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Abstract 

Background:  Airspace disease as seen on chest X-rays is an important point in triage for patients initially presenting 
to the emergency department with suspected COVID-19 infection. The purpose of this study is to evaluate a previ-
ously trained interpretable deep learning algorithm for the diagnosis and prognosis of COVID-19 pneumonia from 
chest X-rays obtained in the ED.

Methods:  This retrospective study included 2456 (50% RT-PCR positive for COVID-19) adult patients who received 
both a chest X-ray and SARS-CoV-2 RT-PCR test from January 2020 to March of 2021 in the emergency department at 
a single U.S. institution. A total of 2000 patients were included as an additional training cohort and 456 patients in the 
randomized internal holdout testing cohort for a previously trained Siemens AI-Radiology Companion deep learning 
convolutional neural network algorithm. Three cardiothoracic fellowship-trained radiologists systematically evaluated 
each chest X-ray and generated an airspace disease area-based severity score which was compared against the same 
score produced by artificial intelligence. The interobserver agreement, diagnostic accuracy, and predictive capability 
for inpatient outcomes were assessed. Principal statistical tests used in this study include both univariate and multi-
variate logistic regression.

Results:  Overall ICC was 0.820 (95% CI 0.790–0.840). The diagnostic AUC for SARS-CoV-2 RT-PCR positivity was 0.890 
(95% CI 0.861–0.920) for the neural network and 0.936 (95% CI 0.918–0.960) for radiologists. Airspace opacities score 
by AI alone predicted ICU admission (AUC = 0.870) and mortality (0.829) in all patients. Addition of age and BMI into a 
multivariate log model improved mortality prediction (AUC = 0.906).

Conclusion:  The deep learning algorithm provides an accurate and interpretable assessment of the disease burden 
in COVID-19 pneumonia on chest radiographs. The reported severity scores correlate with expert assessment and 
accurately predicts important clinical outcomes. The algorithm contributes additional prognostic information not cur-
rently incorporated into patient management.
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Introduction
Chest X-rays (CXRs) are important in the initial evalu-
ation of patients with undifferentiated shortness of 
breath, especially those suspected to have severe acute 
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respiratory syndrome coronavirus 2 (SARS-CoV-2), 
also known as coronavirus disease 2019 (COVID-19). 
Advantages of CXRs for suspected COVID-19 include 
low cost, wide availability, and immediate assessment 
of disease burden [1]. However, relative quantification 
of disease extent is subject to interobserver variation, 
non-specific interpretation, and poorly studied cor-
relations with clinical outcomes. Regardless, for many 
patients a CXR and nasopharyngeal swab will suffice 
for the diagnosis of COVID-19 pneumonia, and some-
times a prolonged hospital stay with significant mor-
bidity and mortality will ensue [2].

One potential use for CXRs that is overlooked is the 
quantitative assessment of disease burden in COVID-
19 [3–5]. Radiologists will often comment “bilateral 
interstitial airspace opacities,” or another qualitative 
phrase, as the final impression in the report [6]. This 
overlooks the implication of the distributive burden 
of airspace disease, which has been investigated previ-
ously and is associated with poor outcomes [7, 8]. Cer-
tainly, there is more prognostic information which is 
being left undocumented and may be useful if incorpo-
rated into the patient management paradigm [9].

However, quantification of airspace opacity severity 
(ASOS) is tedious and impractical for the volume and 
complexity in a contemporary chest radiologist prac-
tice. Deep convolutional neural networks (dCNNs) are 
one option to allow for quantification of ASOS and to 
aid the radiologist in capitalizing on the missed prog-
nostic value [10–12]. dCNNs applied to this task have 
achieved high levels of accuracy with COVID-19 diag-
nostic area under curves (AUCs) ranging from 0.85 to 
0.95 [13–16]. Studies involving artificial intelligence 
(AI) specific to generation of severity scores usu-
ally find an excellent correlation between the AI and 
expert results (r ~ 0.90) [17, 18].

Unfortunately, many AI studies are plagued by low 
sample-size, unclear origins of training data (including 
public datasets with poorly annotated images), lack of 
a real world testing cohort, and absence of follow-up 
with clinical outcomes [14]. dCNNs are also notorious 
for having “black box” outputs and a lack of interpret-
ability [19]. Therefore, it is imperative to construct 
artificial intelligence approaches with the interpreting 
clinician in mind who wishes to understand the predic-
tors. It is the purpose of this study to evaluate an inter-
pretable dCNN algorithm using CXRs to both diagnose 
and prognosticate the progression of COVID-19 from 
a cross-sectional origin in the emergency department 
with an emphasis on generalizability.

Methods
General methods and patient population
This study was performed by retrospective review after 
approval from the Office of Institutional Research’s 
institutional review board (IRB). Need for informed 
consent was waived per retrospective nature of this 
study. Inclusion criteria in this study was > 18  years of 
age, presentation to the emergency department, with 
a documented real-time SARS-CoV-2 reverse tran-
scriptase polymerase chain reaction (RT-PCR) test 
within 14  days of admission from the dates of Janu-
ary 1st, 2020, to March 15th, 2021. Exclusion criteria 
consisted of patients < 18 years of age, who had a pedi-
atric-view CXR, lacked a RT-PCR within 14  days, or 
had insufficient follow-up time for outcomes analysis 
(defined as < 1  month after admission). Variables col-
lected included basic demographic information (age, 
sex, ethnicity, body mass index (BMI)), relevant clini-
cal history (history of hypertension (HTN), diabetes, 
chronic obstructive (COPD) pulmonary disease, etc.), 
imaging and laboratory identification (exam codes, 
imaging date, RT-PCR date, image impression), AI 
results (ASOS), and outcomes data (hospitalization, 
intensive care unit (ICU) admission, intubation, and 
all-cause mortality with duration and dates of each 
event).

Figure  1 contains a flow diagram describing inclusion 
of patients for COVID-19 training and test datasets. 
23,785 CXRs were queried and ultimately 2456 met cri-
teria of a documented COVID-19 RT-PCR test within 
14  days of an eligible PA or AP CXR. A total of 2488 
patients were initially enrolled in this study. Missing data 
from 32 patients, defined as images that failed the AI seg-
mentation due to poor imaging quality, were excluded. 
The validation cohort consisted of 1000 RT-PCR posi-
tive patients and 1000 RT-PCR negative patients. Valida-
tion indices include mortality and COVID-19 diagnostic 
prediction. The test cohort of 456 patients was obtained 
using a randomized 1:1 internal holdout from the origi-
nal 2456 patients. Additional file  1: Table  S1 contains 
demographics information for the 2000 training patients.

Image acquisition and expert evaluation
One-view chest X-rays were obtained according to insti-
tutional protocol. Posteroanterior (PA) and anteroposte-
rior (AP) views, but not lateral views, were included in 
this study. A master list of CXRs for patients who were 
admitted to the emergency department were obtained 
via billing code. Images were subsequently exported from 
the picture archive and communication system without 
patient identifiers and manually uploaded to Siemens 
AI-Radiology Companion for evaluation. A total of 2456 
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images were used in this study. Categorical airspace 
opacities were defined as presence of airspace disease 
regardless of severity.

A panel of three fellowship-trained cardiothoracic 
radiologists independently quantified the airspace opac-
ity severity score for all 2456 images (~ 800 randomized 
chest radiographs each) for use in ground truth of this 
study. Briefly, each CXR was evaluated for the presence 
of pulmonary opacification according to the following 
[20]:

“The presence of patchy and/or confluent airspace 
opacity or consolidation in a peripheral and mid to lower 
lung zone distribution on a chest radiograph obtained 
in the setting of pandemic COVID-19 was highly sug-
gestive of severe acute respiratory syndrome coronavi-
rus 2 infection…” Airspace opacity severity (ASOS) was 
determined by visually estimating the percentage of lung 
involved with airspace opacification. The percentage of 
lung involvement was then converted into a whole num-
ber. For example, if 40% (score = 2/5 or 2) of the right 
lung and 60% (score = 3/5 or 3) of the left lung contained 
airspace opacities, the ASOS would be 5 (2 + 3). ASOS 

ranged from 0 to 10 for each CXR. The score can also be 
calculated by summing the percentage of airspace opaci-
ties in each lung and then multiplying by 0.5.

Deep convolutional neural network algorithm
The CNN was previously trained on 11,622 cases with 
5653 images positive for airspace opacities. Additionally, 
a set of 540 cases (261 positives for airspace opacities) 
was previously used as validation and for initial model 
selection. This patient cohort consisted of adult patients 
with a mix of typical and atypical infectious pneumonia 
and was trained to recognize airspace opacities. The pre-
dictive models were then trained on 2000 patients (1000 
RT-PCR Positive and 1000 RT-PCR Negative) from this 
study’s CXR dataset. Analysis on the 2000 additional 
patients before the test dataset can be found in the sup-
plemental material. The following description is designed 
to fulfill the Checklist for Artificial Intelligence in Medi-
cal Imaging (CLAIM) criteria for reproducibility in 
machine learning as well as avoiding common pitfalls in 
COVID-19 machine learning studies [14, 21].

Fig. 1  Flow-diagram describing inclusion of patients for COVID-19 training and test datasets. 23,805 X-rays were queried and ultimately 2488 met 
criteria of a documented COVID-19 test within 14 days of an eligible PA or AP CXR. 2000 were used in the training cohort with 488 retained as 
internal holdout for validation. Missing data from 32 patients, defined as images that failed the AI segmentation due to poor imaging quality, were 
excluded
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The architecture of the proposed dCNNs model com-
prises an early feature extractor acting as candidate 
generator in an abstract feature space, followed by a dis-
criminator sub-network used to compute probabilities on 
whether the abnormality is present or not (in an image 
sub-region of interest) [FCOS]. The architecture is fully 
convolutional and processes the entire image content in 

one single pass, while analyzing its content on multiple 
levels of scales. As such, the architecture is capable of 
implicitly capturing both global as well as local comor-
bidities present in the image. Severity score was based on 
a summation of the geographical extent (as represented 
by the bounding boxes) of airspace opacities present in 
both lungs converted into a whole number ranging from 

Fig. 2  Visual representation of neural network annotations and outputs. A AP portable CXR with left lower lobe airspace opacities scored a 4/10 by 
the dCNN. EKG leads overlie the chest bilaterally. B Upright portable AP view CXR with bilateral airspace opacities scored an 8/10 by the dCNN. Dual 
chamber pacemaker with atrial and ventricular leads overlies the left chest. C dCNNs architecture used for classification and detection of airspace 
opacities. A ResNet backbone for the image anatomy feeds forward into a voxel feature pyramid which is then forwarded to a convolutional 
network-based detector for classification of the airspace opacity. A detailed description of the architecture can be found in the materials and 
methods under Deep Convolutional Neural Network Algorithm 
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0 to 10. Figure 2A gives an example of a CXR with a low-
moderate airspace opacity severity score of 4/10 (~ 40%). 
EKG leads overlie the chest. Figure 2B gives an example 
of a CXR with large volume bilateral airspace opacities. 
The AI severity score in this case was 8/10 (~ 80%). A 
dual chamber pacemaker with atrial and ventricular leads 
overlies the left chest, highlighting the robustness of the 
algorithm for patients with overlying chest hardware. 
Figure 2C describes the dCNN architecture used in this 
study. For full details of the neural network architecture 
please see Homayounieh et  al. 2021 Appendix E from 
which the architecture is sourced [22].

Model input and output at inference
The input to the model presented in Fig. 2C was an image 
rescaled to an isotropic resolution of 1025 × 1025 pixels 
using letterboxing. The output was a set of boxes indicat-
ing the location of the abnormalities (airspace disease), 
each associated with a label and a probability. As a pre-
processing step, the images were rescaled to an isotropic 
resolution of 1025 × 1025 pixels using letterboxing. Bilin-
ear interpolation was used for resampling, followed by a 
robust brightness/contrast normalization is performed 
based on a linear remapping of the pixel values.

Training was conducted in one end-to-end manner. 
The loss function is based on summation of three ele-
ments: (1) a classification loss based on the focal loss 
described in detail in Tsung-Yi et  al. [23]; (2) a bound-
ing box coordinate regression loss based on an intersec-
tion-over-union based metric; and (3) a center-ness loss 
designed to reduce outlier detections which is based on a 
weighted binary cross entropy loss. A batch-size of 8 was 
used for training. Separate independent validation set 
was used for model selection and perform early stopping, 
if necessary. For augmentation we used various intensity 
and geometric transformations [23, 24].

Statistical analysis
A power calculation beforehand was performed for the 
purpose of prediction of outcomes; assuming a 1:10 ratio 
of events in a 1:1 case: control split, 429 patients were 
required for a power of 0.9. Prediction of positive SARS-
CoV-2 RT PCR results was established using simple logis-
tic regression. Additional file 1: Fig. S1, Tables S2 and S3 
provide the power calculation materials. All simple logis-
tic regression variables were constrained by alpha of 0.05 
and measures of model performance included Akaike 
information criterion (AIC) and pseudo-R2 (McFadden). 
All models were evaluated using receiver-operator char-
acteristic (ROC) curves with area under curve (AUC) 
with 95% confidence interval as the primary measure of 
prediction. DeLong’s test of two correlated ROC curves 
was used for statistical comparison. Extracted logistic 

probabilities were evaluated from the simple logistic 
regression models. For multivariate analysis, demograph-
ics and clinical variables known to be associated with 
poor outcomes in COVID-19 from the literature were 
loaded on the initial regression model. A stepwise-back-
wards logistic regression model was then applied until 
all variables remaining were considered significant in the 
model (P < 0.05). Competing models were evaluated using 
AIC. Optimal threshold values were empirically deter-
mined using bootstrapping. Briefly, 400 bootstrapped 
1:1 COVID + /COVID- samples were run and the most 
accurate values were selected. All statistical analysis was 
performed in R statistical programming version 3.6.3.

Results
Patient characteristics
There were 236 COVID-19 positive patients and 220 
COVID-19 negative patients included (total = 456). 
COVID positive patients were more likely to be obese, 
have diabetes, be organ transplant recipients, and have 
chronic kidney disease. There was a relatively even dis-
persion of sex (52.1% male vs 49.5%). There were fewer 
White or Caucasian patients amongst the COVID-19 
positive group (37.2% vs 51.4%). Instead, there was an 
increase in percentage of Black or African American and 
Hispanic or Latino people amongst the positive group 
(50.2% and 7.6% vs 45.0% and 0%, respectively) (Table 1).

Agreement and model performance
Figure  3 demonstrates the prediction of SARS-CoV-2 
RT-PCR results by AI-determined ASOS (AI-ASOS). 
The probability of a positive PCR approaches 1 as a 
logistic function of AI-ASOS. At the median AI-ASOS 
(40%) there was a ~ 50% probability of a positive result. 
Radiologist (AUC = 0.936, 95% CI 0.918–0.960) and AI 
(AUC = 0.890, 95% CI 0.861–0.920) annotations were 
both highly accurate with a slight advantage for the radi-
ologist measurement (P < 0.01). For comparison, the 
impressions on the original clinical radiology reports 
are aggregated and listed in Additional file  1: Tables S4 
and S5. The sensitivity of expert reads for a diagnosis of 
COVID-19 was 88.4% and the sensitivity of the AI for any 
airspace opacity was 91.5% Ninety nine percent (218/220) 
of negative nasopharyngeal swabs had corresponding 
CXRs read as “No evidence of acute cardiopulmonary 
disease,” while only 45.1% (106/235) of CXRs associated 
with positive SARS-CoV-2 RT-PCR tests were reported 
as consistent with COVID-19.

Figure  4 describes the interobserver agreement of the 
AI and radiologists. Figure  4A demonstrates airspace 
opacity extent percentage as a function of observer. 
Adjusted R2 = 0.656; Spearman ρ = 0.797. Overall agree-
ment is considered excellent for positive cases (single 
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fixed raters ICC = 0.810, 95% CI 0.765–0.840). Agree-
ment for all cases is considered excellent (single fixed 
raters ICC = 0.820, 95% CI 0.790–0.840). Figure 4B con-
tains comparison of differences by Bland–Altman plot. 
Mean difference − 22.4%; SE 21.1%. Additional file  1: 
Table S4 contains the qualitative analysis of concordance 
and accuracy. Radiologists had an accuracy of 0.936 (95% 
CI 0.910–0.960) and AI had an accuracy of 0.757 (95% CI 
0.715–0.795) for the detection of any lesion. AI sensitiv-
ity (0.915, 95% CI 0.872–0.947) was near radiologist sen-
sitivity (0.884, 95% CI 0.835–0.919). Cohen’s Kappa for 

radiologists and AI versus RT-PCR was 0.873 and 0.507, 
respectively. Categorical contingency data reveals a bias 
for AI to overestimate the severity of illness.

Table  2 contains the diagnostic thresholds for the 
most accurate, most sensitive, and most specific models 
(40%, 10%, and 80%, respectively). An AI-ASOS of > 40% 
had accuracy of 81.8% (95% CI 0.783–0.853) for a posi-
tive RT-PCR test. > 10% had a sensitivity of 0.898 (95% 
CI 0.852–0.934) and > 80% had a specificity of 0.968 
(0.936–0.987). The odds ratio for a positive RT-PCR test 
amongst patients with > 40% severity was 20.9 (95% CI 

Table 1  Demographics and clinical variables of test cohort patients stratified by SARS-CoV-2 RT-PCR results

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; RT-PCR: Reverse transcription polymerase chain reaction; SD: Standard deviation; BMI: Body mass 
index; CXR: Chest X-ray; COPD: Chronic obstructive pulmonary disease; HTN: Hypertension; HIV: Human immunodeficiency virus

Variables RT-PCR Positive (N = 236) RT-PCR Negative (N = 220)

N = 456 Mean SD Mean SD

Age (years) 55.3 17 49.2 16.3

BMI kg/m2 31.6 8.5 27.7 7.4

CXR–PCR Interval (days) 3.4 3.8 3.1 14.4

Count Frequency (%) Count Frequency (%)

Sex

 Female 113 47.9 111 49.5

 Male 123 52.1 109 50.5

Ethnicity

 Asian 2 0.9 2 0.9

 Black 112 47.5 99 45.0

 Hispanic 17 7.2 0 0

 Other 9 3.8 6 2.7

 White 83 35.2 113 51.4

Smoking

 Never 155 65.7 93 42.3

 Former 19 8.1 73 33.2

 Current 54 22.9 54 24.5

COPD 22 9.3 10 4.5

Cystic fibrosis 1 0.4 0 0

Asthma 32 13.6 35 15.9

Lung cancer 2 0.8 0 0

Cancer (other) 36 19.2 29 13.2

Diabetes mellitus 92 39.0 48 21.8

Hypertension 148 62.3 114 51.8

Cardiac disease 26 11.0 52 23.6

Pulmonary HTN 23 9.7 6 2.7

Sickle cell disease 6 2.5 18 8.2

Thalassemia 0 0 0 0

Organ transplant 13 5.5 4 1.8

HIV 1 0.4 4 1.8

Autoimmune 15 6.4 14 6.4

Chronic liver disease 7 3.0 8 3.6

Chronic kidney disease 48 20.3 17 7.7
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12.9–33.7). Additional file 1: Fig. S2 contains the ration-
ale for empiric derivation of interpretable AI-ASOS cut-
offs for SARS-CoV-2 RT-PCR results. The most accurate 
AI-ASOS values falls between 40 and 50%.

Prediction of outcomes
Table 3 contains the univariate outcomes analysis strati-
fied amongst SARS-CoV-2 PCR results. Higher ASOS 
was differentially associated with all measured outcomes 
between COVID-19 and control patients (P < 0.001 
for hospitalization, ICU admission, intubation, ARDS, 
mortality, and pulmonary mortality). Mean ASOS 
increased sequentially in terms of outcome severity 
(µ-hospitalization = 5.4 (SD 4.0), µ-ICU admission = 8.3 
(SD 2.5), µ-mortality = 8.6 (SD 2.2).

Figure 5 contains the logistic regression model predic-
tions of outcomes stratified across all patients (5A) and 
all patients in a multivariate model with age and BMI 
(5B). AI-derived ASOS as a single factor highly predicted 
ICU admission, intubation, and mortality in all patients 
upon initial ER presentation (AUC = 0.870, 0.791, and 
0.829, respectively). Addition of age and BMI in a mul-
tivariate logistic regression model resulted in modest 
improvements in overall predictive scores. Multivariate 
prediction of mortality increased from 0.829 to 0.906. 
Integer increases in odds ratios of listed outcomes range 
from 1.2 to 1.59 (Table 4).

Figure  6 demonstrates the probability of ICU admis-
sion and subsequent pulmonary-related mortality as 

a function of AI-derived ASOS at initial presentation 
to the ER. The 50th percentile AI-ASOS corresponded 
with ~ 12.5% probability of ICU admission and < 10% risk 
of pulmonary mortality. A 75% AI-ASOS was associated 
with roughly a 50% probability of ICU admission and 
12.5% risk of mortality. 100% AI-ASOS was associated 
with an ICU admission probability of nearly 75% and 
mortality of > 25%.

Discussion
This study was performed to evaluate an interpret-
able dCNN algorithm using CXRs to both diagnose and 
prognosticate COVID-19 disease from patients initially 
presenting to the emergency department with possible 
COVID-19 symptoms at a single institution. The prog-
nostication of COVID-19 on CXR currently is not well 
quantified. Quantification of airspace opacities is tedi-
ous and difficult to perform at volume but yields valu-
able prognostic information [9]. Automating quantitative 
and repetitive tasks is where deep learning excels, but to 
implement clinically requires understanding of the pre-
dictors and relevant clinical interpretability of the results 
for both the ordering clinician and the radiologist [19, 
25].

The relevance of chest radiography for the evalua-
tion of COVID-19 pneumonia is well established and 
conforms to existing American College of Radiology 
appropriate use guidelines for patients with acute res-
piratory complaints [26]. Briefly, the Fleischner society 

Fig. 3  Prediction of Positive SARS-CoV-2 PCR by extent of AI-determined airspace disease. A Logistic probability plot of positive SARS-CoV-2 PCR as 
a function of AI-determined airspace extent. Median airspace extent (40%) had just under 50% probability of a concurrent positive PCR. McFadden 
R2 = 0.412. B ROC curve for prediction of SARS-CoV-2 PCR positivity in comparison to radiologist impression of airspace extent. Radiologist 
(AUC = 0.936, 95% CI 0.918–0.960) and AI (AUC = 0.890, 95% CI 0.861–0.920) annotations were both highly accurate



Page 8 of 13Chamberlin et al. BMC Infectious Diseases          (2022) 22:637 

of thoracic radiology highlights the indication of chest 
imaging for COVID-19 patients in a 2020 white paper:

“For COVID-19 positive patients, imaging establishes 
baseline pulmonary status and identifies underlying 
cardiopulmonary abnormalities that may facilitate risk 
stratification for clinical worsening… CXR can be use-
ful for assessing disease progression and alternative 
diagnoses such as lobar pneumonia, suggestive of bac-
terial superinfection, pneumothorax, and pleural effu-
sion…” [27].

In this study we demonstrated a highly accurate and 
interpretable deep learning algorithm for diagnosis of 
COVID-19 on chest radiographs that approaches expert 
discrimination. Most importantly, the quantification of 
airspace opacities had a high degree of reliability with 
high sensitivity. Several important diagnostic and inpa-
tient prognostic heuristics were identified. AI-derived 
ASOS as a single factor highly predicted ICU admission, 
intubation, and mortality in all patients upon presenta-
tion (AUC = 0.870, 0.791, and 0.829, respectively). Finally, 

Fig. 4  Comparison of differences between AI and Radiologist measurement of airspace opacity extent. A Airspace opacity extent percentage as 
a function of observer. Adjusted R2 = 0.656; Spearman ρ = 0.797. Overall agreement is considered excellent for positive cases (single fixed raters 
ICC = 0.810, 95% CI 0.765–0.840). Agreement for all cases is considered excellent (single fixed raters ICC = 0.820, 95% CI 0.790–0.840). B Bland–
Altman plot for difference of methods. Mean difference -22.4%; SE 21.1%. C Confusion matrix for discrete scores compared between expert and AI. 
Weighted macro F1 score for categorical agreement is 0.157
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Table 2  Diagnostic performance of empirically derived threshold models for SARS-CoV-2 RT-PCR Positivity

Bolded values indicate highest values for each category

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; RT-PCR: reverse transcription polymerase chain reaction; PPV: positive predictive value; NPV: negative 
predictive value; LR: likelihood ratio; RR: relative risk; OR: odds ratio

Accuracy Sensitivity Specificity PPV NPV

Metric

 ≥ 40% 0.818 (0.783–0.853) 0.792 (0.735–0.842) 0.850 (0.791–0.891) 0.850 (0.799–0.894) 0.792 (0.740–0.843)

 > 10% 0.776 (0.738–0.815) 0.898 (0.852–0.934) 0.646 (0.578–0.709) 0.731 (0.680–0.782) 0.855 (0.802–0.909)
 > 80% 0.774 (0.736–0.813) 0.593 (0.528–0.656) 0.968 (0.936–0.987) 0.952 (0.918–0.987) 0.689 (0.638–0.741)

Most accurate model (AI airspace opacity severity ≥ 40%)

 False Positive Rate 0.155 (0.107–0.202) LR+  5.13 (3.74–7.03) RR 4.06 (3.15–5.23)

 False Negative Rate 0.208 (0.156–0.259) LR− 0.246 (0.190–0.317) OR 20.9 (12.9–33.7)

Table 3  Association of AI-ASOS with clinical outcomes amongst patients stratified by SARS-CoV-2 RT-PCR

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; RT-PCR: Reverse transcription polymerase chain reaction; ASOS: Airspace Opacity Severity Score; SD: 
Standard deviation; ICU: Intensive care unit; ARDS: acute respiratory distress syndrome

Outcome N SARS-CoV-2 (+) N SARS-CoV-2 (−) P

Mean ASOS SD Mean ASOS SD

Hospitalization 175 5.4 4.0 124 2.7 3.3 < 0.001

ICU admit 120 8.3 2.5 10 3.0 3.4 < 0.001

Intubation 88 7.7 3.3 17 3.6 3.7 < 0.001

ARDS 115 8.8 1.9 1 3.0 3.4 < 0.001

Mortality 53 8.6 2.2 2 3.9 3.8 < 0.001

Pulmonary mortality 47 8.9 1.9 0 –- –- –

Fig. 5  Prediction of outcomes by use of AI-determined airspace opacity extent (AI-ASOS) using simple logistic regression. A Prediction of outcomes 
in all patients. AI-ASOS is best at predicting ICU admission (AUC = 0.870, 95% CI 0.834–0.904) and pulmonary mortality (AUC = 0.845, 95% CI 0.802–
0.888). B Prediction of outcomes statistics amongst all patients using a multivariate empirically derived model of additional clinical risk factors. Use 
of AI-ASOS, age, and BMI had a high accuracy for prediction of mortality statistics and ICU admission (AUC = 0.906, 0.896, and 0.880, respectively)
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addition of age and BMI increased the AUC of mortality 
from 0.829 to 0.906.

Amongst many clinicians, deep learning has developed 
a reputation for being a “black box” with mysterious deri-
vation of clinical utility [28]. It is important for all parties 
to be able to interpret the data at hand, from the order-
ing provider in the ED or floor to the patient and their 
family in the ICU discussing goals of care and probability 
of significant events. In this study we show that a deep 
learning model can be applied to provide interpretable, 
actionable prognostic information regarding the disease 
course and progression of COVID-19. Added value over 

current protocol is derived from the quantification of air-
space opacities, which is currently not standard of prac-
tice for expert chest radiologists.

There are many published examples of the applica-
tion of deep learning and pre-trained neural networks 
to the assessment of COVID-19 on plain films. A variety 
of approaches have been taken, most notably involving 
ResNet/U-Net and other publicly available architectures 
(ResNet50, ResNet101, ResNet150, InceptionV3 and 
Inception-ResNetV2, etc.). These available architectures 
have been reported to approach accuracies as high as 99% 
but perform less optimally with the introduction of more 

Table 4  Logistic regression model parameters and predictive intervals for AI severity scores alone and with age + BMI

AI: Artificial Intelligence; BMI: Body Mass Index (kg/m2); OR: Odds ratio; AUC: Area under curve; CI: Confidence Interval; ICU: Intensive care unit

McFadden R2 OR Score (95% CI) AUC (95% CI)

AI Score Alone

Hospitalization 0.082 1.20 (1.14–1.27) 0.687 (0.639–0.735)

ICU admission 0.336 1.57 (1.45–1.72) 0.869 (0.834–0.934)

Intubation 0.186 1.36 (1.26–1.46) 0.791 (0.742–0.840)

Mortality 0.226 1.51 (1.34–1.73) 0.829 (0.782–0.876)

Pulmonary mortality 0.244 1.59 (1.39–1.90) 0.845 (0.802–0.888)

AI Score + Age + BMI

Hospitalization 0.153 1.22 (1.14–1.31) 0.758 (0.710–0.806)

ICU admission 0.359 1.59 (1.45–1.75) 0.880 (0.845–0.915)

Intubation 0.202 1.36 (1.26–1.48) 0.806 (0.759–0.853)

Mortality 0.369 1.55 (1.35–1.84) 0.906 (0.873–0.939)

Pulmonary mortality 0.331 1.55 (1.33–1.85) 0.896 (0.860–0.932)

Fig. 6  Probabilities of outcomes as a function of AI-determined airspace opacity extent (AI-ASOS). A Probability of ICU admission. 50% airspace 
opacity extent (AI-ASOS = 5) confers a ~ 20% chance of ICU admission. B Probability of pulmonary death. Risk of pulmonary death begins increasing 
at roughly 50% airspace opacity extent (AI-ASOS = 5)
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complex tasks [29]. A recent article found accuracies 
ranging from 82 to 99% for the binary classification of 
normal vs COVID-19 pneumonia amongst a wide range 
of models. The authors of the mentioned study propos-
ing a hybrid model with accuracy reaching 99.05%, near 
identical to nasopharyngeal RT-PCR [30, 31]. The base-
line accuracy in this study was found to be 89% for the AI 
and 93% for the radiologist, comfortably within the range 
of other reported values in the literature. Given the high 
ICC (0.820), the authors conclude the AI nearly approxi-
mates expert scoring; further modification is needed to 
truly approach inter-expert reliability (0.9–0.95).

The AI-quantified airspace opacities predict hospi-
talization, ICU admission, intubation, and death along 
with the probability of these events as a function of 
time. Implications include accurate evaluation of need 
for advanced level of care. For instance, a patient with a 
severity score of 7–8 has a 50% probability of ICU admis-
sion in this study. Utilization of the AI algorithm at a 
facility with capped or limited ICU structure could alert 
the institution to seek escalation in level of care from as 
early as presentation to the emergency department. For 
clinicians on the floor evaluating a patient with deterio-
rating respiratory status, the clinician would be able to 
utilize the probability of intubation and death in discus-
sion of goals of care upon admission to the ICU. Both 
patients and clinicians would benefit from having proba-
bilistic information available to enhance shared decision 
making. Incorporation of other clinical factors such as 
age and BMI only enhance the predictive capabilities, 
leading to adjustment for individual clinical situations.

The practical applications of the AI software to calcu-
late airspace opacity scores would be as an adjunct order 
for radiologists or clinicians at the point of care. Radiolo-
gists or radiology technologists could apply the AI algo-
rithm beforehand from a compatible workstation when 
the ordering indication contains COVID-19, during the 
interpretation when the radiologist deems the most likely 
diagnosis to be COVID-19 pneumonia, or afterwards 
when the ordering clinician wishes to contextualize the 
findings in terms of patient hospitalization trajectory. 
These triggers could be automated according to institu-
tional protocol and preferences and do not necessarily 
need to be applied to all patients.

Limitations of this study include the retrospective 
nature of the test cohort and the singular use of emer-
gency department plain films without a lateral view 
that decreases generalizability of the findings to only 
the use cases presented. This study also does not evalu-
ate changes associated with serial imaging or evolving 
clinical situations. Further study is needed to evaluate 
the changes in serial CXRs and the relationship between 
ASOS and deteriorating clinical status. This study 

also lacks a true external testing cohort. Further study 
should be multicenter, randomized, and prospective to 
improve generalizability. Finally, this study also makes 
no reference to the individual strains of COVID-19 or 
vaccination status, as enrollment concluded before the 
preponderance of the delta variant or widespread vac-
cination. Adjustment for these factors may contribute to 
more accurate prognostication and generalizability of the 
model.

Conclusions
The AI was developed to evaluate CXRs to both diagnose 
and prognosticate COVID-19 disease from patients ini-
tially presenting to the emergency department with pos-
sible COVID-19 symptoms. Our findings support that 
this AI algorithm is highly accurate and approaches car-
diothoracic radiologist performance. The airspace opac-
ity severity score produced by the AI model is highly 
related to the incidence of clinically important outcomes 
and provides additional prognostic information that is 
not currently part of the standard of practice.
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