
Grzybowska et al. BMC Infectious Diseases          (2022) 22:694  
https://doi.org/10.1186/s12879-022-07664-0

RESEARCH

SAfE transport: wearing face masks 
significantly reduces the spread of COVID‑19 on 
trains
Hanna Grzybowska1,6*, R. I. Hickson2,3, Bishal Bhandari1, Chen Cai1, Michael Towke4, Benjamin Itzstein1, 
Raja Jurdak5, Jessica Liebig2, Kamran Najeebullah1, Adrian Plani1, Ahmad El Shoghri2 and Dean Paini2 

Abstract 

COVID-19 has had a substantial impact globally. It spreads readily, particularly in enclosed and crowded spaces, such 
as public transport carriages, yet there are limited studies on how this risk can be reduced. We developed a tool for 
exploring the potential impacts of mitigation strategies on public transport networks, called the Systems Analytics 
for Epidemiology in Transport (SAfE Transport). SAfE Transport combines an agent-based transit assignment model, 
a community-wide transmission model, and a transit disease spread model to support strategic and operational 
decision-making. For this simulated COVID-19 case study, the transit disease spread model incorporates both direct 
(person-to-person) and fomite (person-to-surface-to-person) transmission modes. We determine the probable impact 
of wearing face masks on trains over a seven day simulation horizon, showing substantial and statistically significant 
reductions in new cases when passenger mask wearing proportions are greater than 80%. The higher the level of 
mask coverage, the greater the reduction in the number of new infections. Also, the higher levels of mask coverage 
result in an earlier reduction in disease spread risk. These results can be used by decision makers to guide policy on 
face mask use for public transport networks.
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Introduction
In December 2019, a local Wuhan (Hubei, China) out-
break of severe acute respiratory syndrome (SARS-
CoV-2), causing the disease referred to as COVID-19, 
became a pandemic. It has spread to 222 countries, with 
over 191 million confirmed cases and more than 4.1 
million deaths to date [43]. The result has been a mas-
sive impact on the global economy, including govern-
ment and individual debt; a slowdown in national and 
international travel, tourism, commerce, and trade; 
and sociological issues (see, for example, [9, 37]). It has 

effectively challenged the status quo of day-to-day activi-
ties and ways of life. Another, more specific, example is 
the change in the way people commute and use services 
such as public transport. Initially, the substantial drop in 
public transport  patronage was due to local or national 
lock-downs. However, with restrictions lifted in some 
countries, there has generally not been a concurrent 
increase in public transport use [16]. Globally, people are 
reluctant to use public transport  for fear of contracting 
COVID-19. With the emergence of potentially more vir-
ulent COVID-19 variants that could reduce the effective-
ness of vaccinations, it is of paramount importance that 
public transport  operators are able to ensure their ser-
vices are safe in order to restore public confidence.

There are various non-pharmaceutical measures that 
can be applied to increase safety on public transport. 
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For example, these include but are not limited to: the 
introduction of more thorough and more frequent 
cleaning of the rolling stock; protecting the drivers and 
public transport  operators with personal protective 
equipment (PPE); mandating wearing face masks by 
passengers; marking seats and standing spaces to main-
tain physical distances; forbidding front-door board-
ing to protect drivers and encourage boarding through 
other doors (particularly on buses  [21]); lowering the 
maximum occupancy limits; encouraging hand sanita-
tion; and shutting down stations shown to be hot-spots.

For researchers, the challenge is to show that these 
measures can be effective at reducing the spread of 
COVID-19 on public transport networks. Indeed, there 
has been research that shows the survival time of the 
virus on different surfaces  [31], the effectiveness of 
cleaning [8, 13], hand sanitation [15, 32], and lowering 
maximum occupancy limits [11, 21, 33]. Perhaps the 
most obvious measure would be the mandating of face 
masks for commuters, and while face masks have been 
generally accepted by most to be able to significantly 
reduce the spread of COVID-19 (see, for example, [7, 
12, 18, 22, 38, 40]), no work has attempted to quanti-
tatively estimate the benefit of face masks on public 
transport. The benefit of such work could provide sub-
stantial reassurance to both government policymakers 
charged with ensuring the public’s safety when they 
commute and public commuters themselves.

Here we present a tool that can explore the prob-
able impacts of such measures to better support stra-
tegic and operational decision-making by public 
transport  operators. The Systems Analytics for Epi-
demiology in Transport (SAfE Transport) tool com-
bines an agent-based transit assignment model, a 
community-wide transmission model, and a transit 
disease spread model. The tool has been tested on a set 
of artificial scenarios exploring the potential impact 
of non-pharmaceutical mitigation strategies such as 
face masks, using COVID-19  realistic values reported 
on other train networks. We focus on a case study of 
COVID-19  on the train network in Sydney, Australia, 
exploring the probable impacts of different proportions 
of passengers wearing face masks (that is, population 
level face mask coverage).

Results
To determine the probable impact of face mask wearing 
coverage by passengers, we focus on the total number of 
new COVID-19  infections over a 7-day time period as 
the output of interest. That is, the cumulative number of 
new infections over a 7-day simulation time horizon. We 
consider the following scenarios:

•	 Baseline: no mitigation strategies were applied (base-
line)

•	 Face masks are worn by 25% of commuters 
(Mask_25).

•	 Face masks are worn by 50% of commuters 
(Mask_50).

•	 Face masks are worn by 75% of commuters 
(Mask_75).

•	 Face masks are worn by 80% of commuters 
(Mask_80).

•	 Face masks are worn by 100% of commuters 
(Mask_100).

To account for stochasticity in the underlying disease 
transmission process, each scenario was run 100 times, 
with summary statistics provided for the average and var-
iation across all of these repeats. For each scenario, the 
relevant proportion of passengers were selected at ran-
dom to wear a mask, independent of their disease pro-
gression status (that is, susceptible, exposed, infectious, 
or recovered). Further information is provided in "Meth-
ods" and the Additional file 1.

80% of passengers need to wear a mask to see 
a statistically significant reduction in 7 days
The probable impacts of the different face mask wear-
ing coverage levels over the full 7-day horizon are sum-
marised by the Box Plot depicted in Fig. 1. Note that, for 
ease of visually identifying statistically significant differ-
ences, the whiskers display the 95% confidence intervals, 
as opposed to the traditional minimum and maximum. 
That is, if the top whisker of the mask wearing scenario 
is below the bottom whisker of the baseline, that level of 
mask wearing coverage is statistically significant over the 
course of the considered time horizon of 7 days. We dem-
onstrate that the scenario with 80% of passengers wearing 
face masks shows a 68% reduction in the total number of 
new infections, and this is statistically significant when 
compared to the baseline of no masks. In the case when 
100% of passengers wear face masks, the reduction is 80% 
in comparison with the baseline with no masks.

An important aspect of this model is that face masks do 
not perfectly prevent viral shedding (transmission from 
an infectious person) or infection of those susceptible. 
This is reflected by the fact that there are still new cases 
despite 100% mask wearing coverage.

Divergence between the baseline and mask wearing 
scenarios increases over time
Figure 2 shows the total number of infections over time 
for all the mask wearing scenarios in comparison with 
the baseline. As the percentage of people wearing masks 
grows, the impact becomes more obvious over the 7-day 
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time horizon. The higher the percentage of people wear-
ing face masks, the sooner the results diverge signifi-
cantly. For the 80% scenario, statistical significance does 
not occur until day 7, while for the 100% scenario, this 
occurs on day 5. For a 7-day time frame, then, the 80% 
scenario may be defined as a “tipping point”. For longer 
simulation horizons, the two compared distributions are 
expected to continue diverging, and after enough time, 
even the 25% scenario may become statistically signifi-
cantly different from the baseline.

We have focused on a 7-day time horizon as a period 
when the general public would like to see positive 
improvement from expectations that they wear masks. 
However, this indicates that for more strategic planning, 
longer time horizons may be of interest.

How robust are the mask wearing effects on transmission 
proportions via direct vs. fomite routes?
One of the key transmission model parameters is the 
proportion of virus that contributes to person-to-sur-
face-to-person  (fomite) transmission ( ps0 ), versus per-
son-to-person (direct) transmission ( 1− ps0 ). Figure  3 
depicts how the average number of total infections after 
7 days is affected by this parameter. The current evidence 
suggests aerosol transmission likely dominates (see, for 
example, [14, 17, 26, 35]), and so the proportion of virus 
shed by infectious passengers that contributes to fomite 
transmission when no mask is worn is expected to result 
in small values of ps0 . We find that 100% mask coverage 
results in a statistically significant reduction of new cases 

after 7 days when ps0 � 0.125 (Fig. 3b). Further, we find 
80% mask coverage only results in a statistically signifi-
cant reduction in the average number of new cases after 7 
days for values of ps0 ≤ 0.1 (Fig. 3a).

Methods
We developed a modelling framework to capture the key 
components of pathogen transmission on public trans-
port  networks. This is a general framework that could 
be used for a wide variety of pathogens, transport modes 
(including multi-modal) and public transport  networks, 
though here we focus on COVID-19  transmission on 
trains. An overview of the modelling framework is pro-
vided in Fig. 4. There are four main components: 

1.	 Transit assignment engine: a transit assignment 
engine simulating the movement of passengers in the 
public transport network. For our case study, this is 
the train network in Sydney, Australia.

2.	 Modelling the spread of infection: the transit dis-
ease spread model. For our COVID-19  case study, 
this incorporates two forms of transmission: direct 
(person-to-person) and fomite (person-to-surface-
to-person).

3.	 Outputs: an analytical module providing summary 
statistics and visualisations of results.

4.	 Disease seeding: a community-wide transmission 
model that informs disease seeding (the expected 
number of infectious passengers on the Sydney train 
network).

Fig. 1  Total number of new infections after 7 days for the different mask wearing coverage scenarios Note: here the whiskers depict the 95% 
confidence intervals
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Fig. 2  Comparison of the evolution in time of the total number of infections between the baseline (blue) and scenarios with face masks (orange) 
(average and 95% confidence intervals): a baseline vs Mask_25, b baseline vs Mask_50, c baseline vs Mask_75, d baseline vs Mask_80, e baseline vs 
Mask_100.
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In addition to these components, our modelling frame-
work requires input data and specification of the scenar-
ios of interest (such as including any non-pharmaceutical 
interventions being considered).

In our case study, this framework involves assigning a 
passenger to a train trip leg based on travel smart card 
data and an assigned shortest feasible path. Each leg of 
the trip is assigned to a transit service vehicle (in this 
case, a train), according to a specified capacity and cur-
rent occupancy. The trains operate in accordance with 

a pre-defined schedule. Every time a passenger finishes 
their trip, the transit disease model is triggered and 
this passenger is assigned an exposure status (that is, 
whether the passenger was infected during their trip). 
The information about new infections is sent to the 
visualisation module to be displayed on a dashboard. 
At the end of every simulated day and at the end of the 
simulation horizon, the total number of new infections 
is calculated and reported for final evaluation. The SAfE 
Transport  modules are further described in  "Transist 
assignment engine"–"Seeding".

Fig. 3  Comparison of how the total number of infections is affected by the proportion of virus contributing to fomite transmission in the absence 
of a mask ( ps0 ) (in blue). The lines depict the average, and the shaded region indicates the 95% confidence intervals based on 100+ simulations; 
a 80% mask coverage, b 100% mask coverage (in orange). Note: for ps0 = 0.2 and 0.3, there are 200 repeat simulations to capture the stochastic 
variation

Fig. 4  The modelling framework, with more information on each component outlined in "Transist assignment engine"–"Seeding". The modular 
structure allows for flexibility in the designation of geographical location, pathogen of interest, and scenarios explored. The agent-based model 
yields detailed outputs to inform operational and strategic decisions
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Transit assignment engine
The transit assignment engine is an agent-based simu-
lation platform that maps trip demand to transit ser-
vice supply. The transit assignment engine underpins 
SAfE Transport, as it provides the network of contacts 
between travelling passengers (that is, with whom and for 
how long they are in contact).

The engine depends on input data in the form of: 

1.	 trip demand (that is, trip origin, trip destination, and 
starting trip time for every passenger), and

2.	 transit service supply (that is, routes and schedules of 
public transport services).

The full architecture is provided in the Additional file 1. 
The total number of trips on Sydney’s train network 
before COVID-19  was about 8 million per week. To 
account for the patronage drop during COVID-19, we 
assume the demand to be 10% of the total, which aligns 
with the real-life observations [27, 29, 30]. The supply 
of services did not change in Sydney due to COVID-19. 
Trip demand is captured by smart cards, including tap-
on and tap-off data with location GPS coordinates and 
timestamp. This is used by the shortest path router to 
calculate a set of time-dependent shortest paths for each 
travelling passenger using the classic Dijkstra algorithm. 
Throughout the simulation, passengers are tracked and 
detailed dynamic outputs are collected for every agent, 
link (between two consecutive stops/stations), stop/sta-
tion, service vehicle, service line, and the whole network.

Modelling the spread of infection on trains
At its core, the disease spread model on trains provides a 
probability of becoming infected for each susceptible pas-
senger, based on the current and past travel of infectious 
passengers in the same spatial area. The model uses a 
number of simplifying assumptions, the most important 
being that we ignore any age-based effects (all agents are 
identical). We also assume homogeneity of mixing within 
the spatial area considered, including an equal distribu-
tion of passengers throughout the train. To account for 
our homogeneous mixing within a spatial area assump-
tion, we use a half-carriage spatial area for our model, 
due to the stack structure (including upper and lower 
deck) of the Sydney train carriages (Waratah design).

The overall probability of a susceptible individual being 
infected is based on the standard probabilistic state-
ment of being one minus the probability that they were 
not infected. This allows us to consider the probability of 
infection from each of the infectious passengers, and the 
surfaces on the half-carriage, separately. The transmission 
model uses the regression expression for the attack rate 

from the study by Hu et al. [19] (Fig 4 in [19], Average of 
all seats), both directly for the empirical person-to-per-
son part of our transmission model, and for calibration 
of the mechanistic person-to-surface-to-person  model. 
The mechanistic model is based on the transmission 
route model developed by Atkinson and Wein  [1]. This 
approach models proportion of the virus shed drops to 
the surface, and the effective dose based on surface con-
centration. We then use a standard dose-response model 
for the probability of infection from contaminated sur-
faces (fomites). Further details of the transmission model 
are provided in the Additional file 1, along with sensitiv-
ity analyses of key parameters.

Seeding
Our primary disease spread model, as outlined in "Mod-
elling the spread of infection on trains" only considers 
transmission on the public transport  network (and is 
specifically calibrated to trains). To keep the numbers of 
infectious passengers travelling on trains identical across 
simulations for comparability, we use a deterministic 
compartmental model to approximate the transmission 
dynamics in the general community.

We use the standard susceptible-exposed-infectious-
recovered progression structure, with the exposed and 
infectious compartments repeated to better account for 
the distribution of time spent in those states (see, for 
example, [20]). We refer to this as an “SEEIIR” model for 
short. We start the deterministic SEEIIR model with 2000 
infectious cases, using the population of Sydney of 5.73 
million in 2019 [4], and a basic reproduction number of 
2.5 [6, 23, 45]. We used estimates of the proportion of the 
population that commutes via public transport (approxi-
mately 20% according to Census 2006, 2001 and 2016 
data [2, 28]), and the proportion of commuters who use 
trains (approximately 50.9% [39]), to arrive at an estimate 
of 10% of the population using trains in Sydney. Further 
details are provided in the Additional file 1, including a 
table with the numbers used to seed infectious passen-
gers for each of the 7 days.

Face mask wearing scenarios
The primary objective of this work was to explore the 
probable impacts of different face mask wearing propor-
tions by passengers (that is, face mask coverage). How 
the mask wearing status of passengers effects the transit 
transmission model depends on whether the passenger 
is susceptible or infectious. The mask wearing status of 
infectious individuals reduces viral shedding. The mask 
wearing status of susceptible individuals is known to 
reduce the overall probability of infection [38], but does 
this through two separate mechanisms: (i) it explicitly 
effects the probability of being infected from the direct 
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transmission component; and (ii) it effects the effec-
tive dose from the surface for the fomite transmission 
component.

To parameterise the viral shedding effect on those 
infectious passengers, we use the filtration efficacy of a 
two-layer cloth mask, as described in Howard et al. [18]. 
They discovered that two-layer cloth masks reduce infec-
tious particle load by 88-94% and have a filtration efficacy 
of 80-90%. In our modelling, we use 90% as it is within 
both of these bounds, and reduction in infection particle 
load is arguably the most important aspect.

For the reduction in susceptibility, the model was cali-
brated using a minimisation of the sum of squared errors 
to achieve the reported odds ratio of 0.22 for wearing a 
mask [38]. There is further information on this provided 
in the Additional file 1.

Discussion
The SAfE Transport tool presented here can support pub-
lic transport  agencies in both strategic and operational 
decision-making for disease spread mitigation options. 
Here we have applied it to train networks for informing 
COVID-19  related mitigation options. Hence, the SAfE 
Transport tool is capable of contributing to recovery and 
resilience post-pandemic.

We have shown that for this parameterisation of 
COVID-19  transmission on trains, if more than 80% of 
passengers wear face masks, there is a substantial (68% 
relative) and statistically significant reduction in the total 
number of new cases over a 7-day period. While this 
result is highly sensitive to the proportion of virus shed 
contributing to fomite vs direct transmission, recent 
evidence  [17, 35] suggests fomite transmission is only a 
small contributor, and that indeed the proportion is spec-
ulatively around 10% (equivalent to the value of ps0 = 0.1 , 
used here), and likely to be even smaller [14]. This find-
ing and subsequent sensitivity analysis demonstrates 
the utility of our SAfE Transport tool for a nuanced way 
of informing decision-making with respect to disease 
spread on public transport networks.

While we made a number of simplifying assumptions 
with respect to the disease transmission models, we 
explored the effects of most of these assumptions. The 
effect of the key parameter of the model on our outcome 
of interest, the total number of new cases, is shown in 
"How robust are the mask wearing effects on transmis-
sion proportions via direct vs. fomite routes?", and the 
rest are shown in the Additional file  1. We assumed 
masks worn had the efficacy of a two-layer cloth mask. 
However, in the case when mask wearing has been 
mandated, even if some people are wearing less effec-
tive masks, we would still expect to see a substantial 
and statistically significant reduction in new cases since 

our threshold for significance is 80%. Our transmission 
model does not explicitly explore aerosol transmission, 
but this is implicitly included in the direct and fomite 
transmission being calibrated to recover the attack rate 
on trains reported by Hu et al. [19]. One major assump-
tion made and not tested was the lack of age structure, 
which we ignored since our focus here has been on the 
use of adult commuters as primary train users [36].

Although our study was limited to trains (specifically, a 
half-carriage), policymakers and public transport opera-
tors could confidently mandate the use of face masks on 
other, similar, modes of public transport  to help reduce 
COVID-19 spread. A similar effect is expected for other 
public transport  modes such as buses and trams, given 
their similar physical attributes. For example, the sitting 
areas in public transport modes are organised in a similar 
pattern and proximity within a closed space.

Maintaining the recommended distance of 1.5 metres 
between passengers [5] on any public transport  mode 
would be difficult if travel demand returned to pre-
COVID-19  levels. However, we would expect that while 
face masks would be mandatory in that situation, it 
would not be the only public health measure used to 
reduce the spread of COVID-19, as even with 100% of 
passengers wearing masks, we still show a low spread 
of COVID-19. We therefore strongly support the “Swiss 
cheese” approach to mitigation and control efforts (see, 
for example, [25]).

In its design, the proposed modelling framework for 
SAfE Transport is generic and agnostic to transport net-
works and travel modes. It effectively enables the devel-
opment of a digital twin of any public transport network 
(and any transport mode), providing a holistic view of its 
performance (for example, identifying hot-spots) and the 
dynamics of a contagious disease spread.

Conclusion
In conclusion, we have developed a flexible tool for sup-
porting operational and strategic decision-making for 
disease transmission mitigation measures on public 
transit networks. The SAfE Transport  tool is fast-per-
forming and highly efficient, while its open architecture 
allows for the integration of complementary data sets to 
enhance the level of detail and modelling accuracy. The 
agent-based modelling allows a fine-grained represen-
tation of agents’ behaviour and interactions, and close 
dynamic tracking facilitates time-dependent studies. The 
SAfE Transport tool allows for building a digital twin of 
any transport network in any city, representing various 
modes of transport (including multi-modal), modelling 
various transmissible diseases and allowing for explora-
tory scenarios. This provides an opportunity for a multi-
tude of further investigative studies.
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The scientific fundamentals and applicability of SAfE 
Transport  have been validated in this case study, which 
demonstrates that mask wearing substantially reduces 
impact on COVID-19  transmission, with at least 80% 
coverage levels in a 7-day time period. We also found that 
higher levels of mask coverage result in an earlier and 
larger reduction in disease spread risk.

There are still many unanswered questions and ave-
nues of research with regards to reducing the spread of 
COVID-19  on public transport  networks and restoring 
public confidence. Our SAfE Transport  tool has signifi-
cant potential, both in helping to answer specific COVID-
19  questions and also for other infectious diseases. In 
particular, the SAfE Transport  tool is designed for a 
nuanced approach to informing operational and strate-
gic decision-making for public transport networks. Other 
areas of consideration that could be investigated with 
the SAfE Transport  tool include: (i) understanding how 
cleaning regimes affect the transmission dynamics (and 
how sensitive this is to the proportion of transmission 
that is direct vs. fomite), (ii) understanding how other 
COVID-19 variants, such as Delta, might be affected by 
non-pharmaceutical strategies; (iii) determining general 
transmission patterns and, in particular, hot-spots on the 
network and how they are affected by different measures; 
(iv) explicit modelling of other public transport types to 
confirm the applicability of our findings across general 
networks; (v) better understanding spatial distribution of 
passengers within public transport vehicles (such as car-
riages for trains) and effects of different passenger densi-
ties; (vi) exploring longer simulation time horizons; and 
perhaps most importantly, (vii) including community 
vaccination levels to determine the need or effectiveness 
of non-pharmaceutical strategies.
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