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Abstract

Background: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication that can
develop weeks to months after an initial SARS-CoV-2 infection. A complex, time-consuming laboratory evaluation

is currently required to distinguish MIS-C from other ilinesses. New assays are urgently needed early in the evalua-
tion process to expedite MIS-C workup and initiate treatment when appropriate. This study aimed to measure the
performance of a monocyte anisocytosis index, obtained on routine complete blood count (CBC), to rapidly identify
subjects with MIS-C at risk for cardiac complications.

Methods: We measured monocyte anisocytosis, quantified by monocyte distribution width (MDW), in blood sam-
ples collected from children who sought medical care in a single medical center from April 2020 to October 2020
(discovery cohort). After identifying an effective MDW threshold associated with MIS-C, we tested the utility of MDW
as a tier 1 assay for MIS-C at multiple institutions from October 2020 to October 2021 (validation cohort). The main
outcome was the early screening of MIS-C, with a focus on children with MIS-C who displayed cardiac complications.
The screening accuracy of MDW was compared to tier 1 routine laboratory tests recommended for evaluating a child
for MIS-C.

Results: We enrolled 765 children and collected 846 blood samples for analysis. In the discovery cohort, monocyte
anisocytosis, quantified as an MDW threshold of 24.0, had 100% sensitivity (95% Cl 78-100%) and 80% specificity
(95% Cl 69-88%) for identifying MIS-C. In the validation cohort, an initial MDW greater than 24.0 maintained a 100%
sensitivity (95% Cl 80-100%) and monocyte anisocytosis displayed a diagnostic accuracy greater that other clinically
available hematologic parameters. Monocyte anisocytosis decreased with disease resolution to values equivalent to
those of healthy controls.

Conclusions: Monocyte anisocytosis detected by CBC early in the clinical workup improves the identification of chil-
dren with MIS-C with cardiac complications, thereby creating opportunities for improving current practice guidelines.
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Background

Multisystem inflammatory syndrome in children (MIS-
C) is a life-threatening complication of COVID-19 that
develops in children, weeks to months after the initial
SARS-CoV-2 infection, which may have been mild or
asymptomatic [1]. With the emergence of novel SARS-
CoV-2 variants of concern, waning mRNA vaccine and
natural immunity, variable masking policies, and vaccine
hesitancy, the cases of children with severe, life-threaten-
ing MIS-C will remain a medical concern for the foresee-
able future. Although advances have been made to define
the underlying pathology of MIS-C [2-4], the process
required to distinguish MIS-C from other infectious ill-
nesses in the clinic remains complex and time-consuming
[5]. Clinicians are left to rely on clinical phenotype and
extensive testing to identify children with MIS-C and
determine whether treatment is necessary [6, 7].

While MIS-C is associated with diffuse immune
activation and dysregulation [9], evidence suggests
monocyte activation [2, 10, 11], persistence of patrol-
ling monocytes [11] and a subsequent cytokine storm
[2] are a vital component of the dysfunctional hyperin-
flammatory responses during MIS-C. Recent findings
support a role for SARS-CoV-2 antigenemia in trigger-
ing a superantigen-like hyperinflammatory response [4,
12, 13], and expanding humoral and cellular responses
[14] that activate monocytes [2, 15]. However, despite
our advances in understanding the pathology driving
MIS-C, clinically available laboratory tests have lim-
ited ability to capture this immune cell dysfunction and
hyperactivation.

In this study, we assessed whether hematologic
parameters could aid in evaluating children with per-
sistent fever and offer early guidance towards the early
identification of children with cardiovascular MIS-C.
Because monocyte activation plays a key role in the
hyperinflammatory responses of MIS-C and monocyte
anisocytosis, which can be quantified by monocyte dis-
tribution width (MDW), has been shown to be a useful
biomarker for sepsis and organ dysfunction in chil-
dren [16, 17] and adults [18-20], and has now achieved
Food and Drug Administration (FDA) clearance as a
biomarker for sepsis in adults, we evaluated whether
monocyte anisocytosis could aid in the identification
of children with MIS-C. Monocyte anisocytosis can be
measured with a hematology analyzer as part of a rou-
tine CBC, improving its utility and offering early guid-
ance in the evaluation of a child for MIS-C.

Methods

Pediatric patients 21 years old or younger who sought
medical care from April to October of 2020 at Massachu-
setts General Hospital were prospectively enrolled in the
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discovery cohort to test the hypothesis that MDW was
associated with MIS-C and establish a cut-off threshold
for MIS-C screening (MGB IRB #2020P000955) [21]. The
validation cohort prospectively tested this MDW thresh-
old for MIS-C by enrolling children presenting for medi-
cal care during the COVID-19 pandemic from October
2020 to October 2021 at participating institutions
(Massachusetts General Hospital, Boston, MA; Johns
Hopkins Children’s Center, Baltimore, MD; Shands-
University of Florida Health Science Center, Gainesville,
FL; Jackson Memorial Hospital, Miami, FL) (MGB IRB
#2020P002961), Fig. 1. Informed consent and assent
when appropriate, was obtained from all participants
and/or parents/legal guardians. For both the discovery
and validation cohorts, any pediatric patient (<21 years
of age) seeking medical care during the defined time
periods and consented/assented to provide a blood sam-
ple, was eligible for participation. All procedures and
experiments were performed in accordance with IRB
guidelines.

A blood sample was collected via venipuncture in a
phlebotomy tube containing di-potassium ethylenediami-
netetraacetic acid (K2 EDTA) anticoagulant and analyzed
on the DxH900 Hematology Analyzer (Beckman Coulter,
Brea, CA) using experimental protocols (MGB Institu-
tional Biosafety Committee approval #2020B000061).
Monocytes were identified by light scatter, volume, and
conductivity. Monocyte volume of individual cells was
measured by impedance using the Coulter principle. [22]
MDW was automatically calculated as the standard devi-
ation of monocyte volume divided by the mean mono-
cyte volume and multiplied by 100 to express data as a
percentage [19]. Metadata were extracted from medical
records and managed using REDCap electronic data cap-
ture tools hosted at Massachusetts General Hospital. [23]
Repeat blood collections were obtained in hospitalized
MIS-C patients when possible. Of note, some patients
were either unable to provide a blood sample or MDW
was not calculated (Fig. 1).

Children were categorized into the following groups:
(1) “MIS-C”: per CDC criteria [24] (2) “Infectious”:
acute COVID-19 or other infections, (3) “Non-infec-
tious illness” children presenting for urgent medi-
cal care without fever or other signs of infection, (4)
“Healthy controls”: asymptomatic children present-
ing for routine medical care. If a clinical diagnosis of
MIS-C was reported, two study staff members blinded
to the MDW values independently reviewed the case
to confirm MIS-C diagnosis. A pediatric cardiologist,
also blinded to MDW values, adjudicated MIS-C cases
and verified whether patients met criteria for cardiac
involvement of MIS-C, using previously established
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Fig. 1 Overview of participants enrolled in discovery and validation cohorts to analyze MDW as a hematologic marker of MIS-C. The final analysis
compared the MDW values in blood samples from MIS-C vs. infection/inflammation subjects. Healthy subjects were excluded from the final analysis

criteria for ventricular dysfunction, coronary aneu-
rysm, vasopressor support, myocarditis [25].

Statistical analysis was performed using Prism
(GraphPad Software version 9.2) and SPSS Statis-
tics (IBM) using one-way-ANOVA parametric test
with Tukey’s posthoc test. Single outliers were iden-
tified by Grubb’s outlier test and removed from the
analysis. An Area Under the Receiver Operator Curve
(AUROC) was calculated for the ability of MDW to
distinguish MIS-C from other infectious or inflamma-
tory processes. We estimated the sample size required
to estimate true prevalence with a specified level of
confidence and precision, assuming a test with imper-
fect sensitivity and/or specificity using previously
published methods [26]. Graphs were prepared using
Prism 9.2.

Results

We enrolled a total of 762 children <21 years of age in a
multicenter observational study and collected 846 blood
samples for analysis across two study cohorts. A dis-
covery cohort (n=109 children) helped determine the
MDW threshold for identifying children with MIS-C
among children presenting to the ED with persistent
fever and other illnesses (Fig. 1). A test cohort (n=653
children) assessed the utility of MDW as a tier 1 assay

for evaluating children presenting to the ED with per-
sistent fever and other illnesses. Across the two cohorts,
the mean age of participants was 10 years (range 4 days—
21 years), with a near equal number of males and females
(51% male, 49% female). By race, participants were White
(n=399, 52%), Black (n=172, 23%), and Asian (n=27,
4%). One-third (n=231) were Hispanic/Latino (Table 1).
A total of 57 children with MIS-C were enrolled (n=17
and 40 in the discovery and validation cohorts, respec-
tively). Characteristics of the children with MIS-C are
included in Table 2. Of the 57 MIS-C cases, 27 (47%) had
documented COVID-19 prior to their ED visit and 41
(72%) had SARS-CoV-2 detected on pcr of the nasal swab
on admission. Forty-six had a known close contact with
COVID-19, and 55 (96%) displayed antibodies against
SARS-CoV-2 (Table 2). A total of 535 children presented
with various other causes of infection/inflammation
(n=79 and 456; discovery, validation), of whom 98 had
COVID-19. A total of 83 children presented with non-
infectious causes of illness (such as trauma, syncope, etc.,
n=0 and 83; discovery, validation). A total of 87 children
were considered healthy (n =13 and 74; discovery, valida-
tion). Eighty children across both cohorts were excluded
because they were unable to provide a blood sample, or
an MDW was not reported.
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Table 1 Participant demographics
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Discovery cohort (n =109)

Validation cohort (n=653) Total enrolled (n=762)

Age years, mean (min,max) 10 (1 month-21)

Sex, n (%)
Male 63 (58)
Female 46 (42)
Race, n (%)
White 38 (35)
Black 7 (6)
Asian 8(7)
Ethnicity, n (%)
Hispanic 58(53)
lliness classification, n (%)
MIS-C 17 (16)
Infectious 79 (72)
Non-infectious 0(0)
Healthy controls 13(9)

10 (4 days-21) 10 (4 days-21)

327 (50) 390 (51)
326 (50) 372 (49)
361 (55) 399 (52)
165 (25) 172 (23)
19(3) 27.(4)
173 (26) 231 (30)
40 (6) 57 (8)
456 (70) 535 (70)
83 (13) 83(11)
74(11) 87(11)

A total of 762 pediatric patients have been enrolled in this study: 109 children in the Discovery Cohort (April-October 2020) and 653 children in the Validation Cohort

(October 2020-October 2021). Demographics and disease classification are listed

Monocyte anisocytosis increases during MIS-C

In previous studies in adults, monocyte anisocytosis
characterized by an MDW > 20 was associated with sep-
sis, and normative values were 20 or below [20]. While
normative values have not yet been established for pedi-
atrics, we analyzed MDW in healthy children in the dis-
covery cohort. We determined that the healthy children
had a mean MDW of 17.0 (min: 13.9, max 18.7, standard
deviation [SD] 1.7), consistent with values seen in healthy
adults. In contrast, children with MIS-C (n=17 sub-
jects enrolled, 14 with MDW values recorded) displayed
a significant increase in monocyte anisocytosis with a
mean peak MDW of 33.1 (min: 24.2, max 45.8, SD 7.5,
Fig. 2A, P <0.0001).

Although children in the infections/inflammation
group also displayed an increase in MDW as compared
to healthy controls (Fig. 2A, P <0.0001), MDW values in
these other illnesses remained well below values seen in
MIS-C (mean 20.3, min: 14.2, max 35.0, SD 5.1, Fig. 2A, P
<0.001). Of note, peak MDW represented the first avail-
able blood collection in most children with MIS-C. Two
children in the MIS-C group displayed a rising MDW up
to 72 h after starting steroids and IVIG. Two children in
the MIS-C group had the first blood sample collected
6 days post-treatment. For these children, we included
the peak post-treatment values in the analysis.

Observing monocyte anisocytosis in MIS-C, we then
sought to determine if MDW can distinguish MIS-C
from other children presenting with illness. An area
under the receiver-operator curve (AUROC) of 0.91 indi-
cated that monocyte anisocytosis is highly associated

with MIS-C (Fig. 2B). An MDW threshold of 24.0 pro-
vided the optimal screening cut-off to allow inclusive
detection of all children with MIS-C while providing dis-
tinction from infectious controls (100% sensitivity, 81%
specificity).

Validation of the monocyte distribution width threshold

in MIS-C

To validate the utility of an MDW threshold of 24.0 in
distinguishing children with MIS-C, we calculated that
we would need to enroll 31 MIS-C patients in our vali-
dation study (0.5 Type 1 error rate and at 80% power)
based on the preliminary sensitivity and specificity
determined in the discovery cohort. We estimated we
would have to enroll 310 patients based on the entry
criteria in endemic areas (~10% prevalence among ED
patients enrolled). In practice, we evaluated MDW in
653 children participating in our multisite study from
October 2020 to October 2021 (validation cohort,
Table 1). In the validation cohort, we enrolled 40 chil-
dren who met criteria for MIS-C, 35 of whom provided
a blood sample from which an MDW was obtained.
Additionally, we enrolled children presenting to the
Emergency Department or hospital for medical care
for infectious illness (n=395) or non-infectious ill-
ness (n="70). Blood samples were also collected from
healthy controls (n=72).

In this larger validation cohort, monocyte anisocyto-
sis was again identified as a robust tier 1 assay, with a
higher mean in MIS-C (31.1, SD 6.8) compared to unin-
fected children (19.0, SD 2.6) and children with other
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Table 2 MIS-C patient characteristics

MIS-C characteristics (N=157)

Age, mean (min-max) 9 (2mo-21 years)

Sex, n (%)
Male 33(58)
Female 24 (42)
Race, n (%)
White 26 (46)
Black 19 (33)
Asian 3(5)
Other 11(19)
Ethnicity, n (%)

Hispanic 36 (63)
MIS-C criteria
Evidence of prior SARS-CoV-2 infection/exposure

Prior (+) SARS-CoV-2 PCR 27 (47)

Current (4) SARS-CoV-2 PCR 41 (72)

Current (4) SARS-CoV-2 antibody test 55 (96)

Close exposure to individual with COVID-19 46 (80)

Fever, n (%) 57 (100)
Organ involvement, n (%)

Cardiac 40 (70)
Ventricular dysfunction 14 (35)
Coronary aneurysm 6 (15)
Vasopressor support 14 (35)
Myocarditis 20 (50)

Gastrointestinal 53(93)

Respiratory 36 (63)

Neurologic 26 (46)

Dermatologic 23 (40)

Mucocutaneous 22 (39)

Musculoskeletal 15 (26)

Renal 12(21)

57 children with MIS-C enrolled in study. Demographics and clinical/laboratory
evidence supporting MIS-C diagnosis are described

infections (24.0, SD 5.3) (Fig. 3A, ANOVA P <0.0001).
The values of MDW in samples from healthy controls
(16.5, SD 1.9) were comparable to those determined
earlier in the discovery cohort (P=0.49). Because
MIS-C is defined by distinct hyperinflammatory
responses, we sought to test the ability of MDW to
identify MIS-C from a broad cohort of ill children pre-
senting to the Emergency Department or upon admis-
sion to the hospital. Using the MDW cut-off threshold
of 24.0 established in the discovery cohort, MDW was
highly effective at distinguishing children with MIS-C
from children with other illnesses (86% sensitivity, 60%
specificity). An AUROC analysis revealed that MDW
had high diagnostic accuracy (0.82) when comparing
MIS-C (n=35) to children presenting for medical care
(infectious and non-infectious, n=465) (Fig. 3B).
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Monocyte anisocytosis aids in identifying MIS-C

with cardiac complications

Cardiovascular involvement of MIS-C has the great-
est life-threatening potential and must be identified
urgently to initiate treatments. As not all children with
MIS-C will develop cardiac complications, we sought
to ascertain whether MDW could aid in identifying
MIS-C with cardiac complications specifically focusing
on the development of myocarditis, ventricular failure,
arrhythmias, coronary aneurysms, and/or cardiogenic
shock. Myocarditis was defined as elevated troponin
levels above the upper limit of laboratory normative
values; ventricular failure was defined as ejection frac-
tion < 55%; cardiac dysrhythmias and arrythmias were
identified on electrocardiogram, coronary aneurysms
were visualized by echocardiogram with a coronary
artery z-score >2.5; and cardiogenic shock was iden-
tified by receipt of vasopressor or vasoactive support.
[25] Cardiac involvement was confirmed by a pediatric
cardiologist. We compared the cardiac MIS-C group to
children presenting with symptoms concerning MIS-C
but without the development of cardiac abnormalities.
This non-cardiac group included children with a clini-
cal diagnosis of MIS-C without cardiac involvement
(n=9), children with fever plus prior/current SARS-
CoV-2 detected on RT-PCR (n=75), and children with
fever and serologic evidence of SARS-CoV-2 antibod-
ies (n=14). All cardiac MIS-C patients (15/15) had
MDW values above 24.0 (100% sensitivity). Although
MDW > 24.0 only carries 49% specificity, it is important
to note that MDW was significantly increased in car-
diac MIS-C compared to the non-cardiac patient group
(mean 33.6 vs. 25.3, P<0.0001, Fig. 4A). For these two
groups of patients, we calculated an AUROC of 0.84
(Fig. 4B). This result highlights the utility of MDW for
flagging individuals with potential cardiac involvement
of MIS-C for additional investigations.

Monocyte anisocytosis tracks clinical improvement

In children with MIS-C, MDW declined significantly
during hospital course from a mean of 31.2 at admission
and before treatment to a mean of 26.7 following treat-
ment (Fig. 4C). MDW declined further to a mean of
18.2 at the time of discharge or follow-up, equivalent to
MDW values of healthy control subjects and reflecting
the expected resolution of illness (Fig. 4D). Interestingly,
only two of the 16 MIS-C patients for which repeated
blood samples were obtained displayed a peak value
after admission to the hospital. These results suggest that
MDW could be a helpful biomarker for tracking MIS-C
disease progression, resolution under treatment, and the
return to immune homeostasis.
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Monocyte anisocytosis outperforms other laboratory to current guidelines, we focused on abnormalities in

markers of MIS-C

We then sought to determine how detection of mono-
cyte anisocytosis performed compared to other estab-
lished, standard hematologic parameters to determine
if quantifying monocyte anisocytosis added value to a
standard CBC when screening for MIS-C. According

lymphocyte, neutrophil, and platelet counts, which are
criteria for triggering additional MIS-C workup. [8] We
found that total white blood cell count (WBC) could not
distinguish between MIS-C, other infections, or healthy
controls (Fig. 5A). We also found no differences in neu-
trophil count across any cohorts (Fig. 5B). Neutrophilia,
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a tier 1 biomarker [8], was present in 31.4% of the MIS-C
patients (16 out of 51 for whom neutrophil counts were
available), and we found no differences in neutrophil
counts across any cohorts (P=0.88, Fig. 5B). While total
lymphocytes and monocytes counts were decreased
in MIS-C compared to children with other infections,
there were no differences when comparing these cell
counts with healthy control subjects (Fig. 5C, D). The
average neutrophil to lymphocyte ratio in MIS-C was
6.7 (SD 6.3), which was higher than the average 4.0 (SD
5.2) in children with infection/inflammatory illnesses
(P<0.001). The calculated AUROC for neutrophil to lym-
phocyte ratio in distinguishing MIS-C from infection/
inflammation of other causes was 0.69.

Platelet counts were decreased in MIS-C (20 out of 51)
compared to healthy control subjects and children with
other infections (Fig. 5E, ANOVA, P<0.01). However, a
comparison of AUROC analyses of these CBC parame-
ters reveals MDW as having the highest screening accu-
racy for MIS-C (Fig. 5F). Overall, current hematologic
parameters have limited capability for distinguishing
MIS-C from other illnesses, but monocyte anisocytosis,
which can be detected as part of a CBC, offers a signifi-
cant advantage over other hematologic parameters in
identifying MIS-C (Fig. 5F).

We then sought to compare the detection of mono-
cyte anisocytosis against CRP and ESR, two other
clinical laboratory tests recommended in the tiered
diagnostic evaluation of MIS-C [8]. Early and peak
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clinical laboratory values were compared between
patients with MIS-C or patients with infectious and
non-infectious controls. The subjects included in this
analysis were the same as those in the validation cohort
for which an MDW value was measured (n=501). Early
and peak CRP > 5 mg/dL had 100% sensitivity but only
15.5 and 21.2% specificity, respectively, for identifying
MIS-C patients. Early and peak ESR>40 mm/h had
72.2 and 78.8% sensitivity and 69.5 and 66.8% specific-
ity, respectively, for MIS-C. These values reveal limita-
tions in the specificity for CRP and sensitivity for ESR
as biomarkers for MIS-C. Both tests peaked an average
of 2.6 days into the hospital course, pointing towards
their limitations as tier 1 assays for early identifica-
tion of MIS-C. Even a combination of hematologic and
inflammatory parameters from tier 1 testing (ESR >40
or CRP>5; platelets< 150,000 x 10°/uL or neutro-
phils > 6000 x 10°/uL) detect only 51.4% true positives
with MIS-C, and this combination of parameters only
displays 50% sensitivity and 50% specificity in distin-
guishing MIS-C from children with other infection/
inflammatory illnesses.

Discussion

We analyzed blood samples from a total of 762 children
presenting for medical care and discovered prominent
monocyte anisocytosis, detectable on routine CBC, in
children with MIS-C. MDW, a hematologic parameter
that quantifies monocyte anisocytosis, above a value of
24.0 serves as a useful threshold in tier 1 screening for
MIS-C with a 100% sensitivity in identifying subjects
with MIS-C with cardiovascular complications among
children with fever in the setting of prior SARS-CoV-2
infection.

Currently, the American College of Rheumatology rec-
ommends a stepwise approach for laboratory and imag-
ing workup for diagnosing MIS-C [8, 27], starting with
Tier 1 testing, which includes a complete blood cell count
(CBC), complete metabolic panel, C-reactive protein
(CRP), and erythrocyte sedimentation rate (ESR). Abnor-
mal results trigger a more comprehensive Tier 2 panel of
MIS-C laboratory tests including ferritin, troponin, and
N-terminal pro b-type natriuretic peptide (NT-proBNP),
followed by cardiac evaluation and multidisciplinary sub-
specialist consultations. However, as we have shown, the



Yonker et al. BMC Infectious Diseases 2022,22(1):563

initial screening tests are often abnormal in a range of
infectious and non-infectious disease processes, limiting
their ability to inform a diagnosis of MIS-C. Moreover,
because children are often only mildly symptomatic or
asymptomatic when acutely infected with SARS-CoV-2, a
prior history of COVID-19 may not be established before
a child presents with symptoms consistent with MIS-C.
Therefore, our comprehensive assessment of how MDW
could be used in screening for MIS-C reflects a practical
approach for evaluating a screening tool for MIS-C.

In the relevant clinical context, an elevated MDW
would urgently and efficiently prompt further evalua-
tion of MIS-C, thereby serving as a much-needed tool
to improve currently recommended MIS-C evaluation
guidelines. We showed that MDW over 24.0 displays an
86% sensitivity in identifying children with MIS-C among
patients presenting with general signs of infection. There
was a slight decrease in sensitivity and specificity metrics
in the validation cohort as compared to the discovery
cohort, which may be explained by the evolving knowl-
edge around MIS-C, leading to earlier recognition of
MIS-C by clinicians and the diagnosis of a larger num-
ber of subjects with milder MIS-C. Other factors may
include the altered MIS-C pathogenicity by SARS-CoV-2
variants and the broader range of severe viral and bacte-
rial infections after the end of lockdowns.

Monocyte anisocytosis offers additional advantages
over other inflammatory parameters used in identify-
ing MIS-C: it can be detected as part of the routine
CBC. Obtaining all recommended tests is time and
resource-intensive, requires collection in blood tubes
with different anticoagulants, and clinical practice var-
ies significantly between medical centers. [28] Because
monocyte anisocytosis can be reported on routine CBCs
and MDW shows high sensitivity with high screening
accuracy for MIS-C, obtaining MDW with the initial
laboratory assessment could help streamline the evalua-
tion process, reduce the volume of blood collected from
pediatric patients, and expedite diagnostic evaluations
and therapeutic interventions if indicated. Importantly,
monocyte anisocytosis is most prominent upon pres-
entation, making it a useful early screening tool, and
decreases with treatment, and several weeks after com-
pletion of MIS-C treatment, MDW values return to the
range of values observed in healthy subjects.

It is important to note that monocyte anisocyto-
sis is not specific to MIS-C and can be seen in other
acute illnesses. In-depth immune profiling of children
with MIS-C also revealed increased markers of mono-
cyte activation, such as increased CD64 expression
[29], increased ICAM1 expression [29], and decreased
CD16 expression [15, 30]. Similar changes in mono-
cytes, reflected in MDW above a threshold of 20, have

Page 9 of 11

been reported in sepsis and organ dysfunction in chil-
dren [16, 17] and adults [18-20], trauma [31], and viral
infections like COVID-19 [32, 33], and influenza [34].
Thus, monocyte anisocytosis should be used as a MIS-C
screening test in concert with clinical findings as it is
not a stand-alone diagnostic test. Additionally, not all
hematology analyzers today offer the option of measur-
ing MDW, however, as current and further studies help
clarify the utility of MDW in acute illness, it is likely that
this marker of monocyte activation will become a more
accessible option on all hematology analyzers.

Conclusion

While the number of COVID-19 cases continues to rise,
children continue to be at risk of MIS-C, a delayed-onset,
potentially life-threatening hyperinflammatory syndrome
[35]. Monocyte anisocytosis reflects the monocyte-
mediated hyperinflammation driving MIS-C, and MDW,
which can be obtainable as part of a CBC early in the
clinical workup, improves the identification of children
with cardiac involvement during MIS-C, thereby improv-
ing current practice guidelines.
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