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Abstract 

Background:  Superspreading events (SSEs) played a critical role in fueling the COVID-19 outbreaks. Although it is 
well-known that COVID-19 epidemics exhibited substantial superspreading potential, little is known about the risk of 
observing SSEs in different contact settings. In this study, we aimed to assess the potential of superspreading in differ-
ent contact settings in Japan.

Method:  Transmission cluster data from Japan was collected between January and July 2020. Infector-infectee trans-
mission pairs were constructed based on the contact tracing history. We fitted the data to negative binomial models 
to estimate the effective reproduction number (R) and dispersion parameter (k). Other epidemiological issues relating 
to the superspreading potential were also calculated.

Results:  The overall estimated R and k are 0.561 (95% CrI: 0.496, 0.640) and 0.221 (95% CrI: 0.186, 0.262), respectively. 
The transmission in community, healthcare facilities and school manifest relatively higher superspreading potentials, 
compared to other contact settings. We inferred that 13.14% (95% CrI: 11.55%, 14.87%) of the most infectious cases 
generated 80% of the total transmission events. The probabilities of observing superspreading events for entire popu-
lation and community, household, health care facilities, school, workplace contact settings are 1.75% (95% CrI: 1.57%, 
1.99%), 0.49% (95% CrI: 0.22%, 1.18%), 0.07% (95% CrI: 0.06%, 0.08%), 0.67% (95% CrI: 0.31%, 1.21%), 0.33% (95% CrI: 
0.13%, 0.94%), 0.32% (95% CrI: 0.21%, 0.60%), respectively.

Conclusion:  The different potentials of superspreading in contact settings highlighted the need to continuously 
monitoring the transmissibility accompanied with the dispersion parameter, to timely identify high risk settings favor-
ing the occurrence of SSEs.
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Introduction
During the past few years, the coronavirus disease 2019 
(COVID-19) that caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has been contin-
uously spreading worldwide, posing a significant threat 
to public health. A comprehensive understanding on the 
epidemiological characteristics of COVID-19 underlies 
the strategic development of region-wide control poli-
cies to combat the epidemics. The fundamental biological 
parameters—basic reproduction number (R0) and effec-
tive reproduction number (R) describe the transmission 
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potential of a typical infectious disease agent, that is, 
the average number of secondary cases generated by an 
infectious person in a completely and not completely 
susceptible population, respectively [1]. While for the 
COVID-19 epidemics, the differences arose in infectious-
ness, behavioral patterns and locally implemented public 
health interventions give rise to heterogeneous individual 
transmissibility [2, 3], which cannot be reflected by a sin-
gle measurement of R0 [4].

A superspreading event (SSE) is defined as a transmis-
sion event involving an unusual large number of cases, 
initiated by the super-spreader. The SSE represented a 
heterogeneous transmission pattern, where the major-
ity of the cases were seeded by a small fraction of super-
spreaders [5, 6]. Herein, the aggregation of transmission 
for some superspreading cases has also drawn research-
ers’ attention, defined as “20/80” rule [5] in epidemiol-
ogy, which implies that approximately 80% secondary 
infected cases and transmissions result from roughly 20% 
of primary cases. As a distinct feature of the transmis-
sion dynamics of COVID-19, SSEs played essential roles 
in aggravating the COVID-19 epidemics. For instance, 
in early November 2021 in Hong Kong, an outbreak in 
the community was caused by a few SSEs in entertain-
ment places, which led to a major epidemic wave in the 
whole city [7]. In South Korea, the SSE seeded by the 
SARS-CoV-2 Omicron variants occurred in churches 
and schools, causing the disease to spread widely in the 
local community [8]. Characterizing the superspread-
ing potential of the epidemics in the context could give 
policymakers a hint on how to effectively curb the local 
transmissions [9]. For example, identifying and shutting 
down the hot-spot contact settings favoring the occur-
rence SSE (e.g., bars, social parties, and gyms) could 
timely chop the transmission chains and prevent future 
large outbreaks. However, spurred by the increasing bur-
den of spread of COVID-19, few researches have been 
involved in the potential of superspreading events in dif-
ferent contact setting.

As a forceful circumstantial evidence of commu-
nity transmission and SSEs, Furuse et  al. exemplified 
demographic information regarding some clusters of 
COVID-19 infectors and schematized their features in 
transmission chains from January to July 2020 in Japan 
with different contact settings of SSEs [10]. This study 
sought to explore the estimated effective reproductive 
numbers and dispersion parameters in offspring distri-
butions based on the rearranged contact tracing data 
in transmission chains in Japan from [10]. Herein, with 
transmission clusters data collected during the early 
phase of the epidemics, we aimed to quantify the trans-
mission risk and contrast of superspreading potential of 
the COVID-19 among different contact settings.

Methods
We obtained data on 28 circumstances of transmission 
clusters from January to July 2020 in Japan [10]. Based 
on the contact tracing and exposure history of each 
case within the transmission clusters, we constructed 
infectee-infector transmission pairs. We thereafter 
extracted the number of secondary cases (i.e., infectees) 
that were directly generated by each infector for further 
analysis. We excluded the cases that are indirectly linked 
with the infectors. The identified transmission pairs were 
further grouped by different contact settings (i.e., com-
munity, health care facility, school, household, and work-
place) according to where the transmission occurred. 
Specifically, the contact setting “community” represented 
the aggregation of transmission dynamics in scenarios of 
social parties, restaurants, bars, clubs, ceremonies, gyms, 
etc. Segmentation of subgroups in the  contact setting 
“community” was not feasible since the counts of them 
were trivial and not statistically significant. Furthermore, 
those without detailed information regarding contact set-
tings were also omitted.

To quantify the superspreading potential, we assumed 
the number of secondary cases seeded by each infector 
following a Negative binomial distribution [6], which was 
parameterized by an effective reproduction number (R) 
as the  mean and a dispersion parameter (k). The k cap-
tured the heterogeneity in the individual transmissibility. 
A lower value of k indicated a higher transmission het-
erogeneity, and thereby a higher superspreading poten-
tial. The number of offspring cases generated by each 
seed case was fitted to a negative binomial model. For the 
model parameter estimation, Markov chain Monte Carlo 
(MCMC) method was applied to estimate the joint poste-
rior distribution of R and k.

The proportion of the most infectious cases that seeded 
80% of the total transmissions was calculated [11]. The 
probability that a seed case generates a cluster with size 
10 or more and the probability of observing SSEs were 
also computed. In addition to incorporating the expected 
proportion of infectors generating at least one infected 
individual and the probability that a seed case generates 
a cluster with size 10 or more, some intuitive concepts, 
such as the proportion of the most infectious infectors 
responsible for 80% of infectees and the expected prob-
ability of superspreading events, were also attained based 
on estimated [12–14]. Followed by previous work [6], we 
defined the threshold of SSEs as the 99-th percentile of 
the Poisson distribution with the rate at reproduction 
number (Additional file  1). Any transmission event that 
is seeded by a single infector would be counted as an SSE 
if the number of secondary cases exceeds the threshold. 
We thereafter calculated the probability of observing 
SSEs seeded by a single infector according to the SSE 
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threshold. Subgroup analysis in different contact settings 
was also conducted in the same procedure to obtain the 
above estimates. 95% credible intervals (CrI) for each 
estimate were calculated as well. Technical details of the 
methodology can be found in Additional file 1.

Results
A total of 500 transmission pairs were constructed from 
the reported 28 transmission clusters. Of the settings 
where the identified transmission pairs occur, 31.1%, 
25.6%, 28.7%, 4.0%, and 10.6% belonged to the commu-
nity, household, health care facility, school and work-
place, respectively. Among 1017 identified infectors, 
75.0% of them led to no secondary cases, and 0.8% of 

them directly generated more than 10 cases. From the 
observed secondary case distribution and fitted nega-
tive binomial models, we estimated that the overall R 
and k were 0.561 (95% CrI: 0.496, 0.640) and 0.221 (95% 
CrI: 0.186, 0.262), respectively (Table 1).

Figure  1 illustrated the joint estimates of reproduc-
tion numbers and dispersion parameters in different 
contact settings with 95% credible intervals. Based on 
the estimated R value, the threshold of SSEs was deter-
mined to be 6, and there were 17 out of 500 (3.4%) 
transmission events identified as SSEs. We inferred that 
80% of total transmissions were generated by 13.14% 
(95% CrI: 11.55%, 14.87%) of the most infectious seed 
cases.

Table 1  Summary of the estimated metrics of superspreading potentials under different contact settings

The metrics were summarized as ‘median estimate (95% CrI)’ format

Total Community Household Health care 
facilities

School Workplace

Reproduction num-
ber (R)

0.561 (0.496, 0.640) 0.107 (0.046, 0.331) 0.137 (0.110, 0.168) 0.186 (0.079, 0.409) 0.088 (0.028, 0.295) 0.080 (0.052, 0.138)

Dispersion param-
eter (k)

0.221 (0.186, 0.262) 0.004 (0.002, 0.007) 0.141 (0.098, 0.210) 0.004 (0.002, 0.006) 0.002 (0.001, 0.005) 0.019 (0.012, 0.029)

Probability of 1 infec-
tor generating ≥ 1 
infectees

24.37% (21.47, 27.68) 1.32% (0.63, 2.68) 9.13% (7.11, 11.61) 1.53% (0.74, 2.51) 0.76% (0.34, 2.03) 3.09% (1.99, 4.95)

Proportion of infec-
tor seeding 80% 
transmission

13.14% (11.55, 14.87) 0.44% (0.21, 0.76) 6.39% (4.91, 8.24) 0.44% (0.22, 0.66) 0.22% (0.11, 0.55) 1.54% (0.99, 2.43)

Probability of 
observing SSEs

1.75% (1.57, 1.99) 0.49% (0.22, 1.18) 0.07% (0.06, 0.08) 0.67% (0.31, 1.21) 0.33% (0.13, 0.94) 0.32% (0.21, 0.60)

Probability of cluster 
size ≥ 10 seeded by 
1 infector

3.87% (2.94, 5.24) 0.37% (0.16, 1.00) 0.05% (0.04, 0.06) 0.55% (0.24, 1.04) 0.26% (0.09, 0.80) 0.17% (0.10, 0.38)

Fig. 1  The Joint estimates of reproduction numbers and dispersion parameters of 6 settings (left) and three of them (right) specified of COVID-19. 
The two-dimension points are estimates of reproduction numbers and dispersion parameters. Vertical and horizonal lines indicate for each point 
are 95% credible intervals of reproduction numbers and dispersion parameters, respectively. The proportions of infector accounting for 80% of 
transmissions for each contact setting are indicated
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Across all contact settings, the health care facility and 
household had a higher risk of transmission (larger value 
of R) whereas school, health care facility, and commu-
nity had a higher superspreading potential (smaller value 
of k). The probability that an infector generates at least 
one secondary case was 24.37% (95% CrI: 21.47, 27.68). 
Furthermore, the probability of observing SSEs with a 
predefined threshold is 1.75% (95% CrI: 1.57, 1.99), and 
the probability that a seed case generates a transmission 
cluster with a size of 10 or greater is 3.87% (95% CrI: 2.94, 
5.24). Other epidemiological results for mentioned con-
tact settings are shown in Table 1.

Discussion
Characterizing the superspreading potential could pro-
vide a better understanding of the transmission poten-
tial of the COVID-19 pandemic and help to formulate 
targeted public health interventions. In this study, using 
transmission cluster data collected during the early phase 
of the epidemic in Japan, we assessed the superspreading 
potential of COVID-19 within different contact settings.

The effective reproduction number for each contact 
setting and the whole population are all less than 1. It’s 
compatible with the scenario that the pandemic from 
January to July 2020 in Japan has been controlled with 
valid interventions before the new wave of counterat-
tack and variants of the virus. The reproduction number 
of transmissions among hospitals was relatively higher 
than others, and the dispersion parameters of hospitals 
and schools were small, consistent with the scenario that 
there were more vulnerable individuals or higher risk 
of contact of cases in hospitals, healthcare facilities and 
schools. It was also concluded in [10] that rare super-
spreading events in community resulted from infectors 
from hospitals, healthcare facilities or schools, whereas 
some cases in hospitals, healthcare facilities or schools 
were caused by the transmission chains originating from 
community superspreading events, which may lead to 
low dispersion parameter in the distribution of offspring 
from communities.

We found that the early epidemics in Japan exhibited a 
significant superspreading potential (k = 0.22), which is in 
line with another study conducted during a similar study 
period (k = 0.23) [15], but is smaller than an estimate 
obtained in Hong Kong (k = 0.43) [16]. This discrepancy 
could be attributed to the differences in imposed control 
policies. In Japan, cluster-based measures that focused 
on identifying and preventing transmission clusters were 
adopted to curb the epidemics [17]. On the other hand, a 
series of social distancing interventions, including school 
closure, work-from-home-policy, and cancellation of 
mass gatherings, were implemented in Hong Kong [18], 
which may have a greater effect on reducing the potential 

of societal SSEs [19] and thus resulting in a relatively 
higher k. It was also concluded in [10] that rare super-
spreading events in community resulted from infectors 
from hospitals, healthcare facilities or schools, whereas 
some cases in hospitals, healthcare facilities or schools 
were caused by the transmission chains originated from 
community superspreading events, which may lead to a 
low dispersion parameter in the distribution of offspring 
from communities. The selection of threshold of super-
spreading events also vacillates the assessment of super-
spreading potential [20], as we defined the threshold of 
SSE for the COVID-19 as the 99-th percentile of the Pois-
son distribution of the basic reproduction number (R0). 
Meanwhile, the super-aged society in Japan [10] can also 
be deemed as the underlying cause of the estimates in 
each setting.

We also found that the risk of transmission and super-
spreading potentials varied across different contact set-
tings. The higher estimated superspreading potential in 
schools and communities is consistent with a study con-
ducted in South Korea, whereby the transmission chains 
in communities and schools were more heterogeneous 
(smaller k) than that in the household [21]. Besides Hong 
Kong and South Korea, compared to other contact set-
tings, relatively more significant superspreading poten-
tial occurred in communities in some other regions since 
there has been a high likelihood of community gathering 
due to religions and folk custom, such as Kumbh Mela 
during April and May in India and Songkran festival in 
Thailand [22, 23]. Furthermore, consistent with a part of 
our results, transmission among households in the UK 
performed higher secondary attack rates than those in 
communities, while relatively lower rates in larger house-
holds [24].

Limitations
This study has some limitations. Firstly, the transmis-
sion cluster data used was subjected to any bias (e.g., 
recall bias) generated during the contact tracing pro-
cess and thus it is plausible that some cases that are 
exposed to the clusters were missed. This imperfect 
case ascertainment may lead to an underestimation of 
the R value but an overestimation of the k value [25]. 
Secondly, disproportional attention to infectors who 
generated infectees or not may have resulted in that 
infectors generating infectees were more likely to be 
collected and reported. Besides, the transmission clus-
ters included in our study occurred during the early 
stage of the COVID-19 epidemics. Finally, more com-
binations of different types of contact settings can 
be considered when some places are interconnected 
through ventilation. Given that the current epidemics 
are dominated by the SARS-CoV-2 Omicron variants, 



Page 5 of 6Zhao et al. BMC Infectious Diseases          (2022) 22:936 	

further study is warranted to assess the superspreading 
potential of the emerging variants in Japan and other 
regions to help with formulating control policy.

Conclusion
In conclusion, the early COVID-19 epidemics in Japan 
demonstrated a significant potential of superspreading. 
Particularly, the school, health care facility and com-
munity had relatively higher potential of superspreading 
when compared to other contact settings. The different 
potential of superspreading in contact settings highlights 
the need to continuously monitor the transmissibility 
accompanied with the dispersion parameter, to timely 
identify high risk settings favoring the occurrence of SSE.
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