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Abstract 

Background:  The increasing availability of data on social contact patterns and time use provides invaluable 
information for studying transmission dynamics of infectious diseases. Social contact data provide information on 
the interaction of people in a population whereas the value of time use data lies in the quantification of exposure 
patterns. Both have been used as proxies for transmission risks within in a population and the combination of both 
sources has led to investigate which contacts are more suitable to describe these transmission risks.

Methods:  We used social contact and time use data from 1707 participants from a survey conducted in Flanders, 
Belgium in 2010–2011. We calculated weighted exposure time and social contact matrices to analyze age- and 
gender-specific mixing patterns and to quantify behavioral changes by distance from home. We compared the value 
of both separate and combined data sources for explaining seroprevalence and incidence data on parvovirus-B19, 
Varicella-Zoster virus (VZV) and influenza like illnesses (ILI), respectively.

Results:  Assortative mixing and inter-generational interaction is more pronounced in the exposure matrix due 
to the high proportion of time spent at home. This pattern is less pronounced in the social contact matrix, which 
is more impacted by the reported contacts at school and work. The average number of contacts declined with 
distance. On the individual-level, we observed an increase in the number of contacts and the transmission potential 
by distance when travelling. We found that both social contact data and time use data provide a good match with 
the seroprevalence and incidence data at hand. When comparing the use of different combinations of both data 
sources, we found that the social contact matrix based on close contacts of at least 4 h appeared to be the best 
proxy for parvovirus-B19 transmission. Social contacts and exposure time were both on their own able to explain 
VZV seroprevalence data though combining both scored best. Compared with the contact approach, the time use 
approach provided the better fit to the ILI incidence data.
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Conclusions:  Our work emphasises the common and complementary value of time use and social contact data for 
analysing mixing behavior and analysing infectious disease transmission. We derived spatial, temporal, age-, gender- 
and distance-specific mixing patterns, which are informative for future modelling studies.

Keywords:  Infectious disease dynamics, Mixing patterns, Exposure matrices, Spatial dynamics, Time use

Background
Infectious diseases have substantial impact on public 
health and economy and warrant constant monitoring 
and follow-up. Initially, transmission models relied on 
untested assumptions about “at risk events”. In recent 
years, disease transmission models have been informed 
by social contact surveys as, e.g., those obtained from the 
large-scale European POLYMOD project  [1], in which 
participants had to report about their contact behavior 
by age, gender, frequency, etc. Social contact patterns 
have been successfully used as proxies for transmission 
of close-contact diseases, such as influenza and mumps, 
under the social contact hypothesis  [2]. The use of 
social contact data helps estimating key epidemiological 
parameters   [3, 4], behavioral changes [5–7] and 
demographic change  [8] in the context of disease 
transmission. The number of social contact surveys to 
collect empirical data on human contact behavior has 
increased substantially over recent years [9].

Next to social contact data, also time use data have 
proven their value for explaining infectious disease data 
using the time use approach in which mixing patterns 
can be estimated from the time spent at a given location 
[10–12]. The reported presence over time at different 
locations during a day enables the estimation of the 
exposure time among age groups   [12]. The notion of 
co-presence is complementary to reported social 
contacts, hence time use data are useful to capture “at 
risk events” that fall outside the definition of a social 
contact.

The integration of both the “time use approach” and 
the “social contact approach” has lead to estimation of 
“suitable contacts”   [11]. De Cao et al. [11] showed that 
the interplay between exposure time and social contacts 
appeared to be important to study the transmission of 
Varicella-Zoster virus (VZV) whereas the transmission 
dynamics of parvovirus-B19 was best captured using 
only exposure time. This study was based on two 
independently collected surveys (social contacts and time 
use).

A systematic review of social contacts surveys [9] 
revealed that only a limited number of contact studies 
investigated the relationship between contacts and 
distance whereas next to the number of contacts, contact 
dispersal is of essence to capture disease transmission 
dynamics. Disease counts have been modeled using 

power law dispersal kernels [13–15], though questions 
remain whether this also holds for social mixing behavior. 
A study in Great Britain [16] collected information on 
the distance from home for each contact and observed 
a decrease in contact duration with increasing distance 
from home. In addition, age-specific contact patterns 
and temporal differences with respect to weekdays and 
weekends have been described  [9], but gender-specific 
behavior in social mixing is less reported, though could 
contribute to the parameterisation of mathematical 
transmission models [17, 18].

In this work, we use data from one single survey to 
compare the social contact, time use and suitable contact 
approach. An important element in this survey  [18] 
is the recording of the distance from home for every 
reported location in the time use survey. In particular, 
we (1) compared mixing patterns based on time use and 
social contact data, and explored covariates such as age, 
gender, location, etc.; (2) analysed social mixing patterns 
and estimated basic reproduction numbers by distance 
from home; (3) evaluated the value of time use and social 
contact data sources to explain seroprevalence data for 
VZV and parvovirus-B19, and influenza-like illness (ILI) 
incidence data in Belgium.

Methodology
This analysis is based on three types of data: social 
contacts, time use, and clinical information w.r.t. 
respiratory diseases. We first introduce each dataset 
and continue with the description of our analysis 
starting from our methods to handle missing data and 
uncertainty. Next, we describe how we analysed exposure 
time and social contact data and calculated mixing 
matrices. We end with the integration and evaluation 
of mixing patterns in models for VZV, parvovirus-B19 
and ILI incidence data from Belgium. We present the 
overview of the methodology in Fig.  1 followed by the 
detailed description of the methods used in the sub-
sections below.

Data
This study is based on a diary-based survey on social 
contacts and time use, which was conducted between 
September 2010 and February 2011 in Flanders, 
Belgium. Two types of contacts were defined: (1) two-
way conversations during which at least three words 
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were spoken and (2) contacts that involved skin-to-skin 
touching. Information recorded in the diary included 
sex and the exact age or presumed age interval of each 
contacted person over the entire day. More information 
on this data set can be found in [18] and the dataset is 
available online within the social contact data sharing 
initiative [19] and the SOCRATES platform [20].

To record time use, participants were asked to 
indicate for predefined time slots the location at which 
they spent most of their time. Location types were 
pre-defined (home, kindergarten, school, workplace, 
transport, family, leisure and other) and the options 
were adapted to the age of the participant. For example 
“kindergarden” was only used for surveying children 
and “workplace” only for adults. We also questioned 
the distance from home for each location in four 
categories (0–1  km, 2–9  km, 10–74  km or 75  km or 
more). Time slots were mostly of 1-h length, except in 
the morning (2–5  h, 5–8  h) and in the evening (20–
22 h, 22–24 h, 24 h–2 h). With respect to missing data, 
1486 participants (87%) provided full information on 
their location and distance from home for each time-
slot, and 49 participants provided no time use data at 
all. The final sample size used for the analysis in this 
work is 1707 participants, as in [18].

Seroprevalence data was used from the Belgian sero-
survey in 2001–2003 on parvovirus-B19 and VZV. In 

total, 3080 sera were tested for parvovirus-B19 and 
3256 sera were tested for VZV, from which 2975 sera 
were tested for both VZV and parvovirus-B19. The 
sero-survey involved participants ranging from 0 to 
71.5 years of age. More information is provided in 
Hens et al [21].

The ILI incidence data were collected from a network 
of general practitioners (GPs) in Belgium. The GPs in the 
network were asked to report the weekly number of ILI 
by 7 age groups: <1, 1–4, 5–14, 15–19, 20–64, 65–84, ≥ 
85 years. The data was provided by the Scientific Institute 
of Public health. More details of the data are described in 
[22, 23].

Analysis
Missing data
Missing values in the time use data were treated as 
“Missing at Random” [24]. As such, we assumed a 
systematic relationship between the propensity of 
missing values and the observed data, but not with 
the missing data. Missing data were imputed by using 
Multivariate Imputation via Chained Equations (MICE) 
[25]. The list of variables included in the imputation 
model can be found in  Additional file  1: Table  S3. By 
applying MICE with different random number generator 
seeds, we obtained 10 imputed datasets. Please note that 

Fig. 1  Flowchart of the methodology



Page 4 of 16Hoang et al. BMC Infectious Diseases          (2022) 22:954 

for the initial data exploration (Table 1), as described in 
the first part of the Results section, we used the original 
data with location type set to “Missing”.

Uncertainty
We applied a stratified bootstrap of the participant data 
(including social contact and time use data) by 5-year 
age categories to construct confidence intervals for the 
outcome. We created 1000 bootstrap replicates for each 
imputed dataset ( M=10), resulting in 10,000 datasets 
[26] (see Additional file 1 for more details).

Participant weights
Participant contributions to mixing patterns were 
weighted to account for sampling probabilities based 
on the joint distribution of age, household size and day 
type: holiday/regular periods and weekday/weekend. 
Census data for Belgium from 2011 (http://​epp.​euros​tat.​
ec.​europa.​eu) was used as reference and weights were 
constrained to a maximum of 3 to reduce the impact of 
the corresponding observations.

Time use patterns
We explored time use patterns by calculating the 
proportion of time at each location as reported by 
participants. To limit data sparseness, we combined 
“kinder-garden” with “school”, and also “family” and 
“leisure” with “other”. Reported proportions were 
analysed in relationship with age, gender, weekday/
weekend, period (regular/holiday), health state (ill or 
not ill) and family status. The latter was only defined 
for adults between 25 and 65 years of age as living with 
or without children less than 13 years old. We used 7 
age categories in line with the Belgian education and 
employment system; 0–2 years, 3–5 years, 6–11 years, 
12–17 years, 18–44 years, 45–64 years and 65–90 
years of age. We also performed an additional analysis 
of the reported locations using 5-year age groups to 
study gender-specific differences in time use (refer 
to  Additional file 2: Fig. S2).

The proportion of time spent at different locations 
during one day can be analysed as compositional 
data. This is a special type of multivariate data, with 
each proportion being non-negative and the total 
sum adding up to one. A divergence based regression 
modelling technique is used to explore time use at 

Table 1  Reported daily time use by location with respect to age, gender, type of day, period, health state, household type

Covariate N (%) Home (%) School (%) Work (%) Transport (%) Other (%) Missing (%)

Age 1707
 [0–3) 87 (5.10) 77.82 8.53 0 2.06 9.44 2.15

 [3–6) 84 (4.92) 74.51 11.96 0 2.88 9.33 1.32

 [6–12) 125 (7.32) 64.50 15.30 0 2.60 13.24 4.36

 [12–18) 79 (4.63) 64.72 11.66 1.11 4.43 15.88 2.20

 [18–25) 99 (5.80) 58.67 7.45 9.47 4.71 16.46 3.24

 [25–45) 524 (30.70) 61.86 0.29 16.9 4.18 13.19 3.58

 [45–65) 468 (27.42) 62.36 0.20 12.77 4.18 13.79 6.70

65+ 241 (14.11) 76.31 0 0.48 4.26 11.50 7.45

Gender 1707
 Female 917 (53.72) 66.34 2.82 8.33 3.72 13.72 5.07

 Male 790 (46.28) 64.78 3.77 10.54 4.21 12.28 4.42

Day type 1705
 Weekdays 1297 (76.07) 64.09 4.24 11.71 3.98 11.52 4.46

 Weekends 408 (23.93) 70.77 0.15 1.91 3.86 17.99 5.32

Periods 1705
 Regular 1268 (74.37) 64.91 4.24 10.39 3.97 11.97 4.52

 Holiday 437 (25.63) 67.97 0.43 6.39 3.89 16.25 5.07

Feeling ill 1700
 Yes 45 (2.65) 86.39 0.83 0.28 1.85 8.42 2.23

 No 1655 (97.35) 65.21 3.34 9.64 4.02 13.18 4.61

Family status 1008
 Living with children 238 (23.61) 64.63 0.49 15.30 3.66 11.15 4.77

 Living without children 770 (76.39) 61.44 0.17 14.53 4.35 14.21 5.30

http://epp.eurostat.ec.europa.eu
http://epp.eurostat.ec.europa.eu
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each location  [27]. More specifically, we used Kullback-
Leibler divergence to minimize the distance between 
the observed and the fitted compositions with respect to 
the coefficients of the regression (Additional file  3). We 
used the 10,000 datasets generated through MICE and 
bootstrapping to construct weighted confidence intervals 
for all parameter estimates [28].

Contact patterns taking into account time use and distance
We used a GAMLSS model [29] for analysing the 
determinants of social contact patterns, taking into 
account the time spent at each location as explanatory 
variables. To handle classification issues in this sub-
analysis, we aggregated all location types into “home”, 
“work”, “school” and “other”.

We linked social contact and time use data to obtain for 
each social contact the time spent at the reported location 
and the distance from home. Participants were able to 
report multiple distances for one location type over 
different time-slots in the time use part. For example, 
one could report “other” at 2  km and 10  km from 
home, for shopping in the morning and sport activities 
in the evening. As such, we applied a probabilistic link 
procedure between a social contact and the distance from 
home, based on the relative time spent at each distance 
per location type. The interaction between travel and 
social contact patterns has been studied unconditionally 
and conditionally upon presence at each distance, i.e., the 
former presents the population average and the latter is 
in line with the individual-level perspective. To elaborate 
on social contact dispersal, we classified participants by 
age using a cutoff of 18 years (child and adult), gender 
and type of day (regular weekday, weekend, holiday). 
We excluded the contacts with missing distance (±7%) 
to calculate the weighted average number of contacts by 
distance and by age, gender and day type.

Social contact matrices and R 0
The matrix Mdt , representing the mean number of 
contacts at distance d during one day of type t, can be 
estimated by the following expression:

where Pi is the number of participants in age class i, wp 
the weight for participant p and ydtijp the reported number 
of contacts made by participant p of age class i with 
someone of age class j at distance d during one day of 
type t. The social contact matrix cdtij  , representing the per 
capita daily contact rate between age classes by distance 
and type of day, was calculated as

(1)mdt
ij =

Pi
p=1 wpy

dt
ijp

Pi
p=1 wp

,

with Nj the population size in age class j, obtained from 
census data.

The next generation matrix G with elements 
gij indicates the average number of secondary 
infections in age class i through the introduction of 
a single infectious individual of age class j into a fully 
susceptible population [30]. Assuming a rectangular 
population age-distribution, the next generation matrix 
at distance d during one day of type t is defined by:

with N the population size, D the mean duration of 
infectiousness, L the life expectancy, Cdt the contact 
matrix at distance d during one day of type t and q the 
proportionality factor. The basic reproduction number R 0 
can be calculated as the dominant eigenvalue of the next 
generation matrix. To compare transmission dynamics by 
distance, we calibrated the parameters of Eq. (3) so that, 
without loss of generality, based on the population-based 
social contact matrix for a regular weekday, R0 for regular 
weekdays using all reported contacts equals 2, averaged 
over all bootstrapped and imputed datasets.

Exposure time matrices
We calculated the age-specific exposure times based 
on time use data following the Proportionate Mixing 
Assumption (PTM) as previously used by [10]. As such, 
for one single location and time slot of the survey day, 
we calculated the exposure time of a participant to 
the other participants proportionally to their relative 
participation in that location. We used 17 categories; 
0–2 years, 3–5 years, 6–11 years, 12–17 years, 18–25 
years, 5-year age categories between 25 and 80 years 
of age, and a closing category of 80–90 years of age. 
Participants had to report their household members 
in terms of age, gender and whether they were present 
at home during the survey day. This allowed us to 
compute the time of exposure between members of the 
same household, which is formalized in the matrix H.

For locations other than home, the exposure time 
between people in age group i and j at specific location 
l and time slot s, tlsij  , can be computed, under the PTM 
assumption, as follows:

(2)cdtij =
mdt

ij

Nj

(3)Gdt
=

ND

L
Cdtq,

(4)tlsij = klsi
klsj

kls.
ds,



Page 6 of 16Hoang et al. BMC Infectious Diseases          (2022) 22:954 

where klsi  and klsj  are the number of people in age group i 
and j present at location l during time slot s, respectively, 
kls.  is the sum over all age classes at location l during time 
slot s and ds is the duration of each time slot s, in hours. 
From (4), we can compute the time of exposure between 
people in age group i and in age group j, referred to as 
matrix T, as follows:

The sum of T and H determines the overall exposure 
time matrix E, with elements eij:

The response matrix E contains non-negative quantities 
that are considered to follow a mixed discrete-continuous 
distribution, comprising value Y = 0 with probability p0 
and a value Y = Y1 ∈ (0,∞) with probability (1- p0 ). The 
R package gamlss.inf [31] was used to model E. For the 
discrete part (zero or not), we created a binary response 
variable to fit a binary logistic model. For the continuous 
part ( Y > 0 ), different distributions, including Gamma, 
Inverse Gaussian, Inverse Gamma, Log-normal, Weibull 
and Pareto were tested. Participants weights were taken 
into account and model selection was based on the 
Akaike information criterion (AIC).

Suitable contact matrices
The “suitable contact” approach assumes that not all 
social contacts are effective for disease transmission 
and that long duration and more intimate contacts are 
more likely to be relevant. To construct suitable contact 
matrices, we followed the procedure of De Cao et al. [11], 
which considered contacts and exposure between 
age classes i and j ( cij and eij , respectively). Let uij be a 
random variable representing the number of suitable 
contacts between age group i and j. Then the expected 
number of suitable contacts is given by the product of 
the average number of contacts cij and the proportion 
of these contacts that are suitable for transmission 
1− exp(−eij/cij) where exp(−eij/cij) is the Poisson 
probability that a contact is not suitable. Therefore the 
probability of infection βi,j is given by

where q1 is a constant disease-specific transmission 
coefficient and

(5)tij =

S∑

s=1

L∑

l=1

klsi
klsj

kls.
ds,

(6)eij = tij + hij .

(7)βij = q1 uij ,

(8)uij = cij (1− exp(−q2 eij/cij)),

with q2 as the fraction of total exposure time between age 
groups that is suitable for transmission.

Fitting mixing matrices to parvovirus‑B19 and VZV 
serological data
The social contact and the time use approach rely on the 
assumption that the number of potentially infectious 
contacts between people in different age categories is 
proportional to their total number of social contacts 
and time of exposure, respectively. Using our estimated 
age-specific social contact and exposure time matrices 
to estimate the parameters ( q1, q2 ) from Eqs.  7 and 8 
to capture the model-based disease prevalence under 
endemic equilibrium. As such, we identified values 
for these parameters that maximize the likelihood to 
obtain the observed prevalence of parvovirus-B19 and 
VZV. We followed the methods described in [32] and 
used a compartmental model with a mixing matrix 
between different ages including Maternally-derived 
immunity, Susceptible, Infectious and Recovered 
infection states (MSIR) to account for the disease 
dynamics of VZV  [3, 11, 32]. For parvovirus-B19, we 
used an MSIRWb model [32], which is an MSIR model 
augmented with waning immunity and boosting in the 
Recovered compartment. In both models, and without 
loss of generality, we assumed newborns to be fully 
protected by maternal antibodies until 6 months of 
age [32], after which they become susceptible.

Fitting mixing matrices to influenza‑like illnesses (ILI) 
incidence data
A dynamic, differential-equation, age-structured, 
Susceptible-Exposed-Infectious-Recovered (SEIR) 
model was used to fit different mixing matrices to 
ILI incidence data from 2010–2011. The weekly ILI 
incidence was recorded by the general practitioners 
(GPs) network, which covered 1.75% of the population 
in Belgium [22, 23]. Because we only considered one 
season (52 weeks from week 40 in 2010 to week 39 
in 2011), demography is not included in the model 
(see Additional file  5 for more details of the model 
description and parameters). We used an average latent 
period of 1 day and an average infectious period of 3.8 
days based on the literature [33, 34]. We estimated the 
model parameters by minimizing the sum of squared 
differences between the observed ILI incidence rate and 
the predicted incidence rates. The latter was performed 
with the “optim” function in R based on the “L-BFGS-B” 
method of Byrd et al. [35], which allows box constraints 
and uses a limited-memory modification of the BFGS 
quasi-Newton method. The following parameters 
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were estimated: age group-dependent disease-
specific proportionality factors qi (also based on the 
social contact hypothesis [2]) and a scaling factor. 
The scaling factor is used to calibrate the predicted 
incidence rates to the observed incidence rates, which 
accounts for those individuals with influenza who do 
not seek medical attention (the consultation rate), and 
which might absorb incorrect model assumptions or 
parameter mis-specification [33, 34, 36].

Results
Time use patterns
The final sample size for the analysis is 1707 participants, 
as reported in [18], though 49 participants left the time 
use part entirely blank. People older than 45 years of age 
accounted for the highest proportion of missing data for 
at least one time slot (Table 1). People spent on average 
about two thirds of their day at home.

The elderly over 65 years of age and children less than 
6 years old reported the highest proportion of time spent 
at home. Time at work is observed to be higher for males 
than for females, the opposite is observed for time spent 
at home. Temporal factors such as day of the week and 
holiday periods had a large impact on time use.

Health status was also linked to substantial changes 
in participants’ time use. Participants did report an 
increase of 5  h at home when feeling ill and almost no 
time at work. However, the time spent at other locations 
is still substantial when people reported feeling ill. 
Adults between 25 to 65 years of age living with children 
under 13 years of age reported more time spent at home 
compared to those without children.

We analysed the reported locations by gender more 
in detail and observed that the average time at work is 
similar for males and females until the age of 30 years 
(Additional file  2: Fig. S1). From the age of 30 years 
onward, females reported on average less time at work 
compared to males in the same age group. We observed 
the highest differences in age groups [40,45), [50,55) and 
[55,60) in which males reported 10% more time at work 
compared to females. The reported time at work declined 
after 65 years of age for both genders.

The reported time for transport was similar for males 
and females. Time spent at “other” places was similar 
between males and females in general, except for the age 
categories [6,12) and [18,25) in which males reported 
6% more time spent at “other” locations compared to 
females.

We analysed the time use patterns with a divergence-
based regression model with multinomial logit link 
function including gender, age, day type and period. 
Table  2 shows all parameter estimates and 95% 
confidence intervals. After controlling for age and 
temporal factors, time at work reported by males is 
significantly higher compared to females. In reverse, 
females reported more time at home than males. The 
gender-specific difference in time spent at school was 
not statistically significant. Age had a significant effect 
on presence at home, school and work but not on the 
reported time at location category “other”. Temporal 
factors played a crucial role in the time use patterns, 
particularly on the presence at work and school. In 
addition, we observed a clear increase in the reported 
time in the “other” category during regular weekdays vs. 
weekends. This denotes compensation behavior of people 

Table 2  Parameter estimates and 95% confidence intervals of the divergence-based regression analyses for location-specific time use 
patterns

The asterisks (*) denote the confidence intervals which do not include zero

Variable Category Home School Work Other places

Intercept 2.72 [2.40;3.10]* 1.62 [1.22;2.03]* − 1.40 [− 9.16;-0.37]* 1.18 [0.80;1.55]*

Gender Male − 0.17 [− 0.35;− 0.03]* − 0.14 [− 0.41;0.10] 0.37 [0.13;0.57]* − 0.19 [− 0.4;-0.01]*

Ref.: Female

Age [0-3) years 1.05 [0.55;1.64]* 0.44 [− 0.23;1.14] − 7.35 [− 51.28;-2.61]* 0.30 [− 0.29;0.97]

Ref. : [12-18) years [3-6) years 0.55 [0.08;1.13]* 0.44 [− 0.08;1.09] − 7.38 [− 40.00;-0.77]* − 0.17 [− 0.70;0.46]

[6-12) years 0.52 [0.05;1.03]* 0.74 [0.24;1.29]* − 7.5 6 [− 44.18;− 1.99]* 0.34 [− 0.12;0.89]

[18-25) years − 0.04 [− 0.5;0.42] − 0.53 [− 1.10;-0.01]* 2.20 [1.09;9.82]* 0.06 [− 0.43;0.56]

[25-45) years 0.01 [− 0.36;0.37] − 3.74 [− 4.53;− 3.09]* 2.94 [1.93;10.71]* − 0.13 [-0.51;0.27]

[45-65) years 0.09 [− 0.31;0.44] − 4.17 [− 5.14;− 3.48]* 2.55 [1.52;10.24]* − 0.04 [− 0.42;0.35]

65+ years 0.17 [− 0.22;0.58] − 7.81 [− 22.25;-4.49]* − 0.93 [− 2.57;6.46]* − 0.35 [− 0.74;0.09]

Temporal factor Holiday weekday 0.4E−1 [− 0.23;0.23] − 2.48 [− 3.52;− 1.84]* − 0.24 [− 0.56;0.07] 0.26 [0.02;0.53]*

Ref. : Regular weekday Regular weekend 0.11 [− 0.09;0.35] − 3.36 [− 5.15;− 2.55]* − 1.92 [− 2.56;− 1.42]* 0.54 [0.29;0.81]*

Holiday weekend 0.23 [− 0.09;0.55] − 5.34 [− 19.6;− 4.09]* − 1.90 [− 2.69;− 1.32]* 0.60 [0.27;0.94]*
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not at work or at school, which needs to be considered 
when modeling weekend days.

Social contacts patterns taking into account time use
We analysed the number of reported social contacts 
with a zero-inflated negative binomial model and 
observed that the overall number of contacts was 
inversely associated with the time spent at home, and 
positively associated with the time spent at school or 
work (Table 3). The number of contacts at school or work 
tends to increase with the time spent in these settings. 
We observed a gender effect, implying that males tend to 
have on average fewer contacts compared to females per 
time-unit. However, there was no statistical difference 
in the number of contacts at different locations between 
males and females. With respect to age, the highest 
overall number of contacts were observed among 
children up to 18 years of age and among people in the 
working age (25–65 years of age). The age effect was not 
observed for the social contacts at home and school, but 
observed for the social contacts at other places.

Household size was positively associated with the total 
number of contacts, contacts at home and other places, 
however household size showed no significant effect on 
the social contacts at school and at work. Class sizes did 
not have a clear effect on the number of school contacts. 

As expected, we observed an explicit link between 
temporal factors and the number of school and work 
contacts.

Social contact dispersal
To explore social contact dispersal, we analyzed the 
social contact data by distance in combination with age, 
gender and type of day (Fig.  2). At population level, i.e. 
unconditional upon whether or not people travel, we 
observed most contacts for children (0–18 years of age) 
in the category 0–9  km from home during weekdays 
and very few contacts beyond 10  km from home. This 
pattern was the same for boys or girls. During weekends, 
children reported a decline in the number of contacts 
by distance, but less so for girls. For adults (18+ years of 
age), we observed an increase by distance on weekdays 
up to 10–75 km from home. On average, people reported 
almost no contacts 75+ km from home. Females reported 
more contacts up to 9 km from home compared to males, 
though the opposite holds for the category 10–74  km. 
For weekends, we observed a decline in the number of 
contacts beyond 10 km from home, both for males and 
females.

The conditional results, i.e. looking at the number of 
contacts upon having traveled a certain distance, showed 
a different result compared to the unconditional (or 

Table 3  Parameter estimates and p-values of zero-inflated negative binomial models for the total number and location-specific social 
contacts using age, gender, temporal and time use covariates

*p < 0.05; **p < 0.01; a only include participants that spent time at school and reported class size; b only include participants from 25 to 65 year old; – not applicable

Variable Category Overall Home School Work Other places

Intercept 3.14(0.20) − 0.46(0.16) 1.25(1.32) 0.96(0.36) 3.93(0.25)

Time use (in hours)

 Home − 0.07(0.05E−1)** 0.04(0.04E−1)** 0.04(0.05) − 0.05(0.01)** − 0.15(0.01)**

 Schoola 0.06(0.01)** 0.01(0.01) 0.14(0.05)* – − 0.10(0.02)**

 Workb 0.08(0.01)** − 0.01(0.06E−1)* – 0.43(0.02)** − 0.16(0.01)**

Gender Male − 0.11(0.03)** − 0.05E−1(0.03) 0.01(0.19) -0.11(0.09) − 0.05(0.05)

Ref.: Female

Age group [3-6) yrs 0.47(0.19)* 0.05(0.17) 0.50(0.51) 0.41(0.20)*

Ref.: [0-3) yrs [6-12) yrs 0.41(0.18)* 0.09(0.13) 0.49(0.54) 0.51(0.18)**

[12-18) yrs 0.33(0.18) 0.09(0.14) 0.38(0.64) 0.50(0.18)**

[18-25) yrs 0.08(0.18) 0.05(0.15) – 0.18(0.17)

[25-45) yrs 0.36(0.17)* 0.09(0.13) – – 0.49(0.16)**

[45-65) yrs 0.33(0.17)* 0.20(0.13) – – 0.47(0.16)**

65+ yrs 0.05(0.18) 0.08(0.13) – – 0.42(0.17)*

Household size 0.08(0.01)** 0.28(0.01)** − 0.18(0.09) − 0.05(0.04) 0.06(0.02)**

Class size – – 0.02(0.02)

Temporal factors Holiday weekday − 0.05(0.04) 0.03(0.04) − 5.83(1.21)** − 0.46(0.13)** 0.08(0.07)

Ref.: Regular weekday Regular weekend 0.11(0.05)* 0.02(0.05) − 3.74(0.26)** − 0.48(0.11)** 0.33(0.08)**

Holiday weekend − 0.11(0.07) − 0.02(0.05) − 37.77(21.31) − 1.21(0.18)** 0.13(0.10)

Sample size 1707 1707 227 1008 1707
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population based) results. For children, the conditional 
results for weekdays show a clear maximum in the 
category 2–9  km from home. The number of contacts 
at 10–74 km from home equals the number of contacts 
close to home. During weekends, the reported number 
of contacts for girls increased with distance though the 
social contact behavior for boys seemed indifferent with 
distance up to 74  km. For adults, the number of social 
contacts during weekdays at 2–9  km and 10–74  km 
from home was two and three times the number of 
reported contacts at home, respectively. Also for the last 
distance category (75+ km from home), we observed an 
increase compared to the contacts at home but with large 
uncertainty. If adults leave home during weekends, the 
reported number of contacts by adults seems indifferent 
to the distance up to 74 km. Only at 75+ km from home, 
females reported fewer social contacts, compared to 
males. In conclusion, the number of contacts decreased 
by distance at population level, though if people made 
the effort to go somewhere, they made it count in terms 
of their social contact behavior.

Transmission dispersal and R 0
The social contact dispersal as illustrated in Fig.  2 
induces distinct transmission potential by distance. 
We calculated social contact matrices by distance 
for child/adult interactions for each bootstrapped 
dataset (e.g.,   Additional file  4: Figs. S1 and S2) 
and corresponding R 0 values. We calibrated the 

disease-specific proportionally factor q for a flu-like 
disease with median R 0 = 2 based on the population-
based social contact matrix for a regular weekday. The 
estimated R 0 values by distance should be interpreted as 
the relative transmission potential and are presented in 
Fig. 3. On the population level, the transmission potential 
slightly increased until 74 km from home during regular 
weekdays. This can be explained by the strong assortative 
mixing 2–9 km from home and the work-related mixing 
between adults 10–74  km from home (Additional file  
4:  Fig. S1). The overall reduction in the transmission 
potential during weekends, can be explained by the fewer 
number of contacts for the distance category 10–74 km 
from home. Social contacts at 75+  km from home had 
almost no impact on the unconditional transmission 
potential.

The transmission potential conditional upon presence 
showed a clear increase with distance from home during 
regular weekdays (Fig.  3). This effect was similar for 
weekends, however with a decrease of the estimated R 0 
for the last distance category. In general, the estimated 
transmission potential increased by distance from an 
individual-based perspective.

Exposure time and social contact matrices
We used a zero-adjusted log-normal model on the time 
use data to estimate the age-specific exposure matrices. 
The resulting exposure matrix reflected contributions 
from exposure at home, at school, at work, and at other 

Fig. 2  Number of contacts by distance. Number of contacts by distance unconditional (top) and conditional (bottom) upon presence by age (left/
right) and gender (color) during regular weekdays and weekends. The median is represented by the bars, 95% CI by the whiskers
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locations (Fig. 4). The main diagonal indicates that people 
tend to spend time with people of similar age. The two 
sub-diagonals represent the mixing pattern between 
generations. We also calculated the corresponding 
social contact matrix representing the weighted average 
number of contacts by age. Both matrices showed 
strong assortative mixing by age, especially for young 
children and teenagers. Especially the exposure matrix 
showed strong interaction among family members, as a 
result of the reported time at home. This pattern is very 

clear in the location-specific exposure matrix at home 
(Additional file 3: Fig. S1).

Time reported at home constituted on average up to 
±66% of the total time per day, while contacts at home 
only accounted for ±18% of the total number of contacts. 
In contrast, the impact of employment is higher for 
the contact matrix compared to the exposure matrix 
(±40% of the total number of contacts though only 
±9% of total time per day). Gender- and age-specific 
exposure time matrices are shown in Fig. 5. We observed 
more pronounced assortative mixing pattern in the 

Fig. 3  Estimated basic reproduction number R 0 by distance. R 0 by distance, calculated as the leading eigenvector of the distance-specific social 
contact matrix and calibrated so the median R 0 for regular weekdays equals 2 based on population-based (unconditional) contact matrices. For 
each distance category, we used the unconditional and conditional social contact patterns. The median is represented by the horizontal line in the 
box (75% interval), the whiskers denote the 95% confidence intervals and the dots are outliers

Fig. 4  Age-specific mixing pattern. Mixing patterns by age represented by weighted exposure time in hours (a) and weighted average number of 
contacts (b)
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same-gender matrices for children and teenagers, though 
more different-gender exposure time for adults older 
than 50 years of age. In addition, the interaction between 
mothers and daughters seemed more pronounced 
compared to other child-adult interactions.

Fitting social contact and exposure matrices 
to parvovirus‑B19 and VZV serological data
We tested the value of exposure and social contact 
matrices as a proxy for effective contacts governing 
transmission by their value in MSIRWb and MSIR 
models for parvovirus-B19 and VZV, respectively. Model 
estimations were compared to serological data and model 
selection was based on the AIC criterion. If we used 
the overall social contact matrix regardless of intimacy, 
location and duration, the “time use approach” implied a 
better fit for both parvovirus-B19 and VZV (Additional 
file  5: Tables S2 and S3). Close contacts lasting more 
than 4  h, provided the best proxy for the transmission 
dynamics of parvovirus-B19. For VZV, the social contact 
matrix based on close contacts of at least 1 h did improve 

the contact approach, though the AIC was still higher 
compared to the time use approach.

The suitable contact approach, which accounts for 
both the number of social contacts and time of exposure, 
scored slightly better for parvovirus-B19 compared to the 
contact approach, but not in comparison to the time use 
approach. For VZV, the application of suitable contact 
estimates provided the overall best fit with the lowest 
AIC. The estimated proportionality factor q2 of exposure 
data with respect to the overall model prediction is much 
higher for VZV (0.94) than for parvovirus-B19 (0.13), 
which implied a higher number of suitable contacts for 
transmission of VZV. Our best-fitting models estimated 
a reproduction number of 1.9 [1.7; 2.1] and 7.8 [6.8; 8.5] 
for parvovirus-B19 and VZV, respectively. The estimated 
prevalence and force of infection by the 3 approaches 
were quite similar (Fig.  6). We did observe differences 
in the predicted age-specific relative incidence by the 
time use and social contact approaches (Fig.  7). The 
highest relative incidence obtained by the social contact 
approach was among children in the age group [12,18), 

Fig. 5  Estimated age- and gender-specific exposure time. male–male (a), male–female (b), female–male (c) and female–female (d). The color scale 
indicates the exposure time in hours from low (white) to high (red)
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while the highest relative incidence obtained by the time 
use approach is among people in age group [6–12). The 
latter also predicts a relatively higher incidence in adults 
between 35 and 50 years of age.

Fitting social contact and exposure time matrices to ILI 
incidence data
Social contact and exposure time matrices were used to 
compute transmission rates in the dynamic, differential-
equation SEIR model for ILI incidence data. The model 
comparison was based on the least square score, a 
direct measure of goodness of fit with smaller values 

indicating a better fit to the ILI incidence data. The 
intimacy and duration of contacts seemed to matter 
for the ILI transmission modelling: physical contacts 
provided a better proxy of transmission than non-
physical contacts, while contacts lasting at least 1  h 
provided the best fit, compared to contacts of other 
duration. The use of exposure time matrices provided a 
better fit for ILI, compared to the use of overall contact 
matrices (Additional file  5: Table  S4, Additional file  6). 
R0 estimated from the best model is 1.43 and scaling 
factor is 0.266. The integration of contact matrices 
and exposure time matrices did not improve the fit. 

Fig. 6  The fitting results to serological data. The fit of 3 different matrices to serological parvovirus-B19 (a) and VZV (b) data for Belgium
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Additional file  5: Figure S1 shows the fit of different 
matrices to ILI incidence rate. The estimated incidence 
rates from models using suitable contact matrices and 
exposure time matrices are almost overlapping, with only 
a slight difference at the seasonal peaks of transmission.

Figure  8 shows the fit of the models that used overall 
contact matrices and exposure time matrices, for the 
total population and age group-specific populations. For 
each case, we present the least square value, the observed 
number and modeled based estimates of ILI cases, 
their ratio, and the mean absolute error (MAE). The 
uncertainty intervals around the fitted model estimates 
were very large, so we did not include them in the figure. 
For the total population, the estimated ILI cases captures 
quite well the weekly observed number of ILI cases. 
Overall contact matrices and exposure time matrices 
provided quite similar results for the total population and 
most of age groups, except for the age group of 65 years 
and older. More precisely, the use of exposure time 
matrices captured the observed ILI curve for this age 
group better than the use of overall contact matrices. In 
general, the quality of the fit does not differ substantially 
between age groups. The models tend to overestimate the 
number of ILI cases for children and teenagers aged 0–19 
years and adults aged 20–64.

Discussion
We analysed time use and social contact data and 
compared their use as proxy for effective contacts 
governing disease transmission for disease transmitted 
through the respiratory route. Our dataset is unique 
since it provides both time use and social contact data 

from the same participants, avoiding possible differences 
due to sample biases. In our analysis we identified the 
main drivers in shaping everyday time use and linked this 
info to social contact patterns.

The reported time use patterns in Belgium are quite 
similar to the published patterns for Italy  [37], but 
different from the results from Zimbabwe  [38]. In 
Zimbabwe, the working-age participants and children 
less than 6 years old reported much less time at work 
and school respectively, compared with participants 
of the same age group in Belgium and Italy. We found 
that males spent on average ±2 hours more at work 
than females, which is in line with previous work [39, 
40]. We also found that both males and females living 
with children spend more time at home than people 
living without children, which is consistent with what 
was found in [39]. The expected temporal patterns were 
observed, with more time spent at “other” locations 
during weekends and holiday periods. The time spent at 
home seemed not to be affected by the type of day. Our 
gender-specific analysis of the time use data indicated 
that participants were prone to spend more time with 
the same gender when they are young, and more time 
with the other gender when they are older. This result 
differs from the observed gender-specific contact rates as 
reported in [18], where the assortativity is reported to be 
higher for same-gender contacts.

Power law dispersal has been useful to model disease 
counts [13–15], though questions remained whether 
this also holds for social contact behavior, the driver of 
transmission dynamics [2]. Danon et  al. [16] showed a 
relation between clustering and distance from home, with 

Fig. 8  The fitting results to ILI incidence data. Observed ILI incidence rates in Belgium 2010–2011 (blue) and corresponding model-based estimates 
(red) using overall contact matrices (top row) or exposure time matrices (bottom row)
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high clustering within two miles, dominated by home 
contacts, but the highest value of clustering occurring 
at a distance 50 miles or more from home. The authors 
hypothesize that this might be due to differences in the 
purpose behind contacts made at various distances.

In our study, we observed an increase in the number 
of contacts by distance during weekdays, until an age-
specific distance-threshold. A large-scale study in Taiwan 
[41] reported that 52.7% of contacts took place at a 
distance less than 1 km from home, 29.2% at a distance 
1–9 km from home, 14.6% at a distance 10–49 km from 
home. In our study, this pattern was clearly age-specific. 
Half of our reported contacts during regular weekdays 
for children between [0–18) years of age took place less 
than 1  km from home. During weekends, we observed 
more contacts at +10  km from home. In general, we 
observed that the average number of contacts decreased 
by distance, though if people made the effort to travel, 
they made it count in terms of social contact behavior. 
As such, social contact patterns conditional upon 
presence at each distance provided useful info to inform 
individual-level behavior. A study in China quantified the 
distances from home based on the latitude and longitude 
of each reported contact and observed an increase in 
assortative mixing when contacts were made further 
from home [42]. We observed similar patterns with the 
construction of conditional social contact matrices by 
distance. A study in the United Kingdom [43] requested 
for infants to report the maximum distance travelled 
from home, but, to date, did not report results thereof. 
Other survey designs (e.g., [38]) included the distance 
between home and work but did not report results 
related to this information, yet.

The age-specific social contact and time use pattern 
followed a similar trend of assortativeness, which stresses 
once more the tendency for people to have contacts 
with someone of similar age. In addition to that, strong 
mixing among generations (parent–child) was present 
in both the social contact and time use matrices. The 
inter-generation mixing is mostly observed at home, 
and was more pronounced in the exposure time matrix 
than in the contact matrix. With our unified survey, we 
can confirm the contrasting effect of the relative small 
number of social contacts at home compared to the large 
amount of time spent at home, as observed in  [10, 38].

Social contact matrices provide useful data to 
estimate disease transmission dynamics in terms of the 
transmission dynamics and relative incidence [1, 2]. As 
such, we estimated the R 0 for each distance conditional 
upon presence, and observed a clear increase by distance. 
This reflects an increasing transmission potential by 
distance from the individual-level perspective. The 
latter is of interest for individual-based and some 

meta-population models where individuals join other 
sub-populations at distance. Assuming a constant (or 
decreased) social mixing behavior by distance conditional 
upon presence might not be optimal. Some individual-
based models handled this by the use of location-specific 
mixing patterns irrespective of distance from home [44].

We compared the value of different social contact 
features (duration, physical/non-physical, etc.) to 
inform transmission models for parvovirus-B19 and 
VZV. By scoring the model-based prevalence with 
Belgian serological data, we found that physical contacts 
provided the best proxy for both parvovirus-B19 and 
VZV. In terms of contact duration, the best model fit was 
obtained with physical contacts of long duration (more 
than 4  h) for parvovirus-B19 and (more than 1  h) for 
VZV. Goeyvaerts et  al.  [3] reported the best fit to VZV 
with physical contacts of at least 15  min; this result is 
also in line with the study of [4]. However, in the previous 
studies, not all combinations in terms of contact duration 
and physical/non-physical contacts were analysed, which 
explains the new “best estimate” in our study.

We also compared the results of the contact approach, 
the time use approach and the suitable contact approach 
in fitting serological data of VZV and parvovirus-B19. In 
the case of VZV, the suitable contact approach provided 
the best fit, while for parvovirus-B19, the time use 
approach gave the best fit. Our results are consistent with 
the findings of De Cao et al. [11], although we observed 
much higher parameter estimates for q2 (0.13 vs 0.001 
for parvovirus-B19 and 0.94 vs 0.37 for VZV), but the 
confidence intervals of these parameter estimates were 
overlapping.

We also tested the value of contact matrices 
and exposure time matrices in fitting the dynamic 
transmission model to weekly ILI incidence data in the 
season 2010–2011 in Belgium. Exposure time matrices 
provided a better fit to ILI than overall contact matrices 
and the integration of these two types of matrices did 
not improve the fit to the data. Within the social contact 
approach, physical contacts provided a better proxy for 
the risks of influenza transmission than non-physical 
contacts. We found that R0 of the best model is 1.43, this 
result is consistent with a systematic review of estimates 
of R0 for different types of influenza [45] and a study 
in UK [34] that also used contact matrices to fit to ILI 
incidence data. However, this value is much lower than 
the seasonal estimates of the reproduction number in 
[33], in which physical contact matrices from the Belgian 
POLYMOD data were used to fit to ILI data over multiple 
influenza season from 2003 to 2009. Fewer ILI cases were 
reported in the season 2010–2011 as compared with 
previous seasons, which partly explained the difference 
in R0 . In addition, note that small differences in model 
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parametrization entail substantial differences between 
the estimates of R0 , which was also mentioned in [33].

In our study, we combined information from time 
use and social contact data to gather information on 
human mixing patterns. One of the main advantages 
with respect to previous work is that both sources 
of information came from the same survey. To keep 
participants’ burden as low as possible, time use 
information was collected with rather large time slots 
and participants were asked to fill in only one location 
for each time slot. However, the comparison with more 
refined time use surveys performed in Flanders  [39, 
40] confirms that we were able to well characterize 
exposure patterns at an aggregated level. Therefore, 
we expect that this limitation did not substantially 
affect our results. Under the Proportionate Mixing 
Assumption, age-specific exposure matrices could be 
biased for some locations, e.g. public transportation 
or ‘Other’ location. In this study, we assume that age 
specific-contact patterns and time use patterns did 
not change over 10 years, the gap (in years) between 
the collection of serology and social contact data. 
This assumption is partially supported by the work of 
Hoang et  al on contact patterns over a time span of 5 
years [18].

Conclusions
In conclusion, our work emphasises the value of both 
and the complementary information provided by time 
use and social contact data for analysing behavior and 
informing disease transmission models. Both data 
sources share a common value of being a good proxy 
for the transmission route of the pathogen. Combining 
social contact and time use data can provide a slightly 
improved measure of risk events with respect to VZV. 
Furthermore, our analysis based on data from the same 
survey is in line with studies that merged information 
from different surveys [10, 11]. This indicates that 
complementing social contact with independent time 
use data is a viable choice for the analyses presented 
here.
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