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Abstract 

Background  The rapidly growing area of sequencing technologies, and more specifically bacterial whole-genome 
sequencing, could offer applications in clinical microbiology, including species identification of bacteria, prediction of 
genetic antibiotic susceptibility and virulence genes simultaneously. To accomplish the aforementioned points, the 
commercial cloud-based platform, 1928 platform (1928 Diagnostics, Gothenburg, Sweden) was benchmarked against 
an in-house developed bioinformatic pipeline as well as to reference methods in the clinical laboratory.

Methods  Whole-genome sequencing data retrieved from 264 Staphylococcus aureus isolates using the Illumina 
HiSeq X next-generation sequencing technology was used. The S. aureus isolates were collected during a prospec‑
tive observational study of community-onset severe sepsis and septic shock in adults at Skaraborg Hospital, in the 
western region of Sweden. The collected isolates were characterized according to accredited laboratory methods i.e., 
species identification by MALDI-TOF MS analysis and phenotypic antibiotic susceptibility testing (AST) by following 
the EUCAST guidelines. Concordance between laboratory methods and bioinformatic tools, as well as concordance 
between the bioinformatic tools was assessed by calculating the percent of agreement.

Results  There was an overall high agreement between predicted genotypic AST and phenotypic AST results, 98.0% 
(989/1006, 95% CI 97.3–99.0). Nevertheless, the 1928 platform delivered predicted genotypic AST results with lower 
very major error rates but somewhat higher major error rates compared to the in-house pipeline. There were differ‑
ences in processing times i.e., minutes versus hours, where the 1928 platform delivered the results faster. Furthermore, 
the bioinformatic workflows showed overall 99.4% (1267/1275, 95% CI 98.7–99.7) agreement in genetic prediction 
of the virulence gene characteristics and overall 97.9% (231/236, 95% CI 95.0–99.2%) agreement in predicting the 
sequence types (ST) of the S. aureus isolates.

Conclusions  Altogether, the benchmarking disclosed that both bioinformatic workflows are able to deliver results 
with high accuracy aiding diagnostics of severe infections caused by S. aureus. It also illustrates the need of inter‑
national agreement on quality control and metrics to facilitate standardization of analytical approaches for whole-
genome sequencing based predictions.
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Background
Infectious diseases caused by bacteria are one of the lead-
ing causes of human mortality and morbidity throughout 
the world, being responsible for several million deaths 
each year [1]. One of the most common pathways to 
death following an infection is sepsis, which arises when 
the body’s systemic response to an infection injures its 
own tissues and organs. It can lead to multiple organ 
dysfunction, shock and death, especially if not recog-
nized early and treated promptly. Every hour of delayed 
appropriate antibiotic therapy increases mortality in sep-
tic shock by 5–10% [2, 3]. Early identification of patients 
having bacterial sepsis along with timely determination 
of causative bacteria and antibiotic resistance profiles 
can alter current practices for therapeutic management, 
reduce over-prescription of antibiotics and associated 
adverse outcomes [4, 5]. The rapidly increasing area of 
next-generation sequencing (NGS) technologies and 
more specifically bacterial whole-genome sequencing 
(WGS) could offer several applications in clinical micro-
biology including accurate and earlier species identifica-
tion of bacteria, prediction of antimicrobial resistance 
and virulence genes [6]. However, bacterial WGS has 
seen slow integration into routine microbiological diag-
nostics because of the lack of a platform that can trans-
late WGS data into clinical practice. Furthermore, WGS 
workflows are required to be standardized when consid-
ering the clinical diagnostic application [7]. To comply 
with the aforementioned points the commercial cloud-
based platform, 1928 platform (1928 Diagnostics, Goth-
enburg, Sweden) was benchmarked against an in-house 
developed bioinformatic pipeline (INH) as well as to ref-
erence methods in the clinical laboratory. In the present 
study WGS data were retrieved from 264 Staphylococcus 
aureus isolates, using the Illumina HiSeq X next-genera-
tion sequencing technology. The S. aureus isolates were 
collected and characterized according to accredited labo-
ratory methods during a prospective observational study 
of community onset of severe sepsis and septic shock in 
adults at Skaraborg Hospital, in the western region of 
Sweden [8]. The outcomes from the clinical laboratory 
methods, i.e., species identification by MALDI-TOF MS 
(Bruker) analysis and phenotypic antibiotic suscepti-
bility testing (AST) following the EUCAST guidelines, 
were viewed as reference results, the true results, for the 
comparison with the genome-based computationally 
predicted output from the bioinformatic analyses of the 
WGS data. In addition, the virulence gene predictions 

obtained from the 1928 platform were compared to those 
obtained from the INH. Results for multi-locus sequence 
typing (MLST) were also investigated. Such application 
of WGS bioinformatics methods aiding in S. aureus diag-
nostics has also been addressed in other studies [9–11]. 
A recent study, analyzing WGS data from blood culture 
isolates of S. aureus using Next Gen Diagnostic software 
(Mountain View, California, USA) and the 1928 platform 
reported slightly high very major error (VME) and major 
error (ME) rates for the 1928 platform [12]. One VME is 
defined as a resistant phenotype with genetic predicted 
susceptible genotype, also known as false negatives. One 
ME is defined as a susceptible phenotype with genetic 
predicted resistant genotype, also known as false posi-
tives [13]. Since false negatives can have consequences 
for treatment of infection [14, 15] the present study com-
pared the numbers of VME and ME, but also the VME 
and ME rates retrieved from the investigated bioinfor-
matic workflows. Furthermore, the 1928 platform has 
been used in two studies focused on S. argenteus [16, 17] 
and in another study investigating the regional epide-
miology and susceptibility patterns of methicillin resist-
ant S. aureus (MRSA) isolates identified in Stockholm 
County, Sweden [18]. Lastly, a recent publication look-
ing into the biodiversity of clinical Klebsiella spp. isolates 
collected from patients with suspected community-onset 
sepsis, Sweden, included bioinformatic analyses by the 
1928 platform [19]. The present study aimed at to further 
evaluate the performance of the 1928 platform in clini-
cal routine for in silico species identification, antibiotic 
susceptibility testing, virulence and sequence typing of 
S. aureus. Since rapid extraction of clinically relevant 
genomic information will be essential for the adoption 
of WGS for infection control and public health, the pro-
cessing time of the bioinformatic workflows was also 
compared.

Methods
Bacterial isolates
From September 2011 to June 2012, a prospective 
observational study of community-onset severe sepsis 
and septic shock in adults was conducted at Skaraborg 
Hospital, a secondary hospital with 640 beds, in the 
western region of Sweden [8]. The study was approved 
by the Regional Ethical Review Board of Gothenburg 
(376–11). As the present study only focused on bacte-
rial isolates recovered from cultures included in the 
routine patient care, individual informed consent is 
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deemed unnecessary according to national regulations 
(2003:460). Approximately 1,800 bacterial isolates were 
recovered at the clinical microbiology laboratory, Uni-
labs, Sweden, from the patients enrolled in the study. 
These isolates were cryopreserved at the time of recov-
ery by transferring colonial material to Microbank™ 
vials (Pro-Lab Diagnostics, Ontario, Canada) stored 
at − 80  °C. For the present study, isolates recovered 
from 212 patients and identified as S. aureus (n = 272) 
with routine microbiological methods based on cul-
tures followed by MALDI-TOF MS (DB-4110) were 
selected. Nevertheless, five isolates could not be recov-
ered after freezing. In all, 267 isolates were prepared for 
DNA extraction and WGS (Fig. 1).

Reference method for species identification
In line with the hospital’s policy, blood cultures were 
drawn from each patient before the initiation of intra-
venous antibiotic treatment. For patients with sepsis 
of unknown origin, samples from urine and respiratory 
tract were cultured whenever possible. Other samples 
were collected at the discretion of the treating physi-
cian. Microbiological culturing was performed as previ-
ously described [20]. Definite species identification of 
the collected isolates was performed by MALDI-TOF 
MS on a Microflex LT mass spectrometer (Bruker Dal-
tonics, Leipzig, Germany) using BioTyper software v2.0 
using default parameter settings as described elsewhere 
[20, 21]. Spectral scores above 2.0 were used as a cut-off 
for correct identification. At the time of the study, the 
Bruker microorganism database MBT Compass Library 
DB-4110 (Bruker Daltonics, Germany) released in April 
2011 was used.

Reference method for antibiotic susceptibility testing
Antibiotic susceptibility was determined by accredited 
laboratory methods using the disc diffusion method on 
Mueller Hinton media according to European Commit-
tee on Antimicrobial Susceptibility Testing (EUCAST) 
guidelines (www.​eucast.​org). Antibiotic susceptibility test 
(AST) results retrieved from the identified S. aureus were 
included, hereafter referred to as phenotypic AST. Resist-
ant AST result for isoxazolyl penicillin and cefoxitin was 
followed by detection of mecA by PCR to confirm the iso-
late as a methicillin resistant S. aureus (MRSA). Pheno-
typic AST results reported in this study are limited to the 
set of antibiotics included in the 1928 platform (Table 1).

Whole‑genome sequencing of S. aureus—Illumina HiSeq
Genomic DNA was extracted at Unilabs, Skövde, using 
the MagNA Pure 96 DNA and Viral NA Small Volume 

kit (Roche Diagnostics, Switzerland) with the Pathogen 
Universal 200 protocol on a MagNA Pure 96 instru-
ment (Roche Diagnostics, Switzerland). DNA concentra-
tion was measured using the Qubit dsDNA HS assay kit 
(Thermo Fisher Scientific, USA) on a Qubit 3.0 (Thermo 
Fisher Scientific, USA) and NanoDrop spectrophotom-
eter, respectively (Thermo Fisher Scientific, USA). DNA 
extracts from 267 S. aureus isolates were transported to 
Clinical Genomics, SciLifeLab, Solna, Sweden, where 
the WGS was performed. During the sample preparation 

Fig.1  Overview of the bacterial isolates in the study. During a 
prospective observational study of community-onset severe sepsis 
and septic shock in adults conducted at Skaraborg Hospital, Sweden 
Ljungstrom [8] approximately 1,800 bacterial isolates were recovered. 
Definite species identification of the collected isolates was performed 
by MALDI-TOF MS, identifying 272 bacterial isolates as S. aureus. Five 
isolates could not be recovered after freezing. In all, 267 isolates 
were prepared for DNA extraction and WGS. The output FASTQ 
pair-ended (PE) files for three of the isolates were excluded from the 
dataset after quality control of the raw data and the remaining 264 
S. aureus were used as input into the bioinformatic analysis in the 
in-house pipeline and 1928 platform. During the benchmarking of 
species identification (step 1) nine FASTQ files did not pass the quality 
control levels in the 1928 platform. Only when benchmarking species 
identification, the depth/coverage was lowered to 11-29X. During the 
benchmarking of antibiotic sensitivity, virulence genes and ST (step 
2) output from 255 isolates identified as S. aureus both phenotypically 
and genotypically were included

http://www.eucast.org
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Nextera XT DNA sample preparation guide (Illumina, 
USA), was followed. Measurement of double-stranded 
DNA concentration was achieved with broad- and low 
range assay kits on a Qubit 2.0 (Thermo Fisher Scientific, 
USA). Library preparation was performed according to 
the Nextera XT guidelines (Illumina, USA). Fragment 
analyses of the PCR libraries on a Bioanalyzer (Agilent 
technologies, USA) was done to obtain abundances and 
average length of fragments for each sample. The Illu-
mina HiSeq 2500 platform was used for the NGS. The 
output files consisted of compressed FASTQ-files (.gz) 
containing sequencing data that could be downloaded for 
further analysis.

Bioinformatic analysis
The INH consisted of established bioinformatic tools as 
illustrated in Fig. 2. In more detail, primary quality con-
trol of the FASTQ files was performed using the FastQC 
software (v.0.11.8) [22]. One isolate was removed from 
the dataset before trimming as it showed low number 
of reads (< 500,000). Trimmomatic (v.0.36) was used for 
adapter removal and quality trimming with a sliding 
window of size 4 and a minimum quality of 20 [23]. In 
addition, the first 12 bases were trimmed by the HEAD-
CROP argument, and reads with a length shorter than 
30  bp were removed. FASTQ files were then assembled 
into contigs using SPAdes (v.3.13.1) [24]. The quality of 
the assembled contigs were evaluated using the QUAST 
(v.5.0.2) [22] with default settings. In addition to deter-
mining assembly metrics, the length of each assembly 
was manually compared to the genome size of a reference 
genome obtained from NCBI. The reference genome 
used was Staphylococcus aureus subsp. aureus, NCTC 
8325 (GenBank accession number NC_007795.1) with a 
genome size of 2.8 Mbp. If an assembly was not consid-
ered good, the median coverage was also calculated using 

R v.3.5 [23]. Two genome assemblies had a median cover-
age < 2.5 reads per base and were excluded from further 
analysis. The assembled contigs in FASTA format were 
annotated by tools available in the Center for Genomic 
Epidemiology (CGE) (https://​www.​genom​icepi​demio​
logy.​org/) i.e., ResFinder v.3.0 [25], VirulenceFinder v2.0 
[26], MLST 2.0 [27] and the JSpeciesWS (http://​jspec​ies.​
riboh​ost.​com/​jspec​iesws/) (Fig. 2). Species identification 
was achieved by calculating the pairwise average nucle-
otide identity (ANI) based on BLAST + (ANIb) in JSpe-
ciesWS [28] using Staphylococcus aureus subsp. aureus 
NCTC 8325 as the reference genome. An ANI thresh-
old of 96% or greater was considered to delineate spe-
cies boundaries as a threshold of 96% correlates well to 
DNA-DNA hybridization [28, 29] (Fig. 2). The presence 
of antibiotic resistance genes was predicted using CGE 
ResFinder v.3.0 with default settings for threshold ID 
(90%) and minimum length 60% [25]. Susceptibility was 
conferred by the absence of resistance genes and resist-
ance was conferred by the presence of resistance genes. 
Presence (P) or absence (A) of virulence genes were pre-
dicted by CGE VirulenceFinder v2.0 [26] with default set-
tings for threshold ID (90%) and minimum length 60%. 
MLST analysis was performed using CGE MLST 2.0 [27] 
with Staphylococcus aureus as selected configuration for 
all isolates. This MLST scheme consists of alleles from 
the following seven loci arcC, aroE, glp, gmk, pta, tpi, and 
yqiL [30]. For analysis with 1928, the FASTQ files were 
uploaded to its cloud-based platform (1928 Diagnostics, 
Sweden) for inferred antibiotic susceptibility based on 
genotype resistance markers, which are genes and muta-
tions known to contribute to antibiotic resistance, hereby 
and later referred to as predicted genotypic antibiotic 
susceptibility. Susceptibility was conferred by the absence 
of genotype resistance markers and resistance was con-
ferred by the presence of genotype resistance markers. 

Table 1  Genes and antibiotics assessed for each analysis in the 1928 platform accessed online June-July 2019

a Phenotypic AST results reported in this study are limited to the set of antibiotics included in the 1928 platform
b Isoxazolyl penicillin belongs to the β-lactam antibiotic group

Antibiotics addressed for predicted genotypic 
antibiotic susceptibilitya

Genes present in any of the SCCmec 
types

Typing-genes used for MLST 
classification

Virulence genes

Ciprofloxacin IS1272 ccrB3 arcC etA

Vancomycin ccrA1 ccrB4 aroE etB

Clindamycin ccrA2 ccrB6 glpF lukF-PVL

Erythromycin ccrA3 ccrC gmk lukS-PVL

Isoxazolyl penicillinb ccrA4 mecA pta tsst1

Rifampicin ccrB1 mecC tpi

Trimethoprim ccrB2 yqiL

Tetracycline

Fusidic acid

https://www.genomicepidemiology.org/
https://www.genomicepidemiology.org/
http://jspecies.ribohost.com/jspeciesws/
http://jspecies.ribohost.com/jspeciesws/
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The platform also predicts acquired virulence genes, 
type of mobile genetic SCCmec element and sequence 
type (Table 1), hereby and later referred to as predicted 
genotypic presence (P) or absence (A) of different viru-
lence genes and ST, respectively. After uploading the 
FASTQ files, the files underwent an initial quality control 
were reads were trimmed or entirely discarded accord-
ing to the platform’s internal thresholds i.e., sequencing 
depth/coverage higher than 30 × to perform the analysis. 

During species identification, analysis depth/cover-
age of 11-29X was allowed. Species identification, gene 
and mutation detection for the other analyses were per-
formed by assembly free kmer-based methods (Table 2). 
Raw pair-end fastq.gz files were uploaded to the 1928 
platform during June and July 2019. This platform has 
not been further updated during the access period as 
confirmed by communication with 1928 Diagnostics, 
Sweden.

Fig. 2  Overview of the in-house pipeline. The in-house pipeline consists of a number of manual steps; input of raw data, preprocessing of 
paired-end (PE) FASTQ files, assembly and scaffolding followed by annotation of the assembled contigs in FASTA format. The outputs from the 
annotation; sequence type (MLST), virulence gene characterization (VirulenceFinder), species identification (JSpeciesWS) and presence of genes 
conferring antibiotic resistance (ResFinder) were manually sorted and collected into a summary (Excel-format). Circle represents data files and each 
box represents a component corresponding to a series of tasks that provide a certain well-defined functionality (indicated in bold). Bioinformatics 
tool employed in each module are also mentioned (indicated in italics)

Table 2  Analyses used during the benchmarking

a not determined, bthe underling method used is proprietary, the exact method cannot be mentioned, INH: in-house pipeline

Analyses compared during the 
benchmarking

Reference method
Phenotypic results

Bioinformatic workflows
Genotypic predicted results

1928 INH

Species identification MALDI-TOF MS kmer-based methodb JSpeciesWS

Antibiotic susceptibility test Disc diffusion kmer-based methodb ResFinder

Virulence genes nda kmer-based methodb VirulenceFinder

Sequence type nda kmer-based methodb MLST
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Benchmarking of the bioinformatic workflows
Species identification and AST results retrieved from the 
reference method in the clinical laboratory were com-
pared to genetic predicted species identification and AST 
by both bioinformatic workflows through examining the 
degree of agreement between these results (Table  2). 
Nine antibiotics and/or antibiotic classes were included 
in the benchmarking (Table 3). A very major error (VME) 
was defined as a resistant phenotype with genetic pre-
dicted susceptible genotype, a major error (ME) was 
defined as a susceptible phenotype with genetic pre-
dicted resistant genotype [13]. Acquired virulence genes, 
presence (P) or absence (A), and STs retrieved from the 
bioinformatic workflows were compared by examining 
the degree of agreement between the genetically pre-
dicted results.

Statistical analysis
Statistical analyses and calculations were performed 
using R v.4.0.3 [31]. Concordance between conventional 
microbiological methods and bioinformatic analysis tools 
was assessed by calculating the percent of agreement. 
Concordance between bioinformatic analysis tools was 
assessed by calculating the percent of agreement. The 
Agresti-Coull method was used [32] for the construction 
of 95% CI for percent of agreement between methods. 
Jupyter notebook v.6.0.3 [33] in Anaconda v. 2–2.4.0 [34] 
was used for pre-processing data.

Results
Species identification
The current study was based on 264 isolates identi-
fied as S. aureus according to the reference method 
using MALDI-TOF MS analysis (Fig. 1). Using the 1928 

platform, nine FASTQ files did not pass the internal qual-
ity control levels, since sequencing depth/coverage had to 
be higher than 30 × to perform the analysis (1928 Diag-
nostics, Sweden). Allowing depth/coverage of 11-29X for 
the species identification of these nine isolates, the 1928 
platform showed 99.2% (262/264, 95% CI 97.1–99.9) 
agreement with the reference method. For the two dis-
crepant results the 1928 platform predicted one of the 
isolates as Staphylococcus epidermidis (SA 310) whereas 
the second isolate (SA 1413) was predicted as non-staph-
ylococcus spp. The INH also showed 99.2% (262/264, 
95% CI 97.1–99.9) agreement to the reference method. 
Among the two discrepant results, the first isolate (SA 
310) was also predicted as S. epidermidis, whereas the 
second isolate (SA 1413) was predicted as Staphylococ-
cus argenteus. The two samples identified as S. epider-
midis and S. argenteus were excluded from the rest of the 
study, since this study focused on S. aureus. Likewise, the 
FASTQ files that did not pass the internal quality con-
trol levels in the 1928 platform (1928 Diagnostics, Swe-
den) were excluded from further analysis. The upcoming 
benchmarking of virulence gene characterization, 
sequence type and antibiotic susceptibility  included the 
remaining 255 S. aureus isolates.

Antibiotic susceptibility test
In all, the EUCAST testing for the clinical S. aureus iso-
lates generated 1006 phenotypic AST results (Table  4). 
The AST showed 2.5% (25/1006) isolates to be phenotyp-
ically resistant and the highest percentage of resistance 
was noticed for ciprofloxacin and fusidic acid (Table 4). 
Three out of 244 clinical isolates were phenotypically 

Table 3  Antibiotic groups included in the benchmarking

a Phenotypic AST results reported in this study are limited from the set of 
antibiotics included in the 1928 platform. As the phenotypic AST was performed 
as part of the routine clinical practice, the sample type mainly determined which 
antibiotics to be tested for each bacterial isolate (Additional file 1)

Disc diffusion
Phenotypic ASTa

Bioinformatic workflows
Genotypic predicted AST

1928 INH

Ciprofloxacin Ciprofloxacin Ciprofloxacin

Clindamycin Clindamycin Lincosamide

Erythromycin Erythromycin Macrolide

Rifampicin Rifampicin Rifampicin

Trimethoprim Trimethoprim Trimethoprim

Tetracycline Tetracycline Tetracycline

Vancomycin Vancomycin Glycopeptide

Fusidic acid Fusidic acid Fusidic acid

Isoxazolyl penicillin Isoxazolyl penicillin Isoxazolyl penicillin

Table 4  Phenotypic antibiotic susceptibility test of S. aureus 
isolates

a Antibiotics reported are dependent on the set of antibiotics included for 
different sampling at the clinical lab (Additional file 1) and also the antibiotics 
included in the 1928 platform. bNumber of isolates tested with specific antibiotic 
disc during the EUCAST test. cFollowed by PCR detection of mecA, confirmation 
of MRSA

Antibiotic a (n) b Susceptible (n [%]) Resistant (n [%])

Ciprofloxacin (70) 66 [94.3] 4 [5.7]

Clindamycin (212) 209 [98.6] 3 [1.4]

Erythromycin (215) 212 [98.6] 3 [1.4]

Isoxazolyl penicillin (244) 241 [98.8] 3 [1.2]c

Rifampicin (5) 5 [100.0] 0 [0]

Trimethoprim (26) 25 [96.2] 1 [3.8]

Tetracycline (1) 0 [0] 1 [100.0]

Vancomycin (27) 27 [100.0] 0 [0]

Fusidic acid (206) 196 [95.1] 10 [4.9]

Total amount of cases: 1006 981 [97.5] 25 [2.5]
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resistant to isoxazolyl penicillin (Table 4), being reported 
as cefoxitin resistant, which were further confirmed by 
in-house PCR as mecA gene positive and reported as 
methicillin resistant S. aureus (MRSA).

In order to study the capacity of the bioinformatic 
workflows to translate WGS into clinical practice within 
the area of AST, the degree of agreement between the 
predicted genotypic AST to the phenotypic AST result 
was studied (Table 5). There was an overall high agree-
ment 98.0% (989/1006, 95% CI 97.3–99.0). Among the 
phenotypic AST results reported as susceptible 99.8% 
(979/981, 95% CI 99.2–99.9) of the results were con-
cordant, while the phenotypic AST results reported as 
resistant were less concordant 60.0% (15/25, 95% CI 
40.7–76.5) (Table 5). The degree of agreement between 
the predicted genotypic AST to the phenotypic AST 
result from 1928 and INH using ResFinder (Fig.  2) 
showed 99.0% (996/1006, 95% CI 98.1–99.5) and 
98.4% (990/1006, 95%CI 97.4–99.0) agreement with 

the reference method. Lastly, comparison in-between 
the predicted genetic AST results showed a high over-
all agreement of 99.2% (998/1006, 95% CI 98.4–99.6). 
When looking closer into the nine different antibiot-
ics selected for this study, there were 100% agreement 
across the phenotypic AST and the predicted genotypic 
AST for the following antibiotics reported as suscepti-
ble (S) or resistant (R): clindamycin S, erythromycin S, 
trimethoprim S and R, tetracycline S and R, rifampicin 
S and R, vancomycin S and R and isoxazolyl penicil-
lin R (Table  5). In total, there were 26 discrepancies 
across the bioinformatic workflows including 23 VME 
and three ME, where fusidic acid showed the greatest 
discordance with 11 VME followed by clindamycin and 
ciprofloxacin showing six and four VME respectively, 
as well as one ME for ciprofloxacin (Table 5). Further-
more, discordance across the bioinformatic workflows 
resulting in VME could also be observed for erythro-
mycin (n = 2) and ME for isoxazolyl penicillin (n = 2) 

Table 5  Predicted genotypic AST results from the 1928 platform and the in-house pipeline compared to phenotypic AST

The bioinformatic results are presented as 1928 platform/in-house pipeline (INH), where R/R is resistant/resistant, S/S is susceptible/susceptible, R/S is resistant/ 
susceptible, and S/R is susceptible/resistant
a Number of isolates tested with a specific antibiotic disc by disc diffusion. bTotal number of cases tested by disc diffusion. cNumber of discordant result implying both 
of the bioinformatic workflows. dtotal very major error for 1928. eTotal very major error for INH. fTotal major error for 1928. gTotal major error for 1928, R-resistant; 
phenotypic AST R is retrieved from the EUCAST assay, genotypic AST R was conferred by the presence of resistance markers or genes, S-susceptible; phenotypic AST 
S was retrieved from the EUCAST assay, genotypic S was conferred by the absence of resistance markers and genes. INH-in-house pipeline using Resfinder. Very major 
error: resistant phenotype predicted as a susceptible genotype. Major error: susceptible phenotype predicted as resistant genotype. Bold 100% agreement with both 
bioinformatic tools

Antibiotic (n)a Phenotypic 
AST (n)

Predicted genotypic AST from 1928 (n) 
and INH (n)

Discordant across 
methods (n [%])

Very major errors 
(n)

Major errors 
(n)

RR SS RS SR 1928  INH 1928 INH

Ciprofloxacin (70) R (4) 0 0 4 0 5 (7.1) 0 4 1 0

S (66) 0 65 1 0

Clindamycin (212) R (3) 0 3 0 0 3 (1.4) 3 3 0 0

S (209) 0 209 0 0

Erythromycin (215) R (3) 2 1 0 0 1 (0.47) 1 1 0 0

S (212) 0 212 0 0

Rifampicin (5) R (0) 0 0 0 0 0 (0) 0 0 0 0

S (5) 0 5 0 0

Isoxazolyl penicillin 
(244)

R (3) 3 0 0 0 1 (0.41) 0 0 1 1

S (241) 1 240 0 0

Trimethoprim (26) R (1) 1 0 0 0 0 (0) 0 0 0 0

S (25) 0 25 0 0

Tetracycline (1) R (1) 1 0 0 0 0 (0) 0 0 0 0

S (0) 0 0 0 0

Vancomycin (27) R (0) 0 0 0 0 0 (0) 0 0 0 0

S (27) 0 27 0 0

Fusidic acid (206) R (10) 3 4 3 0 7 (3.4) 4 7 0 0

S (196) 0 196 0 0

Total nb = 1006 S (981)
R (25)

10/11 979/987 8 0 nc = 17 (1.7) nd = 8 ne = 15 nf = 2 ng = 1

Error rate % 0.8 1.5 0.2 0.1
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(Table 5). Looking closer into the 26 discrepancies from 
the bioinformatic workflows (Table  6) one can notice 
that the output i.e., identified genetic resistance mark-
ers or genes from the tools included in the 1928 and 
INH workflows sometimes differs.

Virulence genes and sequence type
We also compared the genetic predictions from the 1928 
platform to those obtained by the INH concerning ST 

and presence (P) or absence (A) of selected virulence 
genes. In all, twenty-five genes were included in the 
analysis (Table  1). 1928 and the INH using Virulence-
Finder (Fig. 2) showed overall 99.4% (1267/1275, 95% CI 
98.7–99.7) agreement in genetic prediction of the chosen 
genes among the S. aureus (Table 7). The 1928 platform 
predicted the presence of another eight virulence genes 
than the INH using VirulenceFinder did, i.e., etA (n = 2), 
etB (n = 2) and tsst1 (n = 4) (Table 7).

Table 6  Output from 1928 and INH where genotypic prediction of antibiotic susceptibility test showed VME (bold) or ME (underlined)

a  () within brackets detected mutations are indicated. VME: Very major error: resistant phenotype predicted as a susceptible genotype. ME: Major error: susceptible 
phenotype predicted as resistant genotype. R-resistant; phenotypic AST R is retrieved from the EUCAST assay, genotypic AST R was conferred by the presence of 
resistance markers or genes, S-susceptible; phenotypic AST S was retrieved from the EUCAST assay, genotypic S was conferred by the absence of resistance markers 
and genes. INH-in-house pipeline using Resfinder

Disc diffusion
Phenotypic AST

Bioinformatic workflows
Genotypic predicted AST

Isolate Antibiotic (R or S) R or S
Resistance markers identified by 1928

R or S
Genes conferring antimi‑
crobial resistance identified 
by INH

SA 907 Ciprofloxacin (R) R
grlA (S80F + I45M)a

grlB (E422D)

S
No genes

SA 1525 Ciprofloxacin(R) R
grlA (S80F)

S
No genes

SA 1852 Ciprofloxacin(R) R
grlA (S80F)

S
No genes

SA 1153 Ciprofloxacin(R) R
grlA (S80F)
gyrA (S84L)

S
No gene

SA 1046 Ciprofloxacin(S) R
grlA (S80F + I45M)
grlB (E422D)

S
No genes

SA 61 Clindamycin(R) S
No resistance markers

S
No genes

SA 63 Clindamycin(R) S
No resistance markers

S
No genes

SA 804 Clindamycin(R) S
No resistance markers

S
No genes

SA 804 Erythromycin(R) S
No resistance markers

S
No genes

SA 535 Fusidic acid (R) R
fusC

S
No genes

SA 846 Fusidic acid (R) R
fusC

S
No genes

SA 1162 Fusidic acid (R) R
fusC

S
No genes

SA 1333 Fusidic acid (R) S
No resistance markers

S
No genes

SA 1349 Fusidic acid (R) S
No resistance markers

S
No genes

SA 1640 Fusidic acid (R) S
No resistance markers

S
No genes

SA 1370 Fusidic acid (R) S
No resistance markers

S
No genes

SA 1197 Isoxazolyl penicillin (S) R
mecC

R
mecA
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In total, for 236 of the 250 isolates the results of MLST 
were consistent for the INH using MLST 2.0 (Fig. 2) and 
1928 (Table  8). For 19 of the 255 isolates, the ST could 
not be definitely determined with either the INH or 1928. 
For three isolates, the ST was determined with 1928 
but not with MLST 2.0 (SA117: ST50, SA656: ST5, and 
SA1723: ST39), while for two isolates, the ST was deter-
mined with MLST 2.0 but not with 1928 (SA331 and 
SA332, both ST6674). However, it can be noted that both 
workflows identified the same allelic profile for these two 
isolates even though 1928 did not yield any ST. Since typ-
ing of the SCCmec element is of importance to follow a 
possible MRSA outbreak, the 1928 platform also deliv-
ers a result about what kind of SCCmec element the S. 
aureus isolate is encoding. The 1928 platform predicted 
17 isolates to encode for a SCCmec type, whereof four 
known and thirteen unknown types (Table 9). Among the 
four known SCCmec types, three of these were indeed 
predicted for the three isolates being phenotypic iden-
tified as MRSA in the clinical lab (SA 606, SA 1857 and 
SA 1153), but the clinical isolate, SA 1197, predicted to 
carry SCCmec XI was not. The 1928 platform genetically 
predicted the presence of mecC, while INH applying Res-
Finder predicted mecA, in the clinical isolate, SA 1197.

Discussion
In this study, the 1928 platform was benchmarked to ref-
erence methods in the clinical laboratory as well as to 
an in-house developed bioinformatic pipeline (Fig.  2). 
Among all bacterial isolates collected during the pro-
spective observational study of community-onset severe 
sepsis and septic shock [8], S. aureus was one of the most 
common etiological agents among the patients suspected 
of having sepsis.

Species identification
Currently the INH includes the tool JSpeciesWS 
(Fig. 2), calculating the pairwise ANI against reference 
genomes [28] for prediction of species identification. 
Recently, another study [19], using similar preprocess-
ing tools for FASTQ PE files retrieved from Illumina 
sequencing, also showed good achievement in species 
identification using the JSpeciesWS tool. Nevertheless, 
during the development of the INH, different tools for 
prediction of species identification were assessed i.e., 
16S rRNA based species identification of S. aureus 
using CGE SpeciesFinder [35], kmer-based species 
identification with kmer size 16 and prefix “ATG” with 
CGE KmerFinder [35–37]. Also, species discrimina-
tion application of dDDH based on the Type (Strain) 
Genome Server, TYGS [38] was assessed. CGE Kmer-
finder and TYGS showed high agreement with the ref-
erence method 99.2% (262/264), while SpeciesFinder 
predicted only 76.5% (202/264) as S. aureus (Additional 
file  2). Similar challenges have been reported earlier 
[35]. The 1928 platform analysis for species identifi-
cation, applying assembly free kmer-based method, 
showed 99.2% (262/264) agreement to the reference 
method. It should however be emphasized that depth/
coverage of 11-29X were allowed for the species iden-
tification of nine isolates. Including only the FASTQ 
files passing 1928 internal quality threshold, the 1928 
platform would have shown 100% (255/255) agree-
ment to the reference method. Among the jointly pre-
dicted discrepant results (2/264), one isolate (SA 310) 
was predicted to be S. epidermidis by both JSpeciesWS 
and 1928, while the second isolate (SA 1413) was pre-
dicted as non-staphylococcus spp. by 1928, whereas 
JSpeciesWS predicted S. argenteus. In 2015, two novel 
species of the genus Staphylococcus were identified by 

Table 7  Predicted presence (P) or absence (A) of certain virulence genes among 255 S. aureus isolates

a A absence, bP presence

Number of isolates and 
corresponding FASTQ files

Virulence gene of 
interest

Predicted genotype by 1928 platform and INH Discordant 
across methods 
(n [%])AAa PPb AP PA

255 etA 251 2 0 2 2 [0.8]

255 etB 253 0 0 2 2 [0.8]

255 lukF-PVL 248 7 0 0 0 [0]

255 lukS-PVL 248 7 0 0 0 [0]

255 tsst1 215 36 0 4 4 [1.6]

Total
(% of 1275)

1215
(95.3)

52
(4.1)

0
(0.0)

8
(6.3)

8
(6.3)



Page 10 of 16Shemirani et al. BMC Infectious Diseases           (2023) 23:39 

WGS using the Illumina HiSeq platform, where one 
was proposed as S. argenteus [39]. The general clinical 
impact of S. argenteus is difficult to assess because of 
the limited number of studies and datasets, and diver-
gent observations exist, but recent studies suggest 
that the frequency of healthcare-associated infections, 
morbidity and mortality are comparable to those of 
S. aureus [40, 41]. In addition, there have been multi-
ple reports of bloodstream infections among which S. 
argenteus methicillin resistant isolates have been iso-
lated [40, 42–44], altogether illustrating the impor-
tance of S. argenteus identification. To date, classical 
routine diagnostics do not distinguish this species from 
S. aureus [45]. Though, since April 2018 the clinical 

microbiology laboratory Unilabs, Skövde, is using the 
updated Bruker microorganism database MBT Com-
pass Library DB-7854 (Bruker Daltonics, Germany) 
including identification of S. argenteus. Shortly after 
all WGS data collected in our study had been analyzed, 
the very first report of S. argenteus in Sweden was pub-
lished and the 1928 platform was updated accordingly 
[16].

Antibiotic susceptibility test
Combined predicted genotypic antibiotic susceptibil-
ity from both of the bioinformatic workflows showed 
98.0% (989/1006, 95% CI 97.3–99.0) agreement to phe-
notypic AST (Table  5), which has also been shown in 

Table 8  Comparisons of STs as identified by INH (MLST-CGE) and 1928

CGE: Center for Genomic Epidemiology, INH: in-house pipeline, MLST: multi-locus sequencing typing, and ST: sequence type
a 1928 identified same alleles as INH but assigned no ST
b Other STs include one isolate each of ST6, ST27, ST59, ST101, ST109, ST121, ST123, ST130, ST182, ST188, ST398, ST942, ST1021, ST1035, ST1150, ST1218, ST1675, 
ST2975, ST4554, and ST6363
c For 19 isolates, the ST profile could not be determined either by INH (MLST-CGE) or 1928. These isolates are not included in the table

ST No. of isolates determined by Discordant 
across methods 
[n (%)]Both INH and 1928 INH only 1928 only

1 5 0 0 0 (0)

5 12 0 1 1 (7.7)

7 2 0 0 0 (0)

8 12 0 0 0 (0)

12 6 0 0 0 (0)

15 30 0 0 0 (0)

20 2 0 0 0 (0)

22 8 0 0 0 (0)

25 3 0 0 0 (0)

26 3 0 0 0 (0)

30 39 0 0 0 (0)

34 2 0 0 0 (0)

39 1 0 1 1 (50.0)

45 51 0 0 0 (0)

46 4 0 0 0 (0)

50 8 0 1 1 (11.1)

97 3 0 0 0 (0)

146 3 0 0 0 (0)

291 2 0 0 0 (0)

375 5 0 0 0 (0)

425 3 0 0 0 (0)

1181 2 0 0 0 (0)

1633 2 0 0 0 (0)

1693 3 0 0 0 (0)

6674 0 2 0a 2 (100.0)

Other STsb 20 0 0 0 (0)

Total (% of 236)c 231 (97.9) 2 (0.8) 3 (1.3) 5 (2.1)
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other studies for S. aureus [9, 13, 46, 47]. The phenotypic 
AST results reported as resistant were less concordant 
than the phenotypic AST results reported as susceptible 
(Table 5). Similar results have been reported, when stud-
ying the accuracy of three different bioinformatic systems 
Genefinder, Mykrobe and Typewriter in genetic predic-
tion of AST from S. aureus WGS data [9].

These bioinformatic systems showed challenges in con-
cordant genetic predicted AST with phenotypic AST for 
the antibiotics, ciprofloxacin and fusidic acid, which was 
also the case in our study (Table  5). Among the 26 dis-
crepancies across the bioinformatic workflows fusidic 
acid showed the greatest discordance with 11 VME fol-
lowed by clindamycin and ciprofloxacin showing six and 
four VME respectively, as well as one ME for ciprofloxa-
cin (Table 5). The discrepancies reported for the fusidic 
acid comes from the 1928 platform predicting the pres-
ence of fusC in three isolates (SA 535, SA 846 and SA 
1162), while the INH did not predict the presence of any 
genes, resulting in three VME for the INH. Also, four iso-
lates reported to be phenotypic resistant to fusidic acid 
(SA 1333, SA 1349, SA 1640 and SA 1370) were geno-
typically predicted susceptible since no gene or resistance 
markers could be predicted by the bioinformatic work-
flows (Table  6), resulting in four VME for each bioin-
formatic workflow. The resistance mechanism by fusidic 
acid, inhibiting protein synthesis, has been shown to have 
multiple genetic causes, some of which have only recently 

been discovered [48], illustrating the need for recogni-
tion of novel variants in the systems database for in silico 
prediction of resistance and susceptibility. For ciprofloxa-
cin four isolates reported to be phenotypic resistant (SA 
907, SA 1525, SA 1852 and SA 1153) the INH did not 
predict the presence of any gene, while the 1928 platform 
predicted the isolates to be resistant by the presence of 
several different genotypic resistance markers (Table  6), 
resulting in four VME for INH. Also, isolate SA 1046, 
reported to be phenotypic susceptible to ciprofloxacin 
was predicted by 1928 to be resistant by the presence of 
different genotypic resistance markers, while the INH 
could not predict any genes (Table  6), resulting in one 
ME for the 1928 platform. Even though only 1.0% of cases 
were reported in this study as phenotypically resistant for 
clindamycin, the bioinformatic workflows predicted all 
of them to be genotypically susceptible, resulting in six 
VME (Table 5). Bioinformatic tools showing concordant 
predictions for clindamycin but disagreed with pheno-
typic AST for S. aureus have also been reported in other 
studies [9, 49]. Likewise, previous studies of clindamycin 
resistance have reported positive ermC PCR results from 
nondetectable resistance phenotypes, suggesting that 
plasmids conferring resistance to these antibiotics may 
be lost in subculture, and therefore not present in the 
WGS data [46, 50]. ME reported for clindamycin may be 
inducible clindamycin resistant not detected by current 
phenotypic methods, but present in the WGS data. Since 

Table 9  Extended genotypic prediction of the SCCmec type by 1928 platform among the 255 isolates

ND: ST profile could not be determined

S. aureus isolate ST   Sccmec 
type

IS1272 ccrA1 ccrA2 ccrA3 ccrA4 ccrB1 ccrB2 ccrB3 ccrB4 ccrB6 ccrC mecA mecC

INH 1928

SA 606 375 375 IV ✓ ✓ ✓ ✓
SA 1857 30 30 IV ✓ ✓ ✓ ✓
SA 1153 5 5 V/VII ✓ ✓
SA 1197 130 130 XI ✓ ✓ ✓
SA 1637 ND ND Unknown ✓
SA 112 398 398 Unknown ✓
SA 1725 22 22 Unknown ✓
SA 1752 5 5 Unknown ✓ ✓
SA 1828 ND ND Unknown ✓ ✓
SA 1896 34 34 Unknown ✓ ✓
SA 998 5 5 Unknown ✓
SA 215 5 5 Unknown ✓
SA 261 1 1 Unknown ✓
SA 365 182 182 Unknown ✓ ✓
SA 1162 1 1 Unknown ✓ ✓
SA 535 1 1 Unknown ✓ ✓
SA 846 1 1 Unknown ✓ ✓



Page 12 of 16Shemirani et al. BMC Infectious Diseases           (2023) 23:39 

there has recently been evidence for increased worldwide 
inducible clindamycin resistance [51, 52], the bioinfor-
matic workflows should consider this antibiotic group 
and continue the development of algorithm taking these 
identified challenges into account. For erythromycin, 
three isolates (SA 61, SA 63 and SA 804) were phenotypic 
resistant and both bioinformatic workflows predicted 
the presence of ermC in two isolates (SA 61 and SA 63), 
but the output from the bioinformatic workflows did 
not tell if it was plasmid mediated. The third isolate, 
SA 804, no resistance markers or genes was predicted 
by the bioinformatic workflows, resulting in two VME 
(Table 6). Since the antibiotic group fusidic acid had most 
VME (n = 11), the highest VME rate was also identified 
for fusidic acid, where 1928 reported 1.9% (4/206) and 
INH 3.4% (7/206), followed by clindamycin, where both 
bioinformatic workflows reported a VME rate of 1.4% 
(3/212), and for ciprofloxacin the 1928 platform showed 
a VME rate of 1.4% (1/70) and the INH 5.7% (4/70) 
(Table  5). Other studies using bioinformatic workflows 
such as blastn and tblast [13] and Next Gen Diagnostic 
[12] showed similar VME rates of 1.4% and 1.2% for cip-
rofloxacin respectively, while higher VME rates for clin-
damycin has been reported when using the 1928 platform 
i.e., 8.8% and 5.9% when using Next Gen Diagnostics [49]. 
Discordant AST genotypic predictions could be due to 
different algorithms being employed by the bioinformatic 
tools, demonstrating the need of international agreement 
on quality control. Only data sets passing agreed quality 
control metrics should be used in antimicrobial suscep-
tibility predictions as resistance genes or mutations oth-
erwise might be missed in sequences of poor quality [53]. 
In this study 100% (264/264) and 96.6% (255/264) FASTQ 
PE-files passed internal quality control metrics used by 
the INH and the 1928, respectively. The discordant AST 
genetic predictions for ciprofloxacin and fusidic acid was 
probably due to differences in the resistance database for 
the two bioinformatic workflows (Table  6). Neverthe-
less, the other discordant results cannot be deducted if 
the discordant AST genetic predictions were attributed 
to differences in the resistance database or the combina-
tion of assembly + BLAST within ResFinder 2.0 versus 
the assembly-free kmer-based method of 1928. A recent 
systematic review, using the CARD database 3.0.3 and 
Resfinder 4.0 on data retrieved from only Gram-negative 
bacteria, suggested the complexity of connecting geno-
type to phenotype with factors not yet considered in the 
resistance databases, for example gene regulation etc. 
[15]. Individually, both 1928 and INH using Resfinder 
demonstrated high agreement with the phenotypic AST 
(Table 5). However, among the discordant results for each 
bioinformatic workflow, the 1928 platform showed lower 
VME rate than the INH using Resfinder, 0.8% (8/1006) 

versus 1.5% (15/1006), while the ME rate was slightly 
higher for the 1928 platform compared to the INH 0.2% 
(2/1006) versus 0.1% (1/1006). This is of importance, 
since VME, false negatives, might result in use of an inef-
fective therapeutic agent for treatment, leading to treat-
ment failure, while a ME might limit therapeutic options 
and complicate treatment [14, 15].

Virulence genes and sequence type
Identification of  S. aureus  virulence genes can give the 
clinician insight into an infection’s pathogenesis and sup-
porting the choice of therapy [54, 55]. The list of virulence 
genes that 1928 detects (Table  1) has been formed by 
requests from the platform’s users. The exfoliative toxins, 
encoded by etA and etB are the cause for staphylococcal 
scalded skin syndrome [56]. The tsst1 gene, encoding the 
toxic shock syndrome toxin-1, may cause staphylococcal 
toxic shock syndrome [57]. The Panton-Valentine leu-
cocidin (PVL) exotoxin, encoded by the lukF-PVL and 
lukS-PVL genes, is associated with S. aureus infections 
and is linked to infection severity and outcome in inva-
sive disease [58]. During the time the study took place 
the clinical lab did not perform any reference method 
for identification of these genes or expected phenotype, 
such as agglutination or ELISA assays for detection of 
toxic shock syndrome toxin-1 [59, 60]. Therefore, no 
benchmarking with results from the clinical lab can be 
addressed. The bioinformatic workflows showed overall 
high agreement in the genetic prediction of the virulence 
traits (Table  7). The S. aureus isolates collected during 
this study showed highest genetic predicted frequen-
cies of the tsst1 and lukF-PVL, lukS-PVL genes (Table 7). 
The 1928 platform predicted the tsst1 and lukF-PVL, 
lukS-PVL to be present among 15.7% (40/255) and 2.7% 
(7/255) of the S. aureus isolates, while INH using Viru-
lenceFinder predicted the tsst1 and lukF-PVL, lukS-PVL 
to be present among 14.1% (36/255) and 2.7% (7/255) of 
the S. aureus isolates. Another epidemiological marker is 
typing of the SCCmec element, aiding in understanding 
the evolution of MRSA and to follow a possible MRSA 
outbreak. The 1928 platform deliver a result about what 
kind of SCCmec element the S. aureus isolate is encod-
ing, by including genetic prediction of thirteen different 
genes from the SCCmec casettes (Table 1). The platform 
predicted four known SCCmec types whereof the S. 
aureus isolate (SA 1197) predicted to belong to SCCmec 
type XI, have a cassette containing the recently identified 
mecC gene [61, 62] (Table 9). This isolate was identified as 
phenotypic susceptible to isoxazolyl penicillin, explaining 
the discordant result between the predicted genotypic 
AST results by both bioinformatic workflows (1/244, 
0.4%) compared to the phenotypic AST (Table 5). In Swe-
den, the first MRSA with mecC was isolated in 2003 from 
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a hedgehog but was not described as mecC until 2012 
[63]. Since 2012 the Swedish Communicable Diseases 
Act has been including S. aureus with mecC as a manda-
tory notifiable disease and handled in the same way as S. 
aureus with mecA regarding follow-up and contact trac-
ing among household and healthcare contacts. There-
fore, the current recommended routine diagnostics is to 
include a PCR assay for simultaneous detection of mecA 
and mecC [64] if a S. aureus isolate is resistant or inter-
mediate resistant to the β-lactam cefoxitin. Nowadays, 
the prevalence of human mecC-MRSA infections is very 
low. However, mecC-MRSA isolate transmission between 
different hosts indicates the great capacity of these iso-
lates for spreading and still the possible impact that these 
isolates can have in clinical settings remains unknown 
[65]. In the SCCmec types annotated as unknown by 
1928, the ccrA and ccrB genes were found, but mecA and 
mecC were absent. The absence of mecA/mecC agreed 
with the phenotypic AST which showed susceptibility 
to isoxazolyl penicillin of these isolates. It can be likely 
that these isolates harbor SCCmec remnants where they 
have lost the mecA and mecC genes, as has been observed 
in an earlier study [66]. Another method being used to 
investigate the relationship between pathogens, but more 
on a global level, is by MLST and determination of ST. 
The 1928 platform showed overall 97.9% (231/236, 95% 
CI 95.0–99.2%) agreement with the INH using MLST 2.0 
in predicting STs of the S. aureus isolates (Table 7). How-
ever, it should also be noted that for 19 isolates, the ST 
could not be definitely determined with the INH using 
MLST 2.0 or 1928. Comparison of classical MLST soft-
ware for NGS data, have shown that not all MLST appli-
cations function as expected. MLST 2.0 was one of the 
tools used [67]. Problems with some software included: 
poorly updated databases, computationally inefficient 
methods, false-positive results, inability to call alleles 
at low coverage and variable performance in the pres-
ence of mixed samples [67]. Therefore, there is scope for 
improvement.

Time and user‑friendliness
For WGS to be adopted in infection control and public 
health, it is required to be fast and generate robust results 
regarding the genomic context. Indeed, both of the bio-
informatic workflows showed reliable results by dem-
onstrating high agreement with the results retrieved in 
clinical routine, but there were differences in processing 
times between the bioinformatic workflows. The INH 
is code-level workflow, requiring formal bioinformatic 
support for operation and included steps of quality con-
trol followed by downstream analysis of the sequencing 
data. Estimated computational time required for analysis 

of one bacterial isolate, including two FASTQ PE files 
as input to the INH (Fig. 2) was 5–6 h using the Intel(R) 
Core (TM) i5-6300U CPU @ 2.40 GHz 2.40 GHz, RAM 
16  GB, 64-bit PC. In more detail, the preprocessing of 
the FASTQ PE files took about 15  min, assembly and 
scaffolding about 2–3  h and finally annotation about 
3  h, but time increased with queue size for the CGE 
webserver. The user needed to make a manual sum-
mary of the retrieved output. Using the same computer 
power, the computational time for the 1928 platform 
was 15–30  min. The raw sequencing data were directly 
uploaded and processed by the 1928 platform and the 
user received a summary of the retrieved output. Nev-
ertheless, the FASTQ files that did not pass the internal 
quality control took about 24  h before the failed result 
was reported. Although being very user-friendly, a limita-
tion with 1928 is that the user is restricted to the analyses 
included in the platform as opposed to the INH pipeline 
which can be extended with additional analyses avail-
able on the CGE and JSpeciesWS. There are also possi-
bilities to extend the genotypic AST tools for the INH, 
since there are several freely accessible bioinformatics 
resources for detection of antimicrobial resistance deter-
minants in DNA or amino acid sequence data, so far, e.g. 
ARG-ANNOT, CARD, SRST2, MEGARes, Genefinder, 
ARIBA, KmerResistance and AMRFinder [68].

Conclusions
Altogether, the benchmarking revealed that both bio-
informatic workflows deliver results with high accu-
racy aiding diagnostics of severe infections caused by 
S. aureus, while the ST of S. aureus show scope for 
improvement. Our study is validating the performance of 
the 1928 platform in clinical routine for in silico species 
identification, antibiotic susceptibility testing and viru-
lence profiling. The 1928 platform is also suitable for use 
in a clinical laboratory, since it is more user-friendly and 
deliver results timely. Still genotypic predictions cannot 
yet replace the phenotypic tests as in silico AST predic-
tion for other organisms has been proved more challeng-
ing, especially for Gram-negative bacteria [19, 69] where 
the present understanding of genetic basis of resistance is 
less comprehensive. Additionally, the standardization of 
WGS workflows is a central requirement when entering 
the clinical diagnostics.
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