum analysis, including multiple databases 
such as BGI Library (BGI self-built standard library), 
mzCloud and ChemSpider (HMDB (Human Metabo-
lome Database (HMDB, http://​www.​hmdb.​ca/), KEGG 
(Kyoto Encyclopedia of Genes and Genomes, https://​
www.​kegg.​jp/), LipidMaps (https://​www.​lipid​maps.​org/)) 
multiple databases. According to the information avail-
able for matching (including primary molecular weight, 
secondary fragmentation spectrum, column retention 
time, presence or absence of reference standards, etc.), 
the identified substances are annotated with confidence 
levels, thereby the confidence level of the annotation 
selected in the study were level 1 (substances that can 
be accurately identified based on standard database and 
experimental data) and level 2 (substances whose struc-
tural formula can be matched to a standard database).

Statistical analysis
Principal component analysis (PCA) was conducted to 
provide a measurement of the stability and performance 
of the system. Partial least squares discriminant analysis 
(PLS-DA) was employed to characterize the global altera-
tions of COVID-19, influenza and control groups. Before 
establishing PCA and PLS-DA models, log2 transforma-
tion was performed on the data, and Pareto scaling was 
used to scale the data. Meanwhile, cross-validation was 
conducted to guarantee the stability and credibility of the 
PLS-DA models to avoid overfitting. Furthermore, the 
Student’s t-test was performed to characterize the dif-
ferential metabolites. Heatmap was created to visualize 
the clustering and individual discrete trend among the 
groups. Pathway analysis was operated to clearly charac-
terize the main metabolic pathways of differential metab-
olites mapping.

The PCA, PLS-DA and cross-validation were per-
formed by using MetaboAnalyst (https://​www.​metab​
oanal​yst.​ca/​Metab​oAnal​yst/) and R-project platform. 
The Student’s t-test was created by using GraphPad 
Prism 8.0 (GraphPad Software, USA). Heatmap and path-
way analysis were conducted with the on-line based Hip-
lot (https://​hiplot.​com.​cn/) and MetaboAnalyst.

Results
Metabolic profiles of oral secretion samples in health, 
influenza and COVID‑19
UPLC-Q Exactive Orbitrap-MS analysis was used to 
analyze 80 oral secretion samples to investigate whether 

the oral metabolites differ from participants of COVID-
19, influenza and control. The overall design of the study 
was depicted in Fig.  1. The base peak chromatogram 
(BPC) had a good resolution in positive and negative ion 
patterns and significant differences of the three groups 
(Additional file  1: Fig.S1). To visually reflect the overall 
metabolic profiling differences and similarities, the par-
tial least squares discriminant analysis (PLS-DA) were 
employed for the three groups. The PLS-DA (Fig.  2A, 
B) results displayed a clear separation of COVID-19 
patients from the other two groups in both positive and 
negative mode. In PLS-DA plots, the COVID-19 group 
was on the left, while control and influenza groups were 
on the right, with a closer tendency. To further visualize 
the specific differences between COVID-19 patients and 
control, we re-established PLS-DA plot and found the 
remarkable separation between COVID-19 and control 
group (Fig. 2C, D). In addition, the cross-validation test 
showed high predictability and goodness-of-fit values 
of the model as indicated by R2Y and Q2Y (R2Y = 0.990, 
Q2Y = 0.988 in positive mode and R2Y = 0.987, 
Q2Y = 0.985 in negative ion mode) (Fig. 2E, F). Through 
100 permutation tests, the p value was less than 0.01, and 
the F value were 15,878 and 43,460, respectively (Addi-
tional file  1: Fig.S2A-B). Moreover, there were no sig-
nificant differences in age, gender and ethnicity among 
the three groups of patients (data not shown). In addi-
tion, the COVID-19 patients have not been vaccinated, 
and mainly received antiviral, antibiotic and adjuvant 
drug treatment. However, by comparing the differences 
between COVID-19 patients and COVID-19 patients 
with drug treatment (Tre-COVID-19), found that drug 
treatment did not cause more significant metabolic dif-
ferences between the two groups (Additional file  1: Fig.
S3, Table S1).

Metabolic analysis of oral secretion samples in COVID‑19 
and health
Further, the univariate and multivariate analysis methods 
were employed to obtain specific differential metabolites. 
45 metabolites were screened between COVID-19 and 
control group with VIP scores values greater than 1.0, 
the p values less than 0.05, and fold change values greater 
than or equal to 1.2 or no more than 0.83 (Fig. 3A, Addi-
tional file 1: Table S2). As influenza is also a viral infec-
tion, which may cause metabolic changes in the body, the 
influenza group was selected to eliminate the metabolic 
changes caused by the stress response of the immune sys-
tem to the virus. Therefore, we found 35 metabolites with 
no differences between influenza and control groups, 
which indicated that these were COVID-19 specific dif-
ferential metabolites. Moreover, 35 specific metabolites 
were classified, mainly including amines and derivatives, 

http://www.hmdb.ca/
https://www.kegg.jp/
https://www.kegg.jp/
https://www.lipidmaps.org/
https://www.metaboanalyst.ca/MetaboAnalyst/
https://www.metaboanalyst.ca/MetaboAnalyst/
https://hiplot.com.cn/
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amino acids, benzene and derivatives, hormones and 
transmitters, fatty acyls, nucleic acids, organic acids, phe-
nols and derivatives, sterol lipids and others, in which 
the identified benzene and derivatives all decreased and 

sterol lipids increased (Fig.  3B). To observe the overall 
variation of the metabolites, a heatmap based on the iden-
tified 35 metabolites was produced and showed a good 
result of clustering and individual discrete trend of the 
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Fig. 1  The workflow for data analysis of oral metabolomics of COVID-19
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COVID-19 patients and control group (Fig. 3C). Moreo-
ver, according to the distribution analysis of 35 differen-
tial metabolites, 16 differential metabolites increased and 
19 decreased in the COVID-19 group compared with the 
control or influenza. Among the rising metabolic species, 
cis-5,8,11,14,17-eicosapentaenoic acid, nicotinuric acid, 
guanosine 5′-monophosphate and proline were screened 
out based on the FC value greater than 100 and hexanoic 
acid, heptanoic acid, 17α-hydroxyprogesterone and hex-
anoylcarnitine were screened out based on the FC value 
less than 0.02 in the declining metabolites (Fig. 3D, E).

Abnormal metabolic pathways in COVID‑19, especially 
tyrosine‑related metabolism pathway
The metabolic pathway analysis was further carried out 
through Metaboanalyst 5.0 website. Then 17 metabolic 
pathways were matched through KEGG database as dis-
turbed in oral metabolic profiles of COVID-19 patients. 
Interestingly, most of these dysfunctional pathways were 
mainly focused on amino acid metabolisms, such as 
arginine and proline metabolism, tryptophan metabo-
lism, tyrosine metabolism and some related pathways 
(Fig. 4A). In our metabolomics data, there were 4 amino 
acids and derivatives changed remarkably including nic-
otinuric acid mentioned above. The levels of l-glutamic 
acid, proline and leucylproline illustrated a noticeable 
increased trend in COVID-19 compared with the control 
group (Fig.  4B). Moreover, according to the conditions 
of -log (P) value > 15 and path impact > 0.2, 2 main met-
abolic pathways were obtained, including Ubiquinone 
and other terpenoid-quinone biosynthesis and tyrosine 
metabolism. Interestingly, the 2 metabolic pathways were 
related to tyrosine metabolism. We mapped an interac-
tive network of tyrosine-related metabolic pathways 
(Fig. 4C). 4 differential metabolites were obtained in our 
data, included 4-hydroxyphenylpyruvic acid, dopamine, 
epinephrine, and 3-methoxytyramine, of which only 
3-methoxytyramine showed an upward trend compared 
with the control group, and the rest showed a downward 
trend (Fig. 4D).

Metabolic changes of the body caused by influenza virus
According to the above-established PLS-DA model 
of COVID-19 and control, we obtained 10 differen-
tial metabolites that were also significantly different 

between influenza and control, which might reflect the 
response to the body’s stimulation by external viruses 
(Fig.  3A). Notably, 9 of 10 metabolites continued to 
decline in control, influenza and COVID-19, and they 
were 1-phenylethanol, isohomovanillic acid, methyl 
2-furoate, N-acetyl-l-leucine, phosphocholine, tyramine, 
2-hydroxyphenylacetic acid, 4-aminobenzoic acid, homo-
vanillic acid (Fig. 5A). Only tretinoin continued to rise in 
control, influenza and COVID-19 (Fig. 5A). These results 
proved that the changes of these differential metabolites 
caused by COVID-19 were more prominent compared 
with influenza group.

Since the early symptoms of COVID-19 were similar 
to those of influenza, we further analyzed the metabolic 
differences between influenza and COVID-19. PLS-DA 
plots (Fig. 5B, C) shows that the two groups of samples 
were obvious aggregation within the group and disper-
sion in two different regions between the groups, without 
overfitting in the permutation test, which was repeated 
100 times (Fig.  5D, E, Additional file  1: Fig.S2C-D). It 
was worth noting that there were two metabolites, ade-
nine and adenosine, that showed the lowest trend in the 
influenza group, and there was no significant difference 
between COVID-19 and control group (Fig.  5F). They 
specifically expressed the metabolic changes caused by 
influenza infection.

Discussion
In this study, we first constructed model of COVID-19 
and control and carried out pathway enrichment. A total 
of 35 COVID-19 specific differential metabolites were 
identified, of which 16 differential metabolites increased 
and 19 decreased in COVID-19 group compared with 
control group or influenza participants. And the levels 
of cis-5,8,11,14,17-eicosapentaenoic acid and hexanoic 
acid changed dramatically based on the FC value. It has 
been reported that human umbilical cord blood vessels 
can convert cis-5,8,11,14,17-eicosapentaenoic acid into 
prostaglandin I3 with anti-inflammatory effect, which 
can reduce the symptoms of dysmenorrhea [21, 22]. Our 
results showed that cis-5,8,11,14,17-eicosapentaenoic 
acid accumulated significantly in COVID-19, which 
proved that there was a serious inflammatory reaction in 
the COVID-19 patients. The research results found that 
hexanoic acid could promote the differentiation of TH1 

(See figure on next page.)
Fig. 2  PLS-DA score plot and cross-validation plot of metabolic profiling analysis. A PLS-DA score plot of Control, Influenza and COVID-19 group 
in positive mode. Green nodes: Control subjects, blue nodes: Influenza subjects, red nodes: COVID-19 subjects. B PLS-DA score plot of Control, 
Influenza and COVID-19 group in negative mode. Green nodes: Control subjects, blue nodes: Influenza subjects, red nodes: COVID-19 subjects. C 
PLS-DA score plot of Control and COVID-19 group in positive mode. Green nodes: Control subjects, red nodes: COVID-19 subjects. D PLS-DA score 
plot of Control and COVID-19 group in negative mode. Green nodes: Control subjects, red nodes: COVID-19 subjects. E Cross-validation plot in 
positive mode. F Cross-validation plot in negative mode
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Fig. 3  Identification, screening and classification of metabolites between COVID-19 and control group. A The venn diagrams of the different 
features obtained with VIP > 1, p < 0.5 and FC ≥ 1.2 or ≤ 0.83 in different groups, 35 metabolites showed no significant differences in control 
and influenza, 10 metabolites showed significant differences in control and influenza. B Classification donut chart of 35 identified differential 
metabolites. C The heatmap of 35 metabolites dramatically changed in COVID-19 and control. D The box plots of cis-5,8,11,14,17-eicosapentaenoic 
acid, nicotinuric acid, guanosine 5′-monophosphate and proline based on the FC value greater than 100 in COVID-19. Green: Control subjects, blue: 
Influenza subjects, red: COVID-19 subjects. E. The box plots of hexanoic acid, heptanoic acid, 17α-hydroxyprogesterone and hexanoylcarnitine were 
screened out based on the FC value less than 0.02 in COVID-19. Green: Control subjects, blue: Influenza subjects, red: COVID-19 subjects

(See figure on next page.)
Fig. 4  Metabolic pathways in COVID-19, especially tyrosine-related metabolism pathway. A Metabolic topological analysis diagram of 
COVID-19 metabolomics. B The box plots of L-glutamic acid, proline and leucylproline in control, influenza and COVID-19. Green: Control 
subjects, blue: Influenza subjects, red: COVID-19 subjects. C The interactive network of tyrosine-related metabolic pathways. D The box plots of 
4-hydroxyphenylpyruvic acid, dopamine, epinephrine, and 3-methoxytyramine in control, influenza and COVID-19. Green: Control subjects, blue: 
Influenza subjects, red: COVID-19 subjects. *p < 0.05, **p < 0.01, *** p < 0.0001
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and TH17 lymphocytes, and the activation of these two 
cells was related to inflammation, so hexanoic acid can 
support inflammation through the above functions [23]. 
We found that hexanoic acid decreased significantly in 
COVID-19, indicating that most of hexanoic acid was 
secreted into the blood to promote the inflammatory 
response, while hexanoic acid in oral cells decreased 
dramatically.

The pathway enrichment results showed that metabolic 
pathways based on 35 different metabolites between 
COVID-19 and the control group were focused on the 
amino acid metabolism, and the main pathways were 
tyrosine-related pathways, which targeted dopamine and 
4-hydroxyphenylpyruvic acid (HPPA). As a non-essential 
amino acid, tyrosine is obtained through the hydroxyla-
tion reaction of phenylalanine and food [24]. In one of 
the pathways of tyrosine oxidation, part of tyrosine is 
metabolized to dopamine, and then decomposed into 
3-methoxytyramine and epinephrine. Further study-
ing the dysfunctional pathways, we found dopamine 
was remarkably decreased in patients with the infection 
of SAR-CoV-2. Rodrigo Arreola et  al. reported that the 
decrease of dopamine content would lead to the decrease 
of human immune function [25]. Kenneth Blum’s study 
found that dopamine synthesis might decrease in 
COVID-19, because SARS-Cov2 would induce down-
regulation of angiotensin I converting enzyme 2 (ACE2) 
gene expression and the coexpression gene of dopa 
decarboxylase [26]. Therefore, the decreased dopamine 
might cause the disordered immune system through 
ACE2 receptors. In another path of tyrosine oxidation, 
HPPA can be converted from phenylalanine through 
tyrosine, and then HPPA is oxidized by 4-hydroxyphe-
nylpyruvate dioxygenase to homogentisic acid, final gen-
eration coenzyme A and fumaric acid [27]. Coenzyme A 
and fumaric acid enter the tricarboxylic acid cycle and 
participate in important energy metabolism pathways in 
organisms [28, 29]. Luporini et al. found that the content 
of HPPA and phenylalanine were both decreased in mild 
COVID-19 patient serum [30]. Our results also showed 
the level of HPPA was lower in the oral cavity of COVID-
19 patients, despite no change in control and influenza 
participants, implying that the decreased level of HPPA 
in tyrosine pathway might affect the energy metabolism 
of patients.

According to the feedback of the body to the virus, we 
screened 10 differential metabolites caused by the virus, 
including phosphocholine, tyramine and N-acetyl-l-leu-
cine and so on. Phosphocholine is the main phospholipid 
component in eukaryotic membranes and exists in sym-
bionts or pathogenic bacteria associated with eukaryotes 
in prokaryotes. It has been reported to exhibit surpris-
ing immunomodulatory properties [31]. Our results 
showed that phosphocholine continuously decreased in 
control, influenza and COVID-19, which might suggest 
phosphocholine turned on the immune regulation of 
virus when the body received the stimulation of exter-
nal virus. Tyramine, a derivative of tyrosine, has been 
shown to act as a catecholamine releaser in humans. 
Low levels of tyramine can lead to the pro-inflammatory 
state of MetS (Background Metabolic syndrome) [32]. 
In this research, we found tyramine showed a persistent 
decrease in the three groups, which might indicate the 
degree of inflammatory response presented by the body 
after receiving influenza and SARS-CoV-2, respectively, 
and the inflammatory response caused by SARS-CoV-2 
was more intense. N-acetyl-l-leucine is a potent endog-
enous metabolite, and studies have shown that after 
oral administration of N-acetyl-l-leucine in mice, pro-
inflammatory cytokines in the cortex was significantly 
reduced, thereby reducing traumatic brain injury inflam-
matory response [33]. The results of this study showed 
that N-acetyl-l-leucine was persistently decreased in the 
three groups, indicating that SARS-CoV-2 caused a more 
severe inflammatory response in the body.

In response to the feedback of influenza virus to the 
body, we screened out adenine and adenosine that were 
significantly reduced in influenza patients compared 
with the COVID-19 and control group. Adenine is 
a purine that is one of the four bases in DNA nucleic 
acid and is the chemical constituent of DNA and RNA. 
Adenine plays an important role in cellular respiration, 
formation of ATP, the cofactors NAD and FAD, and 
protein synthesis [34, 35]. And adenosine is an endog-
enous nucleoside that spreads all over human cells. It 
can directly enter the myocardium and phosphorylate 
to produce adenylate, which is involved in myocardial 
energy metabolism [36, 37]. In immune cells, adenosine 
is ubiquitous and modulates inflammatory responses by 
interacting with AR, one of the subtypes of G protein-
coupled receptors. For example, enhances lymphocyte 

Fig. 5  Changes in metabolites caused by the body’s feedback to the virus. A Relative amounts of 10 metabolites in control, influenza and COVID-19 
might reflect the body’s feedback after virus infection. B PLS-DA score plot of Influenza and COVID-19 group in positive mode. Blue nodes: Influenza 
subjects, red nodes: COVID-19 subjects. C PLS-DA score plot of Influenza and COVID-19 group in negative mode. Blue nodes: Influenza subjects, red 
nodes: COVID-19 subjects. D Cross-validation plot in positive mode. E Cross-validation plot in positive mode. F Relative amounts of 2 metabolites 
significantly decreased in Influenza group. *p < 0.05, **p < 0.01, ***p < 0.0001

(See figure on next page.)
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function, thereby enhancing immune regulation. Vari-
ous studies have shown that AR can enhance the body’s 
immune function by increasing adenosine levels [38]. 
Our results show that adenosine in the influenza group 
has a significant decrease compared with the other 
two groups, proving that the influenza virus caused a 
decline in the body’s immune function. These find-
ings might indicate the changes of immune function of 
body and energy metabolism caused by influenza virus 
stimulation.

Taken together, the metabolomics study on oral secre-
tion samples revealed the distinct metabolic changes 
of oral microenvironment in patients after infection of 
SARS-CoV-2. We have identified 35 metabolites with sig-
nificant differences between COVID-19 and control, and 
found that tyrosine-related pathways reflect the major 
dysfunctional pathways in the oral microenvironment 
after infection with SARS-CoV-2. Further, we analyzed 
the metabolic differences between influenza and COVID-
19, and found that adenine and adenosine caused the 
most obvious body response after influenza virus infec-
tion. This research revealed the oral metabolic signatures 
of COVID-19 patients that were more likely to reflect 
the features of metabolic reprogramming in body cells, 
which could provide valuable information to the deep 
study on molecular mechanisms and lay the foundation 
for treatment.

Conclusions
Through non-targeted metabolomics analysis, 35 spe-
cific differential metabolites were defined as SARS-CoV-2 
specific differential metabolites, which were no differ-
ences between influenza and control group. Pathway 
analysis showed tyrosine-related metabolism were most 
dysfunctional in COVID-19. The oral metabolomics 
study revealed the characteristics of metabolic alterations 
in oral microenvironment in COVID-19 and provided 
new insights for research and prognostic treatment.
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