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Abstract 

We assess the causal impact of social distancing on the spread of SARS-CoV-2 in the U.S. using the quasi-natural 
experimental setting created by the spontaneous relaxation of social distancing behavior brought on by the protests 
that erupted across the nation following George Floyd’s tragic death on May 25, 2020. Using a difference-in-difference 
specification and a balanced sample covering the [− 30, 30] day event window centered on the onset of protests, 
we document an increase of 1.34 cases per day, per 100,000 population, in the SARS-CoV-2 incidence rate in protest 
counties, relative to their propensity score matching non-protest counterparts. This represents a 26.8% increase in the 
incidence rate relative to the week preceding the protests. We find that the treatment effect only manifests itself after 
the onset of the protests and our placebo tests rule out the possibility that our findings are attributable to chance. 
Our research informs policy makers and provides insights regarding the usefulness of social distancing as an interven-
tion to minimize the spread of SARS-CoV-2.
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Introduction
The highly contagious novel coronavirus, severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2), 
responsible for coronavirus disease 2019 (COVID-19), 
emerged in December 2019 in Wuhan city, Hubei prov-
ince, China [1]. The initial COVID-19 outbreak quickly 
evolved into a pandemic [2], and as of June 2020, SARS-
CoV-2 has reached over 180 countries and regions, with 
the total number of confirmed cases surpassing 10 mil-
lion globally [3]. COVID-19 has spread throughout the 
United States (U.S.) at an unparalleled rate, infecting 
over 2.5 million individuals and claiming over 125,000 
lives [4]. Global public health measures aimed at reduc-
ing the spread of SARS-CoV-2 have been designed in 

consideration of the virus’s specific transmission proper-
ties [5]. SARS-CoV-2 can be transmitted through vari-
ous modes, including person-to-person contact and the 
spread of respiratory droplets, which can travel across 
a minimum distance of 6 feet (2 m) [6, 7]. Numerous 
countries have introduced social distancing, defined as 
the maintenance of at least a 6 foot interpersonal physi-
cal separation, to minimize direct transmission from 
infected individuals [8].

In the U.S., individual states have been granted the 
authority to design their own COVID-19  mitigation 
strategy, therefore, the extent and type of social distanc-
ing policies adopted differs across states [9]. Research 
examining state-imposed restrictions has found a reduc-
tion in the doubling rate of SARS-CoV-2 among U.S. 
states [10], as well as the daily growth rate of COVID-
19 cases across U.S counties after the imposition of 
social distancing measures [11, 12]. Other research has 
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suggested that rather than reducing the daily growth 
rate of COVID-19, social distancing merely stabilizes the 
spread of SARS-CoV-2 in the U.S [10]. Additionally, when 
examining the effectiveness of social distancing, studies 
have used social mobility as a measure of social distanc-
ing [11, 13–15]. However, mobility represents an imper-
fect proxy for social distancing because individuals can 
be mobile while still maintaining the required minimum 
6 foot separation from others to prevent viral transmis-
sion. Furthermore, although evidence suggests there is an 
association between social distancing and the spread of 
SARS-CoV-2, the causal impact of social distancing on 
the spread of SARS-Cov-2 is still unknown.

In this study, we examine the causal impact of a spon-
taneous relaxation of social distancing measures on the 
spread of SARS-CoV-2. The nationwide mass protests 
precipitated by George Floyd’s tragic death on May 25, 
2020 prompted an abrupt relaxation of social distancing 
behavior across the U.S [16]. The unpredictable nature 
of the protests created a natural experimental setting to 
assess for causality. In this study, instead of using mobil-
ity as a proxy for social distancing, we control for the 
increase in mobility during the protest period in order to 
hone in on the direct effect of social distancing. We also 
explicitly control for the concurrent relaxation of state-
imposed restrictions to account for variations in social 
distancing restrictions across states.

Methods
This study uses publicly accessible data exclusively and 
all statistical methods employed herein comply with rel-
evant guidelines and regulations.

Data and sample description
We source our U.S. COVID-19 data from the John Hop-
kins Whiting School of Engineering’s Center for Systems 
Science and Engineering’s GitHub repository [17]. This 
data consists of confirmed cases in each county at the 
end of every day since the start of the outbreak in late 
January 2020. We calculate the number of new cases for 
each county and each day by subtracting the cumulative 
number of confirmed cases at the end of the day from the 
number of cumulative cases from the previous day.

We obtain our county-level population data and our 
county-level demographic data from the U.S. Census 
Bureau [18]. We extract our county-level Gross Domestic 
Product (GDP) data from the U.S. Bureau of Economic 
Analysis’ (BEA) Regional Economic Accounts database 
(Table CAGDP1) [19]. We retrieve county-level data on 
the prevalence of obesity, diabetes, smoking, and hyper-
tension from the University of Washington’s Institute for 
Health Metrics and Evaluation (IHME) [20]. The hyper-
tension and obesity data are for the years 2009 and 2011, 

respectively, and the diabetes and smoking prevalence 
data are for 2012. The IHME reports hypertension and 
obesity data for females and males separately, so we con-
struct a population-weighted average measure for these 
two covariates based on the proportion of females and 
males in each county, as reported by the U.S. Census 
Bureau.

The social distancing restrictions data is from the Uni-
versity of Washington’s State-Level Social Distancing 
Policies in Response to the 2019 Novel Coronavirus in 
the U.S. repository [21]. The social distancing restrictions 
include: (1) restrictions on public gatherings exceeding 
5, 10, 25, 50, 100, 250, 500, or 1000 people, (2) limits on 
restaurant operations, (3) closure of specific businesses, 
e.g. fitness centres, gyms, casinos, etc., (4) closure of non-
essential businesses, (5) stay-at-home orders for non-
essential activities, (6) state curfews on non-essential 
activities, (7) mandated quarantines for people entering 
the state, (8) travel restrictions prohibiting residents from 
leaving the state, non-residents from entering the state, 
or residents from travelling across counties within the 
state, (9) self-isolation requirement for individuals with 
confirmed COVID-19 incidence, and (10) mandatory 
wearing of masks or other mouth and nose coverings in 
public places. We construct our social distancing restric-
tions index by adding the number of restrictions that are 
in place in a state on any given day, based on the date at 
which each restriction is enacted, relaxed, or expired.

We obtain our mobility data from the Descartes Labs 
[22]. This data consists of mobility indexes calculated at 
the end of every day and aggregated at the county level. 
The indexes, which we will refer to as the social mobil-
ity indexes, are based on geolocation reports from 
smartphones and other mobile devices, and track the 
movements of individual mobile phone subscribers. The 
methodology employed to construct these indexes is 
described in Warren et al. [23]. The mobility index data 
is available at a daily frequency from March 1, 2020, for 
2669 counties.

Finally, we construct a comprehensive list of pro-
tests that took place across the U.S. based on the List of 
George Floyd protests in the United States assembled by 
Wikipedia [24]. At the time of writing, the main Wikipe-
dia page cited 134 news articles from national, regional, 
and local media outlets, and the secondary pages cited 
hundreds more. From these media citations, we extracted 
the location and the date at which the protests reportedly 
took place, as well as the estimated number of individu-
als involved in each protest. We complement this process 
with a search on the Dow Jones Factiva database [25]. 
The onset of the protests among the counties in which 
protests took place, i.e. the treatment, is staggered across 
time and ranges between May 26, 2020, and June 7, 2020, 
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so we center our experiment on the first protest date in 
each treated county, as opposed to the date of George 
Floyd’s death, May 24, 2020. Therefore, the George Floyd 
protests produce a quasi-natural experimental setting 
with staggered treatment dates, rather than a single treat-
ment date setting.

Our sample period begins on March 1, 2020, when the 
social mobility data becomes available and ends on July 
7, 2020. This ending date enables us to carry out our esti-
mation on a balanced panel dataset consisting of a 30-day 
event window centered on the onset of the protests in 
each protest county. Our sampling procedure yields a 
panel dataset consisting of a total of 256,202 county-
days representing 2617 (541 protest and 2076 non-pro-
test) counties from all fifty states with incidence rate 
and covariates data available for our entire estimation 
window. From this dataset, we form covariate-balanced 
treatment and control groups using the propensity score 
matching technique described below and carry out our 
estimation of the treatment effect.

We report descriptive statistics for new and cumu-
lative SARS-CoV-2 cases in Table  1, broken down by 
state, along with the total number of counties and the 
total number of county-days represented in our sam-
ple. In Table 2, we report the earliest and the latest ‘first 
protest’ date within each state’s counties, along with the 
size of the protest, according to media reports. We pro-
vide a map of the continental U.S. in Fig. 1, which reveals 
the geographic distribution of counties where protests 
took place along with the size of the first protest that 
took place within them. Figure 2 shows the evolution of 
our social distancing restrictions index for a selection 
of states. Figure  3 shows the social mobility index for a 
small and a large county in the states of New York and 
Alabama.

Regression specification
We examine the impact of the spontaneous relaxation 
of social distancing behavior that was brought on by 
the George Floyd protests across the U.S. on the SARS-
CoV-2 incidence rate with an Ordinary Least Squares 
(OLS) staggered differences-in-differences (DID) panel 
regression equation, which is specified as follows:

where IRi,j,t , the incidence rate, corresponds to the num-
ber of new SARS-CoV-2 infections in county i from state 
j on day t, per 100,000 population. PostFPi,j,t is an indica-
tor variable that is set equal to one on the day where pro-
tests begin in county i, as well as every day thereafter, and 
to zero otherwise. This indicator variable is set to zero on 

(1)
IRi,j,t =α + β1PostFPi,j,t + X

′

i,j,tδC1

+ Y
′

j,tδC2 + γi + ηt + ǫi,j,t ,

each day t for non-protest counties included in our con-
trol group. Xi,j,t and Yj,t are vectors of county-level and 
state-level characteristics, which we use as control vari-
ables. γi captures time-invariant state fixed effects, and ηt 
represents time (day) fixed effects to control for changes 
in the aggregate SARS-CoV-2 incidence rate and com-
mon trends between our treatment and control group 
counties over time.

In Eq. (1), α is a constant term and β1 captures the 
impact of the relaxation of social distancing brought 
on by the protests on the SARS-CoV-2 incidence rate. 
Hence, β1 is the parameter of interest in this regression. 
Under the null hypothesis that the relaxation of social 
distancing behavior has no causal impact on the SARS-
CoV-2 incidence rate, β1 should be statistically indistin-
guishable from zero. We cluster the standard errors at the 
county level to account for any potential cross-sectional 
and time-serial dependence in the error terms, ǫi,j,t [26, 
27]. We perform our statistical analysis with STATA 16 
and use and use the REGHDFE command to estimate Eq. 
(1) [28].

Covariates
We include county-level control variables that may influ-
ence the incidence rate of SARS-CoV-2 in our staggered 
DID regression specification. These control variables 
account for demographic, health, living proximity, and 
income level variations across counties. For demographic 
controls, we include sex (Male) and age (60 years+) since 
these factors are associated with both an increased risk 
of testing positive for SARS-CoV-2 and greater illness 
severity [29]. We also include ethnicity, i.e., Asian, Black, 
Hispanic, and White, as demographic control variable, to 
account for the increased risk of a positive SARS-COV-2 
test observed among certain ethnicities, especially Blacks 
and Hispanics. Our demographic variables are expressed 
in decimals, and represent the fraction of a county’s total 
population that falls in a particular group, based on the 
U.S. Census Bureau’s county-level population statistics 
for 2018. We include Diabetes prevalence, Hypertension 
prevalence, Obesity prevalence, and Smoking prevalence 
as health control variables. Obesity, diabetes, and hyper-
tension are clinical risk factors that are associated with 
an increased risk of severe illness, and a greater risk of 
mortality from COVID-19 [30]. Smoking is also a clinical 
risk factor, as some evidence suggests that smoking may 
be associated with an increased severity of COVID-19 
[31]. We include the natural logarithm of population den-
sity, ln(Population density), among our control variables, 
as higher incidence rates of SARS-CoV-2 are observed 
in more densely populated, urban, areas [30, 32]. Finally, 
consistent with previous research showing that residents 
from more economically deprived areas are more likely 
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Table 1  Sample description

State New cases Cumulative cases Num. counties County-days

Mean Median Mean Median Total

Alabama 6 13 692 372 46,348 67 8635

Alaska 1 0 46 8 1435 7 864

Arizona 11 4 7006 2048 105,094 15 1900

Arkansas 6 0 315 79 23,598 72 9230

California 3 1 5095 607 295,506 54 6896

Colorado 6 0 541 52 34,647 43 5353

Connecticut 10 8 5851 1414 46,806 8 1032

Delaware 17 16 4105 4977 12,316 3 387

Florida 5 2 3188 646 213,563 67 8622

Georgia 8 3 582 194 92,527 148 18,908

Hawaii 0 0 211 95 1053 3 387

Idaho 2 0 194 30 8538 32 4019

Illinois 4 0 1455 47 148,397 93 11,981

Indiana 5 3 529 162 48,626 92 11,804

Iowa 11 1 325 71 32,137 92 11,745

Kansas 6 0 161 14 16,860 62 7850

Kentucky 2 0 146 39 17,519 112 14,333

Louisiana 11 3 1066 398 68,230 64 8194

Maine 2 0 215 37 3435 16 2064

Maryland 11 9 2933 676 70,396 24 3096

Massachusetts 9 7 7486 7402 104,797 14 1765

Michigan 3 0 837 83 69,463 75 9670

Minnesota 7 0 449 64 39,048 73 9381

Mississippi 11 6 393 282 32,214 77 9890

Missouri 2 0 197 24 22,701 100 12,745

Montana 0 0 24 4 1327 22 2625

Nebraska 6 0 216 9 20,075 45 5629

Nevada 1 0 1399 38 23,785 11 1418

New Hampshire 3 1 593 87 5931 10 1290

New Jersey 13 10 8305 6871 174,407 21 2709

New Mexico 4 0 388 61 12,799 28 3589

New York 5 3 6464 262 400,746 61 7869

North Carolina 7 3 782 362 78,207 97 12,468

North Dakota 2 0 75 6 3973 16 2034

Ohio 4 2 669 130 58,904 88 11,316

Oklahoma 3 0 224 52 17,220 70 8976

Oregon 1 0 295 97 10,605 29 3741

Pennsylvania 3 1 1422 157 95,242 64 8256

Rhode Island 14 7 3101 538 15,503 5 645

South Carolina 5 2 1029 450 47,352 46 5933

South Dakota 10 0 109 14 7163 18 2275

Tennessee 4 0 564 104 53,548 93 11,925

Texas 2 0 832 60 211,326 210 26,696

Utah 3 0 723 0 20,953 23 2924

Vermont 1 0 89 50 1249 12 1548

Virginia 7 0 502 118 66,740 73 9346

Washington 2 0 971 165 37,883 33 4249

West Virginia 2 0 64 22 3505 44 5589

Wisconsin 3 0 452 74 32,556 67 8607

Wyoming 3 0 74 27 1709 18 2295

Total 5 0 941 90 2,957,962 2617 334,703
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to test positive for SARS-COV-2, we use the natural log-
arighm of real GDP per capita, ln(Per capita RGDP), to 
control for income in our regressions [30].

In the period preceding the onset of the protests, the 
number of new COVID-19 cases began to drop steadily 
across the country [3]. Accordingly, several states began 
to relax their social distancing restrictions in a carefully 
staged manner. Figure 2 illustrates this trend in Alabama, 
California, Florida, and New York, for instance. Start-
ing in mid-March, we observe a steady rise in our social 
distancing restrictions index in these four states and we 
observe the start of a slow unwind by mid-April. Notably, 
while social distancing restrictions were being relaxed 
across the nation, social mobility was also on the rise 
(see Fig. 3). The concurrent relaxation of social distanc-
ing restrictions and the increase in social mobility around 
the onset of the protests may very well have contributed 
to an increase in the SARS-CoV-2 incidence rate dur-
ing the event period that is unrelated to the protests, so 
we include our social distancing restrictions and social 
mobility indexes in our DID regression equation (1), as 
additional control variables.

Propensity score matching
The first panel of Table  3 reveals statistically significant 
differences between protest and non-protest counties 
included in our sample on just about every dimension 
represented by the covariates introduced in the previous 
sub-section, barring the proportion of blacks included 
in the two groups. Non-protest counties have a signifi-
cantly higher proportion of males, whites, 60-years+, are 
less healthy and wealthy, live in less densely populated 
areas, and are significantly more socially mobile than 
their counterparts from protest counties. These differ-
ences between the two groups may introduce selection 
bias into our experiment. This is a common concern with 
observational studies, such as the present one, where the 
subjects are not randomly assigned to the treatment and 
control groups by the researcher [33]. To ensure that our 
control group is as similar as possible to our treatment 
group from the perspective of all these covariates, i.e., 
to mimimize any potential selection bias in our experi-
ment, we form our treatment and control groups using 
the propensity score matching technique [34]. In the con-
text of our experiment, the propensity score represents 
the estimated likelihood that a county will experience an 
increase in its SARS-CoV-2 infection rate.

Essentially, the matching process begins with a logis-
tic regression in which the dependent variable is set to 
one for the 541 protest (treated) counties included in 
our sample, and to zero for the remaining 2077 non-
protest (untreated) counties. The independent vari-
ables included in this regression correspond to our 
covariates, all of which have been shown to influence 
the likelihood of contracting SARS-CoV-2. Next, we 
match treated counties to their nearest neighbour from 
the untreated group, without replacement, with stand-
ard caliper of 0.25 standard deviations, based on the 
propensity scores from the logistic regression [35, 36]. 
This process yields a balanced sample consisting of 356 
treated and 356 untreated counties. As Table 3 shows, 
from the perspective of our covariates, these two 
groups do not exhibit any statistically significant dif-
ferences from each other, with the exception of Hyper-
tension prevalence, which is significantly higher in our 
treatment group than in our control group, albeit at the 
5% level.

Our quasi-natural experimental setting satisfies at 
least two key requirements for the identification of the 
causal link between social distancing and the spread of 
SARS-CoV-2, namely: (1) the existence of a strong the-
oretical basis supporting the relationship in question 
and, (2) exogenous variation in the variable of interest, 
i.e social distancing [37]. The presence of an exogenous 
shock in our setting, i.e., protests arising spontaneously 
in some counties as a result of a tragic event, is key to 
establish causality, as this mitigates concerns that omit-
ted variables correlated with both the protests and the 
spread of SARS-CoV-2 might be driving our findings. 
This setting also minimizes concerns about endogeneity 
and self-selection, which beset most non-randomized-
trial experiments.

In sum, thanks to the covariate balance that we are 
able to achieve with our propensity score matching 
process, our staggered DID regression specification 
is uniquely well positioned to separate the impact of 
the relaxation of social distancing behaviour on the 
SARS-CoV-2 incidence rate from other factors that 
may potentially affect the spread of the disease. Next, 
to address any potential concerns that our findings may 
be contaminated by confounding events, we exclude 
from our regression the county-days that fall outside of 
the [− 30, + 30]-day event window centered on the day 
when protests begin in a protest county [33, 38].

Table 1  (continued)
This table reports the mean and the median number of new COVID-19 cases, per day, per 100,000 population, during the week preceding the onset of the protests 
(May 18–24, 2020), as well as the mean, median, and total number of confirmed cases, across all counties within each state at the end of our sample period, on July 7, 
2020. The number of counties and county-days represented in our sample within each state are reported in the last two columns of the table
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Results
Impact of protests on SARS‑CoV‑2 incidence
We report results from regression equation (1) in Table 4. 
The coefficient of interest in this regression is β1 , which 
is associated with PostFP , our post-protest indicator vari-
able. This coefficient is positive and highly statistically 
significant (1.34; 95% CI 0.21–2.47), implying that the 
SARS-CoV-2 incidence rate increases by 1.34 cases per 
day, per 100,000, on average, following the onset of the 
protests in protest counties, relative to their propensity 
score matching non-protest counterparts. To put this 
finding into perspective, recall that the average number 
of new cases across all counties is equal to 5 per day, per 
100,000 population, in the week preceding the onset of 
the protests (see Column (2) of Table 1). Using this num-
ber as a reference point, this finding suggests that the 
SARS-CoV-2 incidence rate increases by 1.34/5 = 26.8% 
following the onset of the protests, due to the relaxation 
of social distancing brought on by the protests.

Even if our observed covariates are well-balanced, one 
still needs to assess whether the parallel trends assump-
tion underpinning the DID design is satisfied. We assess 
whether pre-treatment trends for our treatment and con-
trol groups are parallel by estimating a “leads and lags 
model” [39]. In this model, we replace our PostFP indi-
cator variable in Eq. (1) with a family of period-specific 
indicator variables spanning the pre- and post-protest 
event window. Each indicator variable is set equal to 
one for treated counties for a specific 5-day period sur-
rounding the onset of the protests, and to zero otherwise. 
Under the null hypothesis that pre-treatment trends are 
parallel, the coefficients associated with the pre-treat-
ment indicator variables should not exhibit any pattern 
and should be statistically insignificant. Meanwhile, the 
coefficients associated with the post-treatment indicator 
variables will reveal the treatment effect as it manifests 
itself in the data during the post-protest period.

Figure  4 plots the value of the coefficients associated 
with our pre- and post-protest indicator variables. In 
this figure, p corresponds to the five-day period start-
ing on the protest date and ending 4  days later, i.e., [0, 
4], + 1p is for days [5, 9], and -1p is for days [5, 1]. We 
don’t observe any clear trend in the pre-treatment peri-
ods and none of the coefficients are statistically different 
from zero, suggesting that the parallel trends assumption 
is satisfied. Post-protest, we observe a clear upward trend 
in the magnitude of the coefficients, which is reversed in 
period + 4p. The treatment effect becomes statistically 

Table 2  List of U.S. protests

State First date Number of 
participants

Earliest Latest Smallest Largest

Alabama 2020-05-29 2020-06-01 50 1000

Alaska 2020-05-30 2020-06-06 20 1400

Arizona 2020-05-28 2020-06-02 50 1000

Arkansas 2020-05-30 2020-06-01 100 1000

California 2020-05-28 2020-06-03 100 3000

Colorado 2020-05-28 2020-06-04 50 1000

Connecticut 2020-05-29 2020-05-31 100 1000

Delaware 2020-05-30 2020-06-01 30 1000

District of Columbia 2020-05-29 2020-05-29 1000 1000

Florida 2020-05-29 2020-06-06 30 1200

Georgia 2020-05-29 2020-06-01 50 1000

Hawaii 2020-05-30 2020-05-30 100 150

Idaho 2020-05-30 2020-06-03 25 1000

Illinois 2020-05-29 2020-06-06 15 1400

Indiana 2020-05-29 2020-06-04 100 10,000

Iowa 2020-05-29 2020-06-05 20 1000

Kansas 2020-05-30 2020-06-06 25 2000

Kentucky 2020-05-28 2020-05-31 100 1000

Louisiana 2020-05-29 2020-06-04 25 1000

Maine 2020-05-29 2020-06-07 100 1000

Maryland 2020-05-29 2020-06-03 100 1000

Massachusetts 2020-05-28 2020-06-02 25 5000

Michigan 2020-05-28 2020-06-01 100 5000

Minnesota 2020-05-26 2020-06-02 100 5000

Mississippi 2020-05-28 2020-05-30 25 1000

Missouri 2020-05-29 2020-06-07 100 2000

Montana 2020-05-29 2020-05-31 50 1000

Nebraska 2020-05-29 2020-06-03 20 5000

Nevada 2020-05-29 2020-06-06 20 1000

New Hampshire 2020-05-30 2020-06-03 100 1000

New Jersey 2020-05-30 2020-06-06 35 10,000

New Mexico 2020-05-28 2020-06-01 40 1000

New York 2020-05-28 2020-06-07 100 11,000

North Carolina 2020-05-29 2020-06-04 25 1000

North Dakota 2020-05-30 2020-06-04 50 1000

Ohio 2020-05-28 2020-06-05 30 5000

Oklahoma 2020-05-30 2020-06-03 1000 1000

Oregon 2020-05-28 2020-06-04 10 2000

Pennsylvania 2020-05-30 2020-06-07 15 5000

Rhode Island 2020-05-30 2020-06-06 100 1000

South Carolina 2020-05-30 2020-05-31 300 1000

South Dakota 2020-05-29 2020-06-05 30 1000

Tennessee 2020-05-27 2020-05-31 50 5000

Texas 2020-05-29 2020-06-06 50 5000

Utah 2020-05-30 2020-05-31 100 1000

Vermont 2020-05-30 2020-06-03 100 1200

Virginia 2020-05-29 2020-06-07 15 1500

Washington 2020-05-29 2020-06-05 100 2000

West Virginia 2020-05-30 2020-05-31 50 1000

Wisconsin 2020-05-29 2020-06-03 100 1000

Wyoming 2020-05-29 2020-06-03 10 1000

Table 2  (continued)
This table reports the earliest and the latest date at which the first protest took 
place in any county within a particular state, as well as the smallest and the 
largest number of participants reported to have taken part in this first protest
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different from zero in period + 2p, roughly ten days fol-
lowing the onset of the protests. This is consistent with 
SARS-CoV-2’s incubation period and typical testing wait 
times. Finally, we note the attenuation of the treatment 
effect in period + 4p. This is to be expected, as the impact 
of the relaxation of social distancing brought on by the 
protests must eventually die out. In sum, the treatment 
effect documented in Table 4 unfolds over time in a man-
ner that supports the hypothesis that social distancing 
causally impacts the spread of SARS-CoV-2.

Placebo test
We conduct a placebo test to assess whether the causal 
impact of the protests on the spread of SARS-CoV-2 that 
we document in Table 4 can be attributed to chance. For 
this purpose, we implement a Monte Carlo simulation 
exercise centered on our staggered DID panel regression 
specification, i.e., Eq. (1). In each iteration of this simu-
lation, we assign 541 counties randomly to the potential 
treatment group and the remaining 2077 counties to the 
potential control group. We then implement our propen-
sity score matching process to create a balanced sample 
of treated and control counties. We perform this match-
ing process without replacement with the 0.25 standard 
deviation caliper, as per “Propensity score matching” sec-
tion. Next, we assign a [− 30, + 30]-day event period to 
each treated county randomly with start dates ranging 
between March 1, 2020, and May 8, 2020. Then, we align 
each control group county’s timeline to its treated coun-
terpart’s event timeline and create the PostFPi,j,t indicator 
variable. Once this step has been completed, we estimate 
our staggered DID regression specification on the simu-
lated sample and collect the β1 coefficient estimate, along 
with its county-cluster robust t-statistic. We implement 
this process 5000 times to produce the simulated distri-
bution of β1 coefficients and associated statistics. If the β1 
estimate from Table 4 lies above the 95% threshold from 
the distribution of simulated β1 coefficient estimates, 
we can conclude with a high level of confidence that the 
treatment effect that we document in this paper cannot 
be attributed to chance.

Fig. 1  Counties involved in protests. This figure identifies the counties in which protests took place, according to media reports, along with the 
number of participants involved in the first protest that took place within each county. Counties within the states of Alaska and Hawaii are not 
shown, but they are included in our sample

Fig. 2  Social distancing restrictions index. This figure shows the 
evolution of our social distancing restrictions index from March 1, 
2020, to July 7, 2020, for the states of Alabama, California, Florida, and 
New York. The vertical line corresponds to May 26, 2020, the day of 
the protests’ onset
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Fig. 3  Social mobility index. This figure shows the evolution of the social mobility index from March 1, 2020, to July 7, 2020, for Tompkins and New 
York counties in the state of New York, and for Lauderdale and Jefferson counties in the state of Alabama

Table 3  Summary statistics for covariates

This table reports the mean value of the covariates described in “Covariates” section, for non-protest versus protest counties for all the counties included in our sample 
(unmatched), in the first panel, and for the propensity score matched counties, in the second panel. ***, **, and * denote the statistical significance of t-statistics from 
tests of the null hypothesis that the difference between the means for non-protest and protest counties is statistically indistinguishable from zero at the 1%, 5%, and 
10% level, respectively

Unmatched Propensity score matched

Non-protest Protest Difference Non-protest Protest Difference

Males 0.501 0.495 0.006*** 0.495 0.497 − 0.001

Asian 0.011 0.038 − 0.027*** 0.024 0.026 − 0.002

Black 0.099 0.109 − 0.01 0.088 0.096 − 0.008

Hispanic 0.085 0.125 − 0.040*** 0.111 0.113 − 0.002

White 0.850 0.819 0.031*** 0.850 0.839 0.01

60-years+ 0.261 0.233 0.029*** 0.242 0.240 0.002

Diabetes prevalence 0.108 0.099 0.010*** 0.099 0.101 − 0.002

Hypertension prevalence 0.401 0.377 0.024*** 0.378 0.383 − 0.005**

Obesity prevalence 0.389 0.354 0.035*** 0.364 0.366 − 0.003

Smoking prevalence 0.245 0.208 0.036*** 0.217 0.220 − 0.003

ln(Population density) 3.784 5.378 − 1.593*** 4.808 4.763 0.045

ln(Per Capita RGDP) 10.480 10.789 − 0.309*** 10.659 10.683 − 0.023

Social distancing restrictions 4.891 5.050 − 0.159* 5.006 4.896 0.11

Social mobility 1.552 0.675 0.877*** 0.979 1.024 − 0.045

Number of counties 2077 541 356 356
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We present results from this placebo test in Table  5. 
The 95% and 99% threshold values for the β1 coefficient 
from the simulated distribution are equal to 0.57 and 
1.42, respectively, while our empirical estimate in Table 4 
is equal to 1.34. Likewise, the 95% and 99% threshold 
values for the robust t-statistics from the simulated dis-
tribution are equal to 0.44 and 1.01, respectively, while 
the robust t-statistic associated with our β1 coefficient 
estimate in Table 4 is equal to 2.32. Since our β1 estimate 
and its associated robust t-statistic are well beyond their 
respective 95% simulated threshold values, we can safely 
reject the null hypothesis that relaxing social distancing 
behavior has no impact on the spread of SARS-CoV-2 
and, with a high degree of confidence, we can rule out the 
possibility that the treatment effect that we document in 
Table 4 is attributable to chance.

Discussion
In this paper, we exploit the quasi-natural experimental 
setting created by the spontaneous relaxation of social 
distancing brought on by the protests that erupted across 
the U.S. following George Floyd’s tragic death on May 
25, 2020, to the assess the causal impact of social dis-
tancing on the spread of SARS-CoV-2 in the U.S. Using 
a staggered difference-in-difference specification and a 
balanced sample covering the [− 30, + 30]-day event win-
dow centered on the onset of the protests, we document 
an increase of 1.34 cases per day, per 100,000 population, 
in the SARS-CoV-2 incidence rate in protest counties, 
relative to their propensity score matching non-protest 
counterparts. This represents a 26.8% increase in the 
incidence rate relative to the week preceding the onset of 
the protests.

Strengths and weaknesses
Early predictive models assessing the effectiveness of 
social distancing have suggested that a greater spread of 
SARS-CoV-2 would occur in the absence of social dis-
tancing measures [40–42]. Similarly, our study demon-
strates that when social distancing is reduced, i.e., by 
individuals protesting in close proximity, the spread of 
SARS-CoV-2 increases. Our study differs from its pre-
decessors because instead of examining the effectiveness 
of social distancing measures following their imposition 
[11, 12, 14], we examine the impact of social distanc-
ing on the spread of COVID-19 when social distanc-
ing behavior is abruptly relaxed. Additionally, unlike 
previous studies, we do not use mobility as a meas-
ure of social distancing, instead we use social mobility 
as a control variable in our analyses. By explicitly con-
trolling for the concurrent increase in social mobility 
and the relaxation of state-imposed social distancing 
restrictions during the period surrounding the protests, 

Table 4  Impact of protests on SARS-CoV-2 infections

This table reports results from our staggered DID regression equation (1). In this 
regressions, the dependent variable corresponds to the county-level number 
of new confirmed COVID-19 cases, per day, per 100,000 population. PostFP is 
an indicator variable set equal to zero up until the first protest date in a protest 
county and to one on every subsequent date. This indicator is set to zero on 
all dates for the propensity score matching non-protest counties. The 95% 
confidence intervals reported under the regression coefficients are based on 
standard errors that are clustered at the county level [26]

Variables (1)

PostFP 1.34 (0.21–2.47)

Males 59.63 (− 53.94 to 173.20)

Asian − 38.81 (− 72.57 to − 5.05)

Black − 25.94 (− 52.91 to 1.04)

Hispanic 21.11 (9.69–32.53)

White − 32.17 (− 56.31 to − 8.04)

60-years+ 5.95 (− 10.17 to 22.08)

Diabetes prevalence − 58.78 (− 161.35 to 43.78)

Hypertension prevalence 30.15 (− 14.26 to 74.56)

Obesity prevalence 22.79 (1.56–44.01)

Smoking prevalence − 7.93 (− 48.81 to 32.96)

ln(Population density) 0.80 (0.16–1.45)

ln(Per Capita RGDP) − 0.02 (− 1.47 to 1.43)

Social distancing restrictions 0.29 (− 0.01 to 0.59)

Social mobility − 1.20 (− 2.06 to − 0.34)

Constant − 12.62 (− 77.27 to 52.03)

State fixed effects Yes

Day fixed effects Yes

County-days 43,387

Adjusted R2 0.10

Fig. 4  Timing of the protests’ impact on the SARS-CoV-2 incidence 
rate. Each bar provides the point estimate of the difference between 
the SARS-CoV-2 incidence rate in protest counties relative to their 
propensity score matched non-protest counterparts, for 5-day 
periods around the onset of the protests. For instance, p corresponds 
to the period starting on the day of the protests and ending four 
days later, i.e., days [0, 4], + 1p is for day [5, 9], and − 1p is for days 
[− 5, − 1]. The 95% confidence band is superimposed on each point 
estimate
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our study demonstrates that social distancing directly 
impacts the spread of SARS-CoV-2. We also control for 
a host of covariates known to influence the transmis-
sion of SARS-CoV-2, and implement placebo tests to 
rule out the possibility that our results are attributable to 
chance. Therefore, we can be confident that the increase 
in SARS-CoV-2 incidence that we observe following the 
onset of the protests can be attributed to the relaxation 
of social distancing behavior.

Our study is not without limitations. In particular, over 
70 testing centers across the U.S. were closed following 
the onset of the protests. We are also unable to assess 
protest participants’ vulnerability (e.g. age, underlying 
health conditions, personal protective wear, etc.), and 
variability along these dimensions may influence the risk 
of SARS-CoV-2 incidence. Additionally, we cannot con-
trol for the actual degree of physical proximity between 
participants, which would impact the transmission rate 
of SARS-CoV-2 during the protests. We are also unable 
to control for any potential under-reporting of COVID-
19 cases over time and across counties [43]. This would 
be a concern if protest counties and non-protest counties 
were impacted differently by this phenomenon. Moreo-
ver, we rely on the accuracy of media reports to iden-
tify the counties in which protests took place. Finally, 
we do not account for the magnitude of the protests in 
each county, however, expressing the case counts in rates 
rather than in levels should minimize any potential scale-
related effects.

Future research and implications
Future research using this experimental setting could 
use machine learning tools to analyze protest videos 
and determine the relative contribution of participant 
demographics, the degree of physical distancing, and 
the extent and type of personal protective wear on 

the spread of SARS-CoV-2. Social mobility data might 
also be used to track the extent to which people who 
participated in protests visited a SARS-CoV-2 test-
ing centres at any point before or after they partook in 
protests. Taken together, this study demonstrates that, 
when controlling for social mobility restrictions, social 
mobility, and a host of other potential risk factors for 
the contraction of SARS-CoV-2, the relaxation of social 
distancing behavior causally impacts the spread of 
SARS-CoV-2. As states are in the midst of relaxing the 
social distancing restrictions initially imposed in March 
2020, establishing the effectiveness of social distancing 
behavior in a statistically reliable way has important 
public health implications. Our research informs policy 
makers and provides insights regarding the usefulness 
of social distancing as an intervention to minimize the 
spread of SARS-CoV-2, and reduce the risk of a second, 
and possibly, third wave of COVID-19.
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Table 5  Placebo tests

This table reports results from a Monte Carlo simulation of the impact of the protests on the SARS-CoV-2 infection rate across the U.S. In each iteration of this 
simulation, we assign 541 counties randomly to the potential treatment group and the remaining 2077 counties to the potential control group. We then implement 
our propensity score matching process to create a balanced sample of treated and control counties. Next, we assign a [− 30, + 30]-day event period to each treated 
county randomly with start dates ranging between March 1, 2020, and May 8, 2020. Then, we create the PostFPi,j,t indicator variable. Finally, we estimate our staggered 
DID regression specification on the simulated sample and collect the β1 coefficient estimate, along with its county-cluster robust t-statistic [26]. We implement this 
process 5000 times to produce the simulated distribution of β1 coefficients and their associated t-statistics. We describe this process in greater detail in “Placebo test” 
section. In Panel A, we report the simulated distribution of the β1 coefficients, along with the distribution of their t-statistics. In Panel B, we report the β1 estimate from 
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Coefficient Mean Min p1 p5 p10 p25 p50 p75 p90 p95 p99 Max

Panel A: Random protest onset date and and counties where protests took place

 PostFP − 1.18 − 4.82 − 3.46 − 2.82 − 2.48 − 1.87 − 1.20 − 0.49 0.15 0.57 1.42 2.99
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Panel B: Estimates from Table 4

 PostFP 1.34

 t-statistic 2.32
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