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Abstract 

Background:  The emergence of COVID-19 as a global pandemic presents a serious health threat to African countries 
and the livelihoods of its people. To mitigate the impact of this disease, intervention measures including self-isolation, 
schools and border closures were implemented to varying degrees of success. Moreover, there are a limited number 
of empirical studies on the effectiveness of non-pharmaceutical interventions (NPIs) to control COVID-19. In this study, 
we considered two models to inform policy decisions about pandemic planning and the implementation of NPIs 
based on case-death-recovery counts.

Methods:  We applied an extended susceptible-infected-removed (eSIR) model, incorporating quarantine, anti-
body and vaccination compartments, to time series data in order to assess the transmission dynamics of COVID-19. 
Additionally, we adopted the susceptible-exposed-infectious-recovered (SEIR) model to investigate the robustness 
of the eSIR model based on case-death-recovery counts and the reproductive number (R0). The prediction accuracy 
was assessed using the root mean square error and mean absolute error. Moreover, parameter sensitivity analysis was 
performed by fixing initial parameters in the SEIR model and then estimating R0, β and γ.

Results:  We observed an exponential trend of the number of active cases of COVID-19 since March 02 2020, with the 
pandemic peak occurring around August 2021. The estimated mean R0 values ranged from 1.32 (95% CI, 1.17–1.49) 
in Rwanda to 8.52 (95% CI: 3.73–14.10) in Kenya. The predicted case counts by January 16/2022 in Burundi, Ethiopia, 
Kenya, Rwanda, South Sudan, Tanzania and Uganda were 115,505; 7,072,584; 18,248,566; 410,599; 386,020; 107,265, 
and 3,145,602 respectively. We show that the low apparent morbidity and mortality observed in EACs, is likely biased 
by underestimation of the infected and mortality cases.

Conclusion:  The current NPIs can delay the pandemic pea and effectively reduce further spread of COVID-19 and 
should therefore be strengthened. The observed reduction in R0 is consistent with the interventions implemented in 
EACs, in particular, lockdowns and roll-out of vaccination programmes. Future work should account for the negative 
impact of the interventions on the economy and food systems.
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Background
Coronavirus Disease 2019 (COVID-19) is a zoonotic dis-
ease caused by the Severe Acute Respiratory Syndrome 
Corona Virus 2 (SARS-CoV-2), a pathogen that was 
first discovered in Wuhan, China in 2019 [1–3]. Conse-
quently, the disease has spread all over the world, leading 
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to high morbidity and mortality in addition to negatively 
impacting the healthcare systems and the economy [4, 
5]. Following the first case report in Egypt on the 14th 
February, 2020, a total of 6,543,882 cases and 166,234 
deaths had been recorded in 54 African countries by 
28th July 2021 [6]. Regionally, Eastern Africa countries 
(EACs) have not been spared the impact of the pandemic 
with the following reported cases and mortalities by the 
28th July 2021: (Burundi 6573 cases, 8 deaths; Ethiopia 
278,920 cases, 4374 deaths; Kenya 198,935 cases, 3882 
deaths; Rwanda 66,967 cases, 771 deaths; South Sudan, 
11,014 cases, 118 deaths; United Republic of Tanzania, 
858 cases, deaths 29 deaths; Uganda, 92,795 cases, 2590 
deaths) [6]. Initial reports indicate that majority of the 
early cases were likely imported from Asia and Europe 
through trade and tourism [7].

In this regard, policymakers made decisions to miti-
gate the pandemic future scenarios by implementing 
NPIs to varying degrees of success [8–10]. Similar inter-
vention measures were successfully applied to mitigate 
the influenza virus transmission [11]. It is nevertheless 
noteworthy that the time point of implementation of 
these interventions is key to their success in reducing the 
peak of the pandemic [12]. Additionally, these measures 
should be appropriately justified to the population in 
terms of the optimal time when they could be eased [13].

As the pandemic evolved, mathematical models were 
developed to estimate the transmission dynamics over 
time, with the expectation that the pandemic will have a 
devastating impact across Africa [14–16]. For example, 
the University of Washington, Seattle, developed the Insti-
tute of Health Metrics (IHME) for fitting parametrized 
curves to COVID-19 data using extendable nonlinear 
mixed effects model [17]. The Imperial College London 
(ICL), developed a semi-mechanistic Bayesian model to 
estimate the rate of transmission, total number of cases 
and deaths at a given time point, and the impact of NPIs 
on the basic reproduction number (R0) as well as the time-
varying reproduction number, R(t) [14]. R0 is a measure 

of contagiousness of infectious agents, and it refers to the 
number of new infections generated by each infected per-
son [18]. If R0 < 1, the disease will decline spreading in the 
population, and if R0 > 1, the disease will spread faster [19]. 
Moreover, compartmental models have long been used 
to model the dynamics of infectious diseases including 
influenza [20–22]. These models use ordinary differential 
equations that mimic infectious disease trajectory, and a 
three- or four-state Markov chain to solve the equations 
[23].

Recently, the classical susceptible-infectious-recovered 
(SIR) model was extended to simulate NPIs such as quaran-
tine, and national lockdowns using time-varying functions 
that modify the transmission rate of the disease [24–26]. 
The eSIR model uses three compartments—susceptible, 
infected, and removed (sum of recovered and dead) and a 
Bayesian hierarchical model to simulate future projections 
of the number of infected and removed population [25, 26]. 
The standard eSIR model assumes a constant transmission 
rate through the compartments. This rate can be altered to 
mimic NPIs by introducing a transmission modifier (π(t)) 
to allow a time-varying probability of the transmission rate 
(Fig. 1).

Additionally, the eSIR model also assumes that prob-
abilities of the three compartments follow a Markov transi-
tion process with input as the proportions of infected and 
removed (sum of recovered and dead) cases. The observed 
proportions of infected and removed cases on day t are 
denoted by Yt

I and Yt
R, respectively. The true underlying 

probabilities of the S, I, and R compartments on day t are 
denoted by θt

S, θt
I, and θt

R, respectively, and assume that 
for any t, θt

S + θt
I + θt

R = 1, which can be solved through 
ordinary differential equations (Eqs. 1–3).

(1)dθSt
dt

= −βθSt θ
I
t

(2)dθ It
dt

= −βθSt θ
I
t − γ θ It ,

Fig. 1  The extended Susceptible-Exposed-Removed (eSIR) basic model diagram. The transmission rate modifier, π(t), takes on values according to 
actual interventions in different countries [25]



Page 3 of 19Wamalwa and Tonnang ﻿BMC Infectious Diseases          (2022) 22:531 	

whereby, β > 0 is the disease transmission rate, and γ > 0 
is the removal rate. R0 = β/γ is the basic reproduction 
number assuming the whole population is susceptible. 
The basic eSIR model applies a Beta-Dirichlet state-space 
consisting of three observations of infected (Yt

I), removed 
(Yt

R) and the latent process at time t [25–27].

The latent population prevalence is represented below 
as a Markov process (Eq. 6).

where θt = (θSt , θ
I
t , θ

R
t )

T is the prevalence of susceptible 
population ( θSt  ), infectious ( θ It  ) and removed ( θRt  ) popula-
tions at time t, while τ = (β , γ , θT0 , �, k) denotes param-
eters �I , �R and k that control variances of the infected, 
removed and latent processes respectively [25, 26]. The 
function f is the solution to the standard SIR model using 
ordinary differential equations (Eqs.  1–3) and a fourth 
order Runge–Kutta (RK4) approximation [28, 29].

The Markov chain Monte Carlo (MCMC) algorithm 
was used to implement this model in order to provide the 
posterior estimates and credible intervals of the unknown 
parameters, R0, β, and γ [19, 25].  Previously, Mkhatshwa 
et al. and Wangping et al. reported that MCMC prior dis-
tributions can be initialized according to the SARS data 
from Hong Kong [26, 30]. The MCMC algorithm samples 
the latent Markov processes and estimates the infection 
prevalence ( θ It  ) and the probability of removal ( θRt  ) from 
the underlying latent dynamics of COVID-19 infection 

(3)dθRt
dt

= γ θ It

(4)Y I
t |θt , τ ∼ Beta

(
�
Iθ It , �

I
(
1− θ It

))
,

(5)YR
t |θt , τ ∼ Beta

(
�
RθRt , �

I
(
1− θRt

))
,

(6)θt |θt−1,τ ∼ Dirichlet(kf (θt−1,β , γ ))

(Fig. 2) [25, 26]. These estimates determine the epidemic 
turning points and R0 of the target population. Neverthe-
less, it is noteworthy that the details of the eSIR model 
formulation are described in detail in [25, 26].

Mathematical models leverage available data to predict 
transmission dynamics of the epidemic and the impact of 
different policy interventions. These models have been a 
critical tool for COVID-19 policy decisions [31]. How-
ever, foreseen risks include under-estimation of the dis-
ease extend due to asymptomatic cases that account for 
the majority of the transmission [32]. Models such as the 
classical SIR and eSIR do not account for the pre-symp-
tomatic and asymptomatic cases. Indeed, similar studies 
have used SEIR extensions to account for the pre-symp-
tomatic and asymptomatic infection [32–38].

Contemporary models have consistently predicted that 
the ongoing COVID-19 pandemic will have a devastat-
ing impact across Africa [14–16]. Beyond health risks, the 
socio-economic implications of the pandemic motivated 
the current research to exploit a data-driven approach for 
deducing the transmission dynamics of the pandemic, infec-
tion prevention and evaluating policy implementation. This 
study sought to predict COVID-19 epidemiological trends 
under current and future scenarios in seven EACs and to 
quantify the impact of the interventions in flattening the 
pandemic curve. However, we did not consider the impact 
of the interventions on the economy and food systems.

Methods
In this work, we applied the extended Susceptible-
Exposed-Removed (eSIR) compartmental model to project 
epidemiological trends of COVID-19 infections and the 
impact of government interventions in Burundi, Ethiopia, 
Kenya, Rwanda, South Sudan, Tanzania and Uganda [25].

Fig. 2  The eSIR model with a state-space latent SIR model. The latent Markov ( θt ) processes are sampled and forecasted by the MCMC sampler  
Reproduced from Wang et al. 2020 [25]
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Data sources
We used publicly available COVID-19 daily recorded 
time-series data of the seven EACs collated from the 
WHO and the Johns Hopkins University Center for Sys-
tems Science and Engineering (JHU CCSE) to estimate 
the transmission of the epidemic and to present the trend 
of infections and fatalities [39, 40]. These datasets include 
daily counts of confirmed cases, recovered cases, and 
deaths from 22nd January 2020 to 30th July 2021.

Epidemiological modelling
Modelling the impact of NPIs was implemented in R 
(version 4.0.4) using the eSIR model to simulate future 
projections of cases-deaths-recovery counts [26]. The 
resulting differential equations were solved by the 
fourth-order Runge–Kutta approximation [28, 29]. The 
input data was segmented into two starting from March 
02/2020 to May 01/2020 and the same time period for the 
year 2021. The R0 and R(t) were estimated using MCMC 
algorithm implemented in RJAGS and presented using 
the resulting posterior mean and 95% credible interval 
(CI) [41].

Model predictions were interpreted based on the turning 
points of the projected epidemiological trend of COVID-
19. The first turning point refers to the mean predicted 
time when the daily proportion of infected cases becomes 

lower than the previous infected cases, while the second 
turning point refers to the mean predicted time when the 
daily proportion of removed cases (sum of recovered and 
dead) becomes higher than the infected cases. Similarly, an 
end point refers to the time point when the median pro-
portion of current infected cases turns to zero [25, 26]. The 
basic SIR model does not consider NPIs in the estimation 
of the epidemic trajectory, hence we used the time-varying 
transmission (tvt) rate SIR model, SIR with time-varying 
quarantine, antibody (herd immunity) and vaccination 
compartments to project future scenarios (Fig. 3).

SIR model with a time‑varying transmission rate
A time-dependent rate parameter [π(t)] was introduced 
to vary the transmission rate (β) and the average removal 
rate (γ) according to the NPIs that were introduced in each 
country. The prior distribution of beta (β) was set to 0.2586, 
and gamma (γ) was set to 0.0821 [25, 26]. The likelihood 
of disease transmission under the tvt rate model when a 
susceptible individual comes into contact with an infected 
individual is presented below (Eq. 7).

where, π(t) :=
{
1− qS(t)

}{
1− qI (t)

}
∈ [0, 1] . The parameter 

qS(t) ∈ [0, 1] is the likelihood of a susceptible individual 

(7)β

{
1− qS(t)

}
θSt

{
1− qI (t)

}
θ It := βπ(t)θSt θ

I
t

Fig. 3  Flow diagram of the underlying states of COVID-19 eSIR model. The flow diagram was used to obtain transmission probabilities according to 
actual interventions in different countries
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being put under isolation. Similarly, qI (t) ∈ [0, 1] is the 
likelihood of an infected individual being put under 
isolation.

When applied as a step function, π(t) assumes four 
values that correspond to the dates when NPIs were 
introduced in each country. For example, the first con-
firmed cases of COVID-19 in the seven EACs were 
reported in early March 2020 and thereafter, several 
intervention measures were introduced. For example, 
π01 corresponds to the time period when no interven-
tions had been initiated, π02 to the time period when 
national/city lockdowns were initiated, π03 corresponds 
to enhanced quarantine measures while π04 corresponds 
to opening of new medical facilities for covid patients.

Alternatively, π(t) can be applied as an exponential 
function to reflect gradual increase in awareness to the 
pandemic and response to government interventions, 
where π(t) = exp(−�0t) . However, at any given time, 
π(t) = 1 if no intervention measure has been imposed. 
The function f is the solution the eSIR model using Eq. 8 
and RK4 approximation.

The following parameters were used to run the 
tvt rate model: the transition rate modifier, π(t), was 
allowed to vary between (1.0, 0.9, 0.5, and 0.1) accord-
ing to actual governmental interventions. This was set 
at π(t) = 0.95 if t < Mar 10, for city lockdown; π(t) = 0.9 
if t ∈ (Mar 10, Mar 22), country lockdown; π(t) = 0.5 if 

t ∈ (Mar 15, April 01), shutdown of schools and non-
essential businesses; π(t) = 0.1 if t > Mar 31, which 
corresponds to more enhanced quarantine proto-
cols [26]. The value of π(t) was estimated from Eq.  7, 
whereπ(t) :=

{
1− qS(t)

}{
1− qI (t)

}
∈ [0, 1] . The 

π(t) =






π01, if t ≤ Feb 23, no defined interevntion measures;
π02, if t ≤ Mar 15, partial lockdowns, school closure;
π03, if t ≤ Apr 06, enhanced quarantine, curfews;
π04, if t ≤ Apr 27, new quarantine facilities, hospitals opened.

(8)

dθSt
dt

= −βπ(t)θSt θ
I
t ,
dθ It
dt

= −βπ(t)θSt θ
I
t − γ θ It ,

dθRt
dt

= γ θ It

proportion of deaths within the removed compartment 
was estimated from a pre-selected ratio of 0.0184 and the 
initial infection fatality ratio was set to 0.01 [42]. MCMC 
simulation was performed using four parallel chains, with 
the number of draws in each chain, M = 5e5 and a burn-
in period of nburnin = 2e3 under 2 × 105 iteration num-
ber of adaptation in the MCMC (nadapt = 2 × 105) [25]. 
The output of these runs provided estimates of posterior 
parameters and prevalence of the disease in the six com-
partments of the modified eSIR model and proportions 
of the infected and the removed individuals (Fig. 3).

SIR with time‑varying quarantine
We simulated the impact of quarantine measures by 

including a fourth compartment of the population 
under quarantine [25, 26]. A vector phi (φ) that assumes 
a Dirac delta function (a point mass prior at 0.1–0.4) 
was used to alter transition from susceptible to the 
quarantine compartment at time points corresponding 
to the days when quarantine measures were imposed in 
each country [20]. The time-varying quarantine model 
was simulated using parameters described in the tvt 
rate model (Eq. 9).

The quarantine rate, φ(t) , was specified according 
to the time points when NPIs were enforced in each 
country.

Herd immunity
We introduced an antibody (A) compartment to simu-
late the presence of natural acquired immunity against 
COVID-19 within the population and thereby altering 
the eSIR to eSAIR model [26, 27]. The A compartment 
consists of infected (I) but recovered/self-immunized 
individuals, with rate constants determining transition 
between the four compartments of Susceptible, Anti-
body, Infected and Removed (SAIR). The model was 

(9)

dθ
Q
t

dt
= φ(t)θSt ,

dθSt

dt
= −βθSt θ

I
t − φ(t)θSt ,

dθ It

dt

= βθSt θ
I
t − γ θ It ,

dθRt

dt
= γ θ It

φ(t) =






φ01, if t = Feb 23, nodefined interevntionmeasures;
φ02, if t = Mar 15, partial lockdowns, school closure;
φ03, if t = Apr 6, enhanced quarantine, curfews;
0, otherwise.
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run using time-varying transmission rate parameters 
described above with the assumption that about 20% 
(α = 0.2) of the susceptible population had acquired 
neutralizing antibodies against SARS-CoV-2 (Eq. 10).

The probability of having neutralizing antibodies 
against COVID-19 was denoted by theta ( dθAt  ) at time 
point t, where α (t) is a function that determines the 
proportion of people moved into the antibody (A) com-
partment from the susceptible compartment.

Vaccination
The vaccination (V) compartment was integrated into 
the basic SIR model and thereby transforming the eSIR 
into eSVIR model. The model was run using time-varying 
transmission rate parameters under the assumption that 
about 2% (α = 0.02) of the susceptible population was 
vaccinated (Eq. 11). However, Tanzania only began their 
vaccination campaign in July 2021, while Burundi was yet 
to receive vaccine doses. 

Validation of the model prediction accuracy
The reliability and usefulness of our approach, was eval-
uated by comparing model predictions of case-death-
recovery counts against the observed data between 
06/16/20 and 04/11/2021 in Ethiopia, Kenya, Rwanda 
and Uganda using two metrics, the Root Mean square 
error (RMSE), and Mean Absolute Error (MAE) [27]. 
RMSE is a measure of the differences between pre-
dicted and the observed values for a given variable in a 
regression analysis (Eq.  12a) while MAE measures the 
accuracy of the model fit in terms of performance in its 
predictions (Eq. 12b) [43]. The input data was split into 
two sets for training and validation of the model [44]. 
The training dataset ranged from 16th June 2020 to 12th 
January 2021 while the validation dataset was from 13th 
January 2021 to 2nd April 2021. Specifically, the model 
was calibrated using observed data of confirmed case-
death-recovery counts (“training set”) starting from 
the date of implementation of the intervention up to 
7–14  days prior to the peaks. Thereafter, model pre-
dictions (“testing set”) of case-counts after the training 

(10)

dθAt

dt
= (t)θSt ,

dθSt

dt
= −αθSt − βθSt θ

I
t ,
dθ It

dt

= βθSt θ
I
t − γ θ It ,

dθRt

dt
= γ θ It

(11)

dθVt

dt
= δ(t)θSt ,

dθSt

dt
= −δ(t)θSt − βπ(t)θSt θ

I
t ,
dθ It

dt

= βπ(t)θSt θ
I
t − γ θ It , and

dθRt

dt
= γ θ It

period were then compared with the observed trends 
to evaluate the prediction accuracy. A total of 291 data-
points were used to compute the RMSE and MAE val-
ues [43, 45].

where, n is the total number of observations, Yi the 
predicted value and Ŷi the observed value for the ith 
observation.

Comparison of the eSIR and SEIR models
The eSIR model used in this study does not account 
for the pre-symptomatic and asymptomatic cases. We 
applied a modified SEIR extension implemented in the 
SEIR-fansy (faLSE nEGATIVE rate and syMPTOM) 
package to account for the pre-symptomatic and asymp-
tomatic infections [46]. Additionally, the modified SEIR 
model also takes into account the false negative rates of 
COVID-19 RT-PCR tests and the unreported/untested 
cases [46]. COVID-19 cases-deaths-recovery count data 
reported in seven EACs from April 01/2020 to June 
31/2020 was used to train the model and generate pre-
dictions from August 01 to December 01/2020. Similarly, 
training data from April 01/2021 to June 31/2021 was 
used to train the model and generate predictions from 
August 01 to July 13/2022. The two models were com-
pared with respect to the predicted R(t) values, active 
cases and deaths.

Results
Scenario analysis of COVID‑19 epidemic development
Simulation of NPIs estimated the effectiveness of govern-
ment intervention in curbing the spread of the disease. 
The predicted R0, time varying reproduction number, R(t) 
(also known as the effective reproduction number, Re) 
and cases-deaths-recovery counts provide an insight into 
the epidemiological trend of the disease for the year end-
ing 2020/2021 (Table  1). Our results show an exponen-
tial increase of cases-deaths-recovery counts since March 
02 2020/2021 and a steady decline during the 2021/2022 
window. We found that the epidemic peak occurred 
between March–April and July–August 2021. The esti-
mated posterior values of the time-varying reproduction 
number R(t) ranged between 2.70–3.10 and 1.32–8.52 
under the exponential growth model for the time period 
of 2020/2021 and 2021/2022 respectively. The mean R(t) 
was lowest in Kenya in 2020/2021 (R0 = 2.70, 95% CI: 

(12a)RMSE =

√√√√1

n

n∑

i=1

(Y i − Ŷi)
2

(12b)MAE =

∑n
i=1|Ŷi − Yi|

n
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1.54—4.67) (Table  1). However, moving into 2021/2022 
window, Rwanda had the lowest R(t) (R0 = 1.32, 95% CI: 
1.17–1.49), (Table  2). The estimated count of infected 
and removed compartments by January 2022 is alarming, 
however it includes missed cases, pre-symptomatic and 
asymptomatic cases (Table 2).

Time‑varying changes caused by government 
interventions
COVID-19 pandemic has progressed across EACs with 
varying impacts. Hyperparameters introduced into the 
model allowed for inference of the impact of govern-
ment interventions at specific time points to control the 
pandemic. For example, the exponential model simu-
lated gradual community awareness of interventions by 
regional governments (Fig.  4) while the stepwise model 
simulated NPIs such as school closure, lockdowns and 
suspension of social gatherings for the year ending 
2020/2021 and 2021/2022 (Fig. 5).

We observed an overlap of the epidemiological trend 
between the exponential and stepwise models. Under 
the existing preventions in Kenya, the exponential 

model indicates that the first and second turning 
points occurred on March 14 and April 01 during the 
2020/2021 window (Fig. 4A, B) and Jul 29 and Aug 01 in 
the 2021/2022 window (Fig.  4C, D). Similarly, the step-
wise model indicates that the first and second turning 
points appeared on April 01 and April 04 (Fig.  5A, B) 
during the 2020/2021 window and July 27 and July 31 in 
the 2021/2022 window (Fig. 5C, D). It is noteworthy that 
the first turning point refers to the mean predicted time 
when the daily proportion of infected cases becomes 
lower than the previous infected cases, while the second 
turning point refers to the mean predicted time when 
the daily proportion of removed cases (sum of recov-
ered and dead) becomes higher than the infected cases 
[25, 26]. Additional exponential model projection results 
are available as additional information (Additional file 1: 
Figs. S1–S6), while the stepwise model outputs are shown 
for Burundi, Ethiopia, Rwanda, South Sudan, Tanzania, 
and Uganda respectively (Additional file 1: Figs. S7–S12).

While NPIs had a substantial impact in mitigating the 
pandemic, simulation of the standard SIR model with-
out interventions indicated rampant prevalence of the 

Table 1  Estimated R0 and endpoint in EACs using the eSIR model for the year 2020/2021

1 Means of predicted infected population at the endpoint followed by the confidence interval in brackets (α = 0.05)
2 Means of predicted removed (recovered + deaths) population at the endpoint followed by the confidence interval in brackets (α = 0.05)

Country Median R0 Endpoint 95%CI

Mean 95%CI Mean Date (range) Infected1 Removed2

Burundi 2.58 2.71 1.48–4.58 05/02/20 04/05/20–07/31/20 998 (116–2884) 351 (41–1100)

Ethiopia 2.62 2.75 1.57–4.65 04/27/20 04/04/20–07/01/20 6566 (474–24,130) 5754 (665–20,408)

Kenya 2.57 2.70 1.54–4.67 04/26/20 04/05/20–06/23/20 2572 (455–6876) 2317 (263–7475)

Rwanda 2.96 3.10 3.10–5.22 05/07/20 04/08/20–07/27/20 964 (259–2121) 397 (41–1370)

South Sudan 2.60 2.71 2.71–4.59 05/21/20 04/16/20–09/17/20 2171 (130–10,107) 631 (89–1920)

Tanzania 2.69 2.82 2.82–4.90 05/01/20 04/05/20–07/16/20 4369 (614–14,483) 3353 (428–11,942)

Uganda 2.75 2.87 2.87–4.79 05/06/20 04/06/20–08/03/20 4219 (648–12,354) 2180 (211–8107)

Table 2  Estimated R0 and endpoint in EACs using the eSIR model for the year 2021/2022

1 Means of predicted infected population at the endpoint followed by the confidence interval in brackets (α = 0.05)
2 Means of predicted removed (recovered + deaths) population at the endpoint followed by the confidence interval in brackets (α = 0.05)

Country R0 Endpoint 95%CI

Median Mean 95%CI Mean Date Infected1 Removed2

Burundi 2.74 2.84 1.83–4.45 01/16/22 01/16/22 115,505 (109,999–121,264) 153,638 (147,508–159,954)

Ethiopia 1.63 1.64 1.39–1.99 01/16/22 01/16/22 7,072,584 (6,945,505–7,203,084) 19,736,568 (19,521,417–19,952,888)

Kenya 8.39 8.52 3.73–14.10 01/16/22 01/16/22 330,562 (307,493–353,404) 18,248,566 (18,100,299–18,391,438)

Rwanda 1.31 1.32 1.17–1.49 01/16/22 01/16/22 410,599 (399,776–421,528) 1,913,262 (1,891,033–1,934,980)

South Sudan 1.51 1.54 1.19–2.03 01/16/22 01/16/22 386,020 (376,478–396,244) 751,872 (738,686–765,302)

Tanzania 2.46 2.57 1.45–4.31 01/15/22 01/16/22 107,265 (95,757–119,982) 70,197 (60,262–80,013)

Uganda 2.30 2.34 1.67–3.33 01/16/22 01/16/22 3,145,602 (3,089,070–3,205,017) 2,425,643 (2,375,840–2,477,153)
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infection (R0 > 1) and the endpoints were prolonged 
(Fig. 6). On the contrary, simulation using SIR with time-
varying quarantine produced a decline in time-varying 
reproduction number due to the introduction of quar-
antine measures (Tables 1 and 2). With time-varying R0 
remaining above 1, most EACs are still under threat from 
the disease, with Kenya (R0 = 8.59) facing a higher risk 
(Fig.  7). However, the SEIR model estimated a lower R0 
value (R0 ≤ 2.49) during the same time period in Kenya 

(Table  4). Further projections of cases-deaths-removed 
counts using the standard state-space SIR model with-
out interventions are available as Additional file  2: Figs. 
S13–S18). Based on our results, we observed a decline 
in R0 and the infection prevalence during 2021/2022 
time period in contrast with the 2020/2021 time period, 
in particular, when time varying quarantine measures 
were introduced into the model (Additional file  3: Figs. 
S19–S24).

Fig. 4  The exponential model of COVID-19 trends under existing interventions in Kenya. The pandemic peaked between March–April 2020 (A) 
and August 2021 (C). A, B Prediction of the infection and removed compartments during the 2020/2021 window. The first and second turning 
points occurred on Mar 14 and Apr 01 2020; C, D Prediction of the infection and removed proportions during 2021/2022 window. The first and 
second turning points occurred on Jul 29 and Aug 01 2021. In Figs. 4, 5, 6, 7 and 8: The black dots left of the blue vertical line denote the observed 
proportions of the infected and removed compartments. The blue vertical line denotes time t(0). The green and purple vertical lines denote the 
first and second turning points, respectively. The cyan and salmon colour area denotes the 95% CI of the predicted proportions of the infected and 
removed cases before and after t(0), respectively. The gray and red curves are the posterior mean and median curves [25, 26]
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Epidemiological trends with a subset of the population 
having COVID‑19 antibodies and the impact of vaccination 
campaigns
Herd immunity was simulated using SIR model with a 
proportion of the population assumed to have neutraliz-
ing antibodies against COVID-19. We observed a decline 
in R0 under the assumption that 20% of the population 
in EACs had achieved herd immunity by 2021/2022. Fur-
thermore, we also simulated the impact of vaccination 
on the dynamics of COVID-19. R0 declined from 8.52 to 
2.14 under the assumption that 2% of the Kenyan popula-
tion was vaccinated (Fig. 8). While vaccination eventually 
contributes to the achievement of herd immunity, our 
simulations showed that vaccination had a bigger impact 

than herd immunity in lowering the time varying repro-
duction number, R(t) (Additional file  3: Figs. S25–S30). 
Vaccination campaigns target to reduce the susceptible 
population and thereby lowering contacts between infec-
tious and susceptible population [47].

Validation of the model prediction accuracy
A reliable model results in predicted values being 
close to the observed data values, which implies a 
good model fit [45]. We observed a good model fit 
between the forecasted cases and the actual observed 
cases of COVID-19 across four EACs (Table 3). Larger 
RMSE values indicate a wider difference between the 
predicted and observed values, which means poor 

Fig. 5  The stepwise model of COVID-19 trends under existing interventions in Kenya. The peak of the pandemic occurred in April 2020 and July 
2021. A, B Prediction of the infection and removed (recovered and dead) proportions of COVID-19 during 2020/2021 time period. The first and 
second turning points occurred on April 01 and April 04. C, D Prediction of the infection and removed compartments of COVID-19 during the 
2021/2022 window. The first and second turning points occurred on July 27 and July 31
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regression model fit [43]. Similarly, the computed MAE 
values for the model ranged between 1.24 and 10.52 
(Table 3). In general, lower RMSE and MAE values pro-
vide better support for the model fit (Fig. 9).

Comparison of the eSIR and SEIR models
We generated estimates for the transmission of 
COVID-19 using a SEIR model extension implemented 
in the SEIR-fansy package [46]. The two models were 
compared with respect to the predicted R(t), active 
cases and deaths. SEIR model is considered superior to 
the standard SIR model because it takes into account 
the pre-symptomatic, asymptomatic and unreported 
cases as well as the high false negative rates of COVID-
19 RT-PCR tests [46]. Moreover, the SIR model tends to 
overestimate the R0 because strict enforcement of NPIs 
causes the isolation of a large proportion of susceptible 
cases [48].

Our findings show that the mean values returned by 
the SEIR model corroborate the eSIR model predictions 

except for wide margin of variability observed in R(t) 
estimates in Kenya, Rwanda and South Sudan (Table 4). 
Additionally, the SEIR model also considered the false 
positive/negative rates of tests, the unreported and 
untested case counts (Fig.  10). Uganda had the least 
number untested case counts and false negative rates 
in contrast to other EACs (Fig.  10G). We observed less 
variability in R(t) values projected by the SEIR model, in 
contrast to the eSIR model. For example, the eSIR model 
estimates of the R0 consistently remained above 1 across 
most EACs with Kenya (R0 = 8.59) facing a higher risk. 
However, the SEIR model projected a lower R0 value 
(R0 ≤ 2.49) during the same time period in Kenya (Addi-
tional file  3: Fig. S31 C). The two models projected the 
peak of the pandemic to have occurred between March–
April and July–August 2021. Overall, we observed a 
decline in R(t) values. We anticipate that the COVID-19 
curve has flattened for most EACs except in South Sudan 
and Tanzania where projected R(t) values remain high 
(Table 4 and Fig. 11).

Fig. 6  The standard SIR model without interventions in Kenya. The level of infection prevalence was high (R0 > 1) without intervention measures 
and, in particular, the endpoints were prolonged. A Prediction of the infection compartment during 2020/2021 window; The first and second 
turning points occurred on April 01 and May 05. B Prediction of the removed compartment during 2020/2021 window; C Plot of the first-order 
derivatives of the posterior prevalence of infection in 2020/2021. The black curve is the posterior mean of the derivative, and the vertical lines 
indicate the first and second turning points and the endpoint of the pandemic. The colored semi-transparent rectangles represent the 95% CI 
of these turning points. D Prediction of the infection compartment during 2021/2022 window; The first and second turning points occurred on 
July 30 and August 01. E Prediction of the removed compartment during 2021/2022 window; F Plot of the first-order derivatives of the posterior 
prevalence of infection for 2021/2022 time period
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Parameter sensitivity analyses
We conducted parameter sensitivity analyses to evalu-
ate the robustness of the model to prior settings. Param-
eter sensitivity analyses was performed using COVID-19 
pandemic data between April 01 and June 30 2021. Initial 
parameters in the SEIR model were fixed and then fol-
lowed by estimation of R0, β and γ parameters using the 
multinomial, Poisson and Binomial models (Table 5). We 
observed variations in R0 during the first phase (01–14 
April) between the Multinomial, Poisson and Binomial 
models. However, the estimated R0 values were within 
the same range during later stages of the pandemic [27]. 
Our findings show that both models are robust enough 
to provide reliable predictions. However, the eSIR model 
tends to overestimate R0 values while the SEIR model has 
less variability in R0 estimates [27]. Previously, Ray et al. 
conducted an in-depth parameter sensitivity analyses 
using a range of scenarios in the context of the pandemic 
outbreak in India [49]. The reader is referred to Ray et al. 

for a detailed explanation of parameter sensitivity analy-
ses [49].

Discussion
Following the first reported case of COVID-19 in Egypt, 
the number of cases gradually increased across the con-
tinent causing human and economic losses. However, 
fatalities have remained low particularly during the initial 
phases of the pandemic. Several arguments to this obser-
vation have been put forward including experience with 
previous pandemics (Ebola virus disease, human immu-
nodeficiency virus, polio, and tuberculosis), demographic 
factors, host genetics factors, climate and environmen-
tal factors [7]. Beyond health risks, the socio-economic 
implications of the pandemic motivated many countries 
to implement NPIs such as wearing masks, lockdown of 
cities, stop transports, school closure, social distancing, 
and hand washing [13].

In this study, we applied the eSIR compartmental 
model to project epidemiological trends of COVID-19 

Fig. 7  SIR model with time-varying quarantine. The level of infection prevalence remained high in Kenya (R0 = 8.59) during the 2020/2021 window. 
However, the end-point of the pandemic was projected to occur on October 09 2021. A Prediction of COVID-19 infection during 2020/2021 
window. The first and second turning points occurred on April 01 and April 02 2020; B Prediction of the removed compartment during 2020/2021 
window; C Plot of the first-order derivatives of the posterior prevalence of infection in 2020/2021. The colored semi-transparent rectangles 
represent the 95% CI of these turning points. D Prediction of the infection of COVID-19 for 2021/2022. The first and second turning points occurred 
on July 29 and August 01 2021; E Prediction of the removed compartment during 2021/2022 window; F Plot of the first-order derivatives of the 
posterior prevalence of infection
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and the impact of NPIs in seven EACs [25, 26]. Publicly 
available data from JHU as at 30th July 2021 were used 
to estimate the transmission rate of the epidemic and to 
present the trend of infections and fatalities following 
government interventions [40]. Parameters such as the 
R0 and R(t) are of great importance for policy makers to 
adopt the most efficient and effective interventions in 
order to contain the pandemic and minimize human and 
economic damages [50].

Our findings show that the epidemic trend of 
COVID-19 differs among EACs with infections remain-
ing high while fatalities are low [51]. The R0 posterior 
values and endpoints in EACs during the 2020/2021 
and 2021/2022 window provided a snapshot of the tra-
jectories of the disease. However, foreseen risks include 
under-estimation of the disease extend due to asymp-
tomatic cases and unreported cases as well as the high 
false negative rates of COVID-19 RT-PCR tests [46]. To 
circumvent these risks, we applied a SEIR model imple-
mented in the SEIR-fansy package to account for the 
presymptomatic and asymptomatic infection and trans-
mission of COVID-19 [46]. We found that interven-
tions that were implemented during the initial stages 
of the pandemic had a strong impact on reducing the 
transmission of the disease. For example, after cali-
brating the model using time-series data from March 
02/2020 to May 01/2020, our predictions revealed a 

Fig. 8  Estimation of herd immunity and vaccination campaign in Kenya. Simulation of herd and vaccine-derived immunity using time-varying SIR 
model with 20% of the population assumed to have acquired neutralizing antibodies and 2% of the population assumed to have been vaccinated 
against COVID-19. A Proportion of the infected compartment with antibodies against SARS-COV-2 during the 2020/2021 window. The first and 
second turning points occurred on September 30 and December 04 2020; B Proportion of the removed compartment with antibodies against 
SARS-COV-2 during 2020/2021 window. The first and second turning points occurred on September 30 and December 04 2020; C Prediction of 
the infection during 2021/2022 window assuming that 20% of the population has antibodies against SARS-COV-2. The first and second turning 
points occurred on August 27 and August 30 2021; D Prediction of infection during the 2020/2021 window assuming that 2% of the population 
is vaccinated. The first and second turning points occurred on April 10 and April 30 2021; E Prediction of the removed compartment assuming 
that 2% of the population is vaccinated. The first and second turning points occurred on April 10 and April 30 2021; F Prediction of infection in 
2021/2022 assuming that 2% of the population is vaccinated. The first and second turning points occurred on September 25 and September 30 
2021

Table 3  Validation of the model prediction accuracy of the total 
number of COVID-19 cases

Mean R0 (95% CI) RMSE MAE

Ethiopia 4.56 (2.90–6.45) 9.97 10.52

Kenya 4.02 (2.69–5.62) 9.86 2.51

Rwanda 3.62 (2.22–5.40) 1.67 1.24

Uganda 4.42 (2.47–7.13) 1.98 2.53
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Fig. 9  Validation of the robustness of the model for prediction COVID-19 case-death-recmoved counts. The predicted trends after the training 
period were compared to observed case-death-removed count and RMSE and MAE metrics computed. A Uganda; B Kenya; C Rwanda; D Ethiopia

Table 4  Comparison of estimated time-varying reproduction number (Rt) obtained from eSIR and SEIR models for the 7 countries

1 Highlighted values are outliers due to overestimation by either model

Model Estimated mean reproduction number Rt (95% CI)

Country 2020/2021 2021/2022

eSIR SEIR-fansy eSIR1 SEIR-fansy1

Burundi 2.71 (1.48–4.58) 2.57 (0.64–2.58) 2.84 (1.83–4.45) 2.54 (0.65–2.55)

Ethiopia 2.75 (1.57–4.65) 2.89 (1.65–2.90) 1.64 (1.39–1.99) 2.84 (1.62–2.85)

Kenya 2.70 (1.54–4.67) 2.51 (1.41–2.52) 8.52 (3.73–14.10) 2.49 (1.43–2.50)

Rwanda 3.10 (3.10–5.22) 2.03 (1.00–2.25) 1.32 (1.17–1.49) 2.08 (1.01–2.09)

South Sudan 2.71 (2.71–4.59) 4.41 (1.47–4.42) 1.54 (1.19–2.03) 4.60 (1.41–4.62)

Tanzania 2.82 (2.82–4.90) 3.25 (1.25–3.26) 2.57 (1.45–4.31) 3.27 (1.31–3.29)

Uganda 2.87 (2.87–4.79) 3.70 (0.58–3.71) 2.34 (1.67–3.33) 2.01 (0.78–2.03)
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Fig. 10  Effect of misclassification on predicted case counts. Estimated number of active cases including the false negative rates of tests, the 
unreported/untested case counts and confirmed cases across EACs

Fig. 11  Predicted cases-deaths-recovery counts. There is a decline in active cases across EACs. The multinomial model of SEIR-fansy package 
estimated the peak of the pandemic to have occurred in July–August 2021. Predicted cases-deaths-recovery counts: 1. Burundi; 2. Ethiopia; 3. 
Kenya; 4. Rwanda; 5. South Sudan; 6. Tanzania; and 7. Uganda. In this figure: A = total number of current cases; B = cumulative number of confirmed 
cases; C = cumulative number of confirmed recoveries; D = cumulative number of confirmed deaths
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modest R0 value of 2.71 (95% CI: 1.48–4.58), 2.75 (95% 
CI: 1.57–4.65), 2.70 (95% CI: 1.54–4.67), 3.10 (95% 
CI: 3.10–5.22), 2.71 (95% CI: 2.71–4.59), 2.82 (95% 
CI: 2.82–4.90), 2.87 (95% CI: 2.87–4.79) for Burundi, 
Ethiopia, Kenya, Rwanda, South Sudan, Tanzania, and 
Uganda respectively. However, R0 marginally decreased 
under the same time period in 2021/2022 projections, 
except in Burundi and Kenya where the value increased 
to a mean of 2.84 and 8.52 respectively. Previous stud-
ies of the pandemic in Kenya, reported a range of R0 
values between 1.78 (95% CI: 1.44–2.14) to 3.46 (95% 
CI: 2.81–4.17) [52–5452–54]. Indeed, our findings 
(R0 = 2.70, CI: 1.54–4.67) lie within this range.

The exponential model mimicking increased commu-
nity awareness of NPIs, had more impact in lowering the 
transmission rate of the disease than the stepwise model 
that mimics governmental interventions at specific time-
points. As the pandemic evolves, the public perceptions 
and attitudes towards the interventions change and strict 
adherence to public policies is practiced [13]. Moreover, 

the time point of implementation of NPIs is key to their 
success in reducing the peak of the epidemic [12]. Over-
all, the 2021/2022 epidemic trajectories indicate that 
EACs are facing challenges in their efforts to contain 
community transmission of COVID-19. Country-specific 
mean R0 values remain above 2 (R0 > 2) with the excep-
tion of Ethiopia, Rwanda and South Sudan. This is further 
compounded by the weak health systems, inadequate 
preparedness and capacity to respond to emerging epi-
demics. Based on these results, we suggest strict imple-
mentation of intervention policies, such as enforcement 
of lockdowns, face-mask wearing, long-term surveillance 
and COVID-19 vaccine roll-out to contain the pandemic. 
However, we recommend careful interpretation of the R0 
values because of the unforeseen risks such as under-esti-
mation of the disease extend due to asymptomatic cases 
and low testing rate which is not randomized.

Under the current intervention measures, the long-
term projection of the eSIR exponential model indicates 
that about 0.97, 6.15, 33.94, 3.17, 3.45, 0.18, 6.88% of 

Table 5  Comparison of posterior estimates of model parameters

β = rate of transmission of infection by false negative individuals

γ = recovery rate

Model Posterior estimates

01–14 Apr 15 Apr–03 May 04–17 May 18–31 May 01–30 Jun

R0 β γ R0 β γ R0 β γ R0 β γ R0 β γ

1. Multinomial

 Burundi 0.01 0.08 0.05 0.70 0.08 0.17 1.92 0.19 0.75 2.11 0.20 0.79 2.65 0.30 0.44

 Ethiopia 3.00 0.34 0.29 1.72 0.19 0.32 2.59 0.30 0.26 2.95 0.34 0.23 2.55 0.29 0.35

 Kenya 0.52 0.06 0.18 1.50 0.16 0.40 2.00 0.21 0.55 2.58 0.27 0.43 2.18 0.23 0.45

 Rwanda 4.85 0.56 0.32 2.11 0.25 0.23 1.33 0.16 0.27 1.14 0.13 0.33 1.72 0.20 0.31

 South Sudan 0.65 0.07 0.17 1.48 0.15 0.33 4.64 0.48 0.45 3.97 0.40 0.53 2.19 0.22 0.55

 Tanzania 0.50 0.05 0.59 3.28 0.32 0.77 1.71 0.17 0.60 1.73 0.18 0.42 1.35 0.15 0.30

 Uganda 2.29 0.29 0.08 0.87 0.11 0.16 1.13 0.13 0.35 1.54 0.16 0.61 2.00 0.18 0.99

2. Poisson

 Burundi 7.92 0.94 0.20 6.31 0.75 0.20 4.9 0.59 0.19 3.30 0.39 0.23 1.66 0.20 0.19

 Ethiopia 8.90 0.95 0.19 6.56 0.70 0.21 5.10 0.54 0.21 3.67 0.39 0.25 1.82 0.19 0.20

 Kenya 8.30 0.96 0.20 6.72 0.78 0.20 4.93 0.57 0.18 3.35 0.38 0.22 1.75 0.20 0.19

 Rwanda 7.71 0.93 0.20 6.17 0.75 0.21 4.73 0.57 0.20 3.16 0.38 0.23 1.56 0.19 0.19

 South Sudan 8.95 0.95 0.21 6.95 0.74 0.22 5.23 0.56 0.20 3.62 0.38 0.24 1.82 0.19 0.19

 Tanzania 8.77 0.93 0.21 6.99 0.74 0.21 5.28 0.56 0.21 3.53 0.37 0.24 1.82 0.19 0.19

 Uganda 9.01 0.96 0.21 6.96 0.74 0.21 5.17 0.55 0.20 3.65 0.39 0.23 1.83 0.19 0.19

3. Binomial

 Burundi 7.99 0.95 0.21 6.26 0.75 0.21 4.78 0.57 0.20 3.23 0.38 0.23 1.61 0.19 0.19

 Ethiopia 8.91 0.95 0.21 7.01 0.74 0.20 5.28 0.56 0.20 3.54 0.37 0.25 1.81 0.19 0.19

 Kenya 7.99 0.93 0.20 6.68 0.77 0.20 5.02 0.58 0.19 3.34 0.38 0.23 1.71 0.20 0.20

 Rwanda 7.66 0.93 0.20 5.99 0.73 0.20 4.69 0.57 0.20 3.17 0.38 0.23 1.59 0.19 0.19

 South Sudan 8.93 0.95 0.21 6.99 0.74 0.20 5.22 0.55 0.20 3.72 0.39 0.23 1.83 0.19 0.19

 Tanzania 8.82 0.94 0.21 6.83 0.72 0.20 5.23 0.56 0.19 3.56 0.38 0.24 1.90 0.20 0.19

 Uganda 8.63 0.92 0.21 6.85 0.73 0.20 5.22 0.55 0.20 3.77 0.40 0.22 1.78 0.19 0.19
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the population will be infected by 16th January 2022 in 
Burundi, Ethiopia, Kenya, Rwanda, South Sudan, Tan-
zania, and Uganda respectively. The high number of 
recorded cases of COVID-19 could be attributed to the 
weak health infrastructure, crowded social life and poor 
personal hygiene. Moreover, disease comorbidities like 
hypertension, obesity, type II diabetes, HIV, tuberculosis 
and malaria are highly prevalent in Africa and may con-
tribute to the weak immune response to COVID-19 [7, 
55, 567, 55, 56]. The comorbid individuals must be prior-
itized in terms of healthcare and vaccine roll-out.

Previous predictive models suggested that Africa could 
be the next hotspot of COVID-19, yet to-date, recorded 
cases and deaths have remained low. Multiple factors have 
been attributed to the low COVID-19 reported cases and 
fatalities in Africa including herd immunity due to anti-
bodies against SARS-COV-2, climate, comorbidities, 
parasite exposure, and young population structure [51, 
57, 58]. Indeed, a recent study by the WHO revealed that 
over two-thirds (65% or 800 million infections) of Afri-
cans were exposed to SARS-COV-2 virus by September 
2021 against a backdrop of 8.2 million reported cases [59]. 
Seroprevalence varied between countries, being highest in 
Eastern, Western and Central African regions. Currently, 
the reported seroprevalence of antibodies against SARS-
CoV-2 range from 0.4% in Cape Verde and 49% in ante-
natal care clinics in Kenya [60, 61]. Despite these reports, 
most of these factors attributed to low mortalities have 
not been studied conclusively to establish their interaction 
with COVID-19 [7]. Multiple studies have associated the 
low mortality rates of COVID-19 in Africa to host immu-
nity [51]. For example, the “trained immunity” hypothesis 
suggests that the Bacillus Calmette-Guérin (BCG) vaccine 
against tuberculosis confers protection against COVID-
19 [51]. Brewster et  al. documented that Africans have 
genetic mutations in the SARS-CoV-2 receptor, angio-
tensin-converting enzyme-2 (ACE-2) gene, which confers 
low response to ACE inhibitors and therefore linked to 
low prevalence of COVID-19 [62]. Furthermore, previous 
exposure to Plasmodium falciparum and other pathogens 
is associated with protective immunity and has been linked 
to a lower prevalence of COVID-19 in malaria-endemic 
areas [57, 63]. Additionally, the demographic structure of 
Africa’s population that has a predominantly young popu-
lation aged below 35  years, and with few comorbidities 
has been linked to low prevalence to COVID-19. How-
ever, such population can be super spreaders of the virus 
because they are largely asymptomatic [64].

We estimated the herd effect due to genetic factors 
and COVID-19 vaccination campaigns by incorporat-
ing assumptions (about the percentage of the population 

with anti-SARS-CoV-2 antibodies and the percentage of 
the population that had been vaccinated) into the simu-
lation of infection dynamics. By assuming that about 
20% of the population in each country had neutralizing 
antibodies against COVID-19, we observed a significant 
decline in R0 from 8.52 to 2.62 by January 16th 2021/2022 
in all the EACs. Similarly, R0 declined from 8.52 to 2.14 
under the assumption that 2% of the Kenyan population 
is vaccinated. While vaccination eventually contributes to 
the achievement of herd immunity, vaccination had a big-
ger impact than herd immunity in lowering R0 and hence 
the number of cases and deaths.

During the initial phases of pandemic, the entire Afri-
can population had no immunity against COVID-19, 
hence the virus spread quickly across communities. How-
ever, as the disease evolved, gradual immunity developed 
aided by genetic factors, previous parasite exposure, and 
a young population structure with few underlying comor-
bidities. The COVID-19 vaccine has been rolled-out in 
Africa with 49 countries having administered at least 
one dose. However, the vaccination coverage required 
to establish herd immunity against COVID-19 is quite 
heterogeneous, ranging from 0, 2.0, 2.2, 3.5, 0.46, 0.18 
and 2.5% of the population having received at least one 
dose of the vaccine in Burundi, Ethiopia, Kenya, Rwanda, 
South Sudan, Tanzania, and Uganda respectively as of 
12th August 2021 [65, 66]. Flattening the curve requires 
a significant percentage of population to be immu-
nized. In particular, we recommend that countries with 
high basic reproduction number (R0 > 1) such as Kenya 
(8.52), Burundi (2.84), Uganda (2.34) and Tanzania (2.57) 
should increase vaccine coverage required to establish 
herd immunity against COVID-19 and strictly enforce 
interventions. However, the current situation is further 
complicated by weak health systems in EACs, the inequi-
table vaccine distribution, vaccine hesitancy and negative 
perception of government interventions. Furthermore, 
the emergence of COVID-19 variants, such as B.1.617 
(“Delta”) and BA.2 Omicron variants, has led to upsurge 
of cases due to declining protective immunity or the cir-
culation of immune escape viral variants [7, 67–69].

Epidemiological models for projecting infectious dis-
ease spread have been used to inform public health 
policy [22, 70–72]. To evaluate the reliability and useful-
ness of our model, we compared model predictions of 
the case-counts against the observed data for COVID-19 
in Ethiopia, Kenya, Rwanda and Uganda using the Root 
Mean square error (RMSE) and Mean Absolute Error 
(MAE). The metrics provided good support to the model 
fit to the observed COVID-19 cases with larger values 
indicative of a wider difference between the predicted 
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and observed values, hence poor model fit. The model-
ling techniques that we used in this study to characterize 
the epidemic dynamics has been successfully applied to 
the data in India and Wuhan, China, separately [25–27]. 
A reliable model results in predicted values close to the 
observed data values [73, 74].

The original eSIR epidemiology model does not pro-
vide validation of the predictions [25]. One of the 
novel contributions to the model was to validate the 
predictions made by the model using subsequent data 
from Ethiopia, Kenya, Rwanda and Uganda. A second 
additional strength was the incorporation of a vac-
cination compartment into the model to account for 
vaccine-induced immunity over time. However, we 
acknowledge that some aspects of these analyses have 
limitations. For example, the model did not account for 
under estimation of the reported cases, asymptomatic 
cases, the population structure, health systems, climate 
and environmental factors that can affect predictions 
and forecasts [14, 17, 75, 76].

Conclusions
The current intervention measures can efficaciously 
prevent the further spread of COVID-19 and should 
be strengthened. However, the impact of these inter-
ventions is highly heterogeneous across EACs. Close 
collaboration between regional governments, the scien-
tific community, and health care providers is required 
to manage the pandemic. Moreover, comparison of 
the basic reproduction number (R0) between countries 
should take into consideration the under estimation of 
the reported cases, asymptomatic cases, demographic 
factors such as the population structure, health sys-
tems, host genetics factors, climate and environmen-
tal factors. The observed reduction in R0 is consistent 
with intervention measures implemented in EACs, in 
particular, lockdowns and roll-out of vaccination pro-
grammes. Future work should account for the negative 
impact of the interventions to the economy and food 
systems.
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