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Abstract 

Background:  Tuberculosis (TB) is the respiratory infectious disease with the highest incidence in China. We aim to 
design a series of forecasting models and find the factors that affect the incidence of TB, thereby improving the accu-
racy of the incidence prediction.

Results:  In this paper, we developed a new interpretable prediction system based on the multivariate multi-step 
Long Short-Term Memory (LSTM) model and SHapley Additive exPlanation (SHAP) method. Four accuracy measures 
are introduced into the system: Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, and 
symmetric Mean Absolute Percentage Error. The Autoregressive Integrated Moving Average (ARIMA) model and 
seasonal ARIMA model are established. The multi-step ARIMA–LSTM model is proposed for the first time to examine 
the performance of each model in the short, medium, and long term, respectively. Compared with the ARIMA model, 
each error of the multivariate 2-step LSTM model is reduced by 12.92%, 15.94%, 15.97%, and 14.81% in the short 
term. The 3-step ARIMA–LSTM model achieved excellent performance, with each error decreased to 15.19%, 33.14%, 
36.79%, and 29.76% in the medium and long term. We provide the local and global explanation of the multivariate 
single-step LSTM model in the field of incidence prediction, pioneering.

Conclusions:  The multivariate 2-step LSTM model is suitable for short-term prediction and obtained a similar perfor-
mance as previous studies. The 3-step ARIMA–LSTM model is appropriate for medium-to-long-term prediction and 
outperforms these models. The SHAP results indicate that the five most crucial features are maximum temperature, 
average relative humidity, local financial budget, monthly sunshine percentage, and sunshine hours.

Keywords:  Tuberculosis, Machine learning, Multivariate multi-step LSTM model, Hybrid forecasting model, Model 
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Background
Tuberculosis (TB) is a respiratory infectious disease 
caused by Mycobacterium tuberculosis in the lungs. Its 
existence seriously endangers the safety of people around 
the world. The World Health Organization (WHO) 

reports the Global Tuberculosis Report in 2019 shows 
that the global situation of TB is still severe. In 2018, the 
number of TB cases worldwide reached 70 million, and 
the number of deaths from TB reached 1.5 million [1]. 
This number has exceeded the number of HIV/AIDS 
deaths. The Chinese Center for Disease Control and 
Prevention (CDC) classifies TB as a Class B infectious 
disease (the most serious is Class A). CDC statistics 
indicate that China has effectively controlled the spread 
of TB in the past decade. From 2010 to 2020, TB cases 
declined from 991,350 to 599,587, and the number of 
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deaths from 3000 to 965 between January to August 
[2]. However, the incidence of TB in 2019 was 55.55 
(1/100,000), far more than other respiratory infectious 
diseases. Traditional TB detection commonly uses 
interferon-gamma release assay (IGRA), Mantoux, and 
X-rays for suspected cases, which faces enormous costs 
and low efficiency [3, 4]. It can also be affected by a series 
of potential factors to contract TB, such as the sanitary 
conditions and ventilation of the area of residence. By 
providing accurate monthly results for the prevention 
and control center, it is possible to estimate the scale of 
the pandemic and thereby allocate medical resources 
within a region [5, 6].

The traditional forecasting models are mostly 
based on one-dimensional time series, including the 
Autoregressive Integrated Moving Average (ARIMA), 
gray model, and Markov model, etc. The ARIMA model, 
as a basic model, is widely used to predict the incidence of 
various infectious diseases, such as influenza [7], bacillary 
dysentery [8], tuberculosis [9], AIDS [10], and has been 
proven it is feasible and effective. When TB has seasonal 
characteristics, using Seasonal ARIMA (SARIMA) 
model can achieve better results [11, 12]. ARIMAX is a 
better option when the disease is influenced by a range 
of potential factors [13]. X is a multivariate input. In 
recent years, more and more studies attempted to apply 
Machine Learning (ML) models to forecast incidence, 
such as Nonlinear Autoregressive (NAR) neural network, 
General Regression Neural Network (GRNN), Support 
Vector Machine (SVM) [14]. Many studies have proved 
that the accuracy of ML models is generally higher than 
traditional models. To further improve the performance, 
the hybrid forecasting model has become a research 
hotspot [15, 16]. Researchers have been keen to discover 
the relationship between diseases and factors, such as 
meteorological factors economic and social factors [17], 
age and professional structure. Feature selection methods 
are applied to select the most crucial factors, including 
variance selection [18], Random Forest [19], correlation 
coefficient [20], Least Absolute Shrinkage and Selection 
Operator (LASSO) [21], etc.

Traditional forecasting models have poor adaptability 
to big fluctuation data. Long Short-Term Memory 
(LSTM) has proven to be a reliable model for forecasting 
the incidence of diseases [22, 23]. The unique forget 
gate structure may make the model perform well in the 
long-term prediction. Using a multivariate multistep 
LSTM model may obtain better prediction results. 
“multivariate” can mine the incidence features, and 
“multi-step” can alleviate seasonal and increasing trends 
[24]. The interpretability of ML models is a research 
hotspot, and its mainstream methods include Local 
Interpretable Model-agnostic Explanations (LIME) and 

SHapley Additive exPlanation (SHAP) [25]. SHAP has 
been used to explain the prediction of Intensive Care Unit 
(ICU) patient death and nitrogen dioxide concentration 
[26, 27]. We used the SHAP method since it can provide 
both local and global interpretation. Interestingly, in 
many ML models for incidence, no research explained 
why a particular model achieves excellent performance.

This paper aims to develop a model which is applicable 
and interpretable for predicting the incidence of TB. 
The LASSO and Random Forest were used to filter the 
features and obtain a dataset of a specified size. Then, 
the ARIMA, SARIMA, multivariate multi-step LSTM, 
and multi-step ARIMA–LSTM hybrid models were 
established. Through the Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and symmetric Mean Absolute 
Percentage Error (sMAPE), the performance of each 
model is evaluated from short (6-steps ahead), medium 
(12-steps ahead), and long (24-steps ahead) terms. 
Finally, we used the SHAP to explain the prediction 
results of the multivariable single-step LSTM model.

Results
Through Eqs. 1 and 2, Mean Square Error (MSE) is used 
for cross-validation, as shown in Fig. 1a. The results show 
that the optimal � value in LASSO is 0.0202. LASSO 
eliminated 7 irrelevant factors, thereby reducing the fac-
tor set size from 24 to 17. The coefficient compression 
process is displayed in Fig. 1b. On this basis, we hope to 
obtain more small-sized sets of factors and analyze the 
changes they bring to the model performance. The proce-
dure of Random Forest was run 5 times, the average value 
was taken as the importance score of each feature, and 
the top 10 and top 5 features were selected as the new 
factor sets. We thus get the factor sets with sizes 24, 17, 
10, and 5.

Figure  2a indicates that the period from January to 
July is the high incidence area of TB, while from October 
to December is the low incidence area. In general, the 
incidence of TB in Liaoning Province is a seasonal and 
periodic bimodal distribution.

The Augmented Dickey–Fuller (ADF) test shows that 
the p-value of the original time series is 0.50, which 
is greater than 0.05. Hence the series is not smooth. 
However, the series after first-order and first-order sea-
sonal differencing reached smoothness with p-values of 
1.94 × 10−6 and 0.01, respectively, both less than 0.05, 
as shown in Fig. 2b and c. Figure 2d indicates that the 
series becomes smoother with a p-value of 7.31× 10−4 
after first differencing and then first-order seasonal dif-
ferencing. We set the parameter d of the ARIMA model 
to 1 since the series is just reaching smoothness at this 
point. It is unnecessary to do more differencing. Then, 
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p and q are given as integers from 0 to 5, and a grid 
search is run for the model parameters (p,  1,  q). Ten 
models with the lowest Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC) are 
calculated separately, and then the five optimal models 

are extracted from their intersection sets. The perfor-
mance of these models is shown in Table  1. Similarly, 
five alternative SARIMA models are given in Table 2.

The test results of the ARIMA (2,1,4) model indicated 
that the distribution of points in the Quantile–Quantile 

A B

Fig. 1  a Finding optimal value of � in LASSO by MSE. b Compressing the coefficient of irrelevant factor to 0 by LASSO

A B

C D

Fig. 2  a Monthly incidence of TB in Liaoning Province from Jan 2005 to Dec 2015. b First-order differential. c First-order seasonal difference. d 
First-order difference and first-order seasonal difference
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(QQ) plot (as in Fig. 3) was along 45°, as well as the Dur-
bin–Watson (D–W) value was 1.94, which is close to 
2, and the p-value was 0.79, which is greater than 0.05, 
proving that the model applies to this study. From Fig. 4a 
and b, the TB incidence has a clear cyclical pattern. The 
autocorrelation coefficients of the optimal ARIMA model 
are not all fall within the confidence interval (Fig. 4c and 
d), while the optimal SARIMA model does. Theoretically, 
the SARIMA model should be more suitable for predic-
tion (Fig. 4e and f ). However, the MAPE results indicate 
that ARIMA (2, 1, 4) is the best model. It is considered 
that a MAPE value less than 10% is an accurate forecast-
ing model [28]. The MAPE value of the best SARIMA 
model is 14.1518, which has a poor performance. The 
prediction results of the two models are shown in Fig. 5a 
and b.

The LSTM solver was run 10 times and the average 
value was taken as the final error result. Table 3 indicates 
that the data set, filtered by LASSO only, of size 17, 
is the optimal factor set. The improvement for model 
performance is better than the sets of sizes 24, 10, and 
5, without adding the step. It also outperforms the 
traditional LSTM model based on time series only 
(0 factors). Finally, we solved the multivariate multi-
step LSTM models with step sizes of 1, 2, 3, and 4, 
respectively, and observed the best prediction results 
at 2-step. Compared with the ARIMA model, the 
multivariate 2-step LSTM model has better performance 
at any stage, as in Fig. 6a, with a reduction in each error 
ranging from 8.25 to 22.04%, as presented in Table 4.

Similarly, we selected the same range of step sizes as the 
LSTM model, thus determining the optimal step size for 
the hybrid model was 3-step. The 3-step ARIMA–LSTM 
hybrid model performs poorer than the ARIMA model 
in the short-term forecast. However, the hybrid model 

Fig. 3  QQ plot of the ARIMA (2, 1, 4) model.

Table 1  A series of alternative the ARIMA (p, 1, q) models (24 steps ahead prediction)

Bold indicates the best performing model

(p, q) AIC BIC RMSE MAE MAPE (%) sMAPE (%)

(5, 5) 408.04 442.55 0.5628 0.4724 11.1506 10.3224

(3, 3) 419.26 442.26 1.3423 1.1488 26.5904 22.5749

(2, 4) 419.61 442.62 0.4672 0.4177 9.9328 9.3198
(2, 1) 427.84 442.21 0.8994 0.7413 16.9383 19.3824

(3, 5) 417.13 445.88 0.9290 0.7617 17.8239 15.7419

Table 2  A series of alternative the SARIMA (p, 1, q)× (P, 1,Q)12 models (24 steps ahead prediction)

Bold indicates the best performing model

(p, q, P, Q) AIC BIC RMSE MAE MAPE (%) sMAPE (%)

(0, 1, 0, 1) 340.64 348.98 0.8471 0.7204 15.9791 14.5258

(1, 1, 0, 1) 341.49 352.60 0.7634 0.6384 14.1518 13.0495
(0, 2, 0, 1) 341.56 352.68 0.7778 0.6519 14.4502 13.2851

(0, 1, 1, 1) 342.54 353.66 0.8323 0.7083 15.7193 14.3164

(1, 2, 0, 1) 342.83 356.73 0.8040 0.6764 14.9867 13.7548

Table 3  Forecast performance of the multivariate LSTM model 
with different size factor sets

Bold indicates the best performing model

Number of 
factors

RMSE MAE MAPE (%) sMAPE (%)

24 0.5002 0.3779 9.1007 8.7484

17 0.4499 0.3398 8.3577 7.9290
10 0.4854 0.3502 8.6350 8.0442

5 0.6184 0.4462 11.1905 9.9987

0 0.5213 0.4106 10.2265 9.4457
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demonstrated excellent performance in the medium and 
long-term forecasts, as in Fig. 6b. The reduction in each 
error compared to the optimal ARIMA model ranges 
from 13.48 to 36.79%. It means the performance is nearly 
double of the multivariate 2-step LSTM model.

We make the first attempt to explain ML forecast-
ing models in the field of infectious disease incidence 
prediction. The multivariate single-step LSTM model is 
taken as an example, and the SHAP method is applied for 

model interpretation. A single sample from January 2016 
was selected for the local explanation, and the results 
are shown in Fig. 7. Features in red indicate pushing the 
predicted value higher, and features in blue mean driv-
ing it lower. Each feature pushes the predicted value of 
the model, from base value = 0.25 to f (x) = 0.21 . All 24 
samples of the test set can be expressed, giving a feature 
impact map, as displayed in Fig.  8. Each line represents 
a feature, the horizontal axis indicates the number of 

A B

C D

E F

Fig. 4  a, c, and e are autocorrelation plots of the original series, ARIMA (2, 1, 4) model, and SARIMA (1, 1, 1)× (0, 1, 1)12 model. b, d, and f are the 
corresponding partial autocorrelation
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samples, and the vertical axis denotes the SHAP value of 
the feature.

The 24 samples of the test set, from January 2016 to 
December 2017, were selected for the global explana-
tion, and the feature density scatter plot was drawn as 
shown in Fig. 9a. The horizontal axis is the SHAP value, 

and each row represents one feature. Red and blue indi-
cate high and low feature values, respectively. To be spe-
cific, the first feature, max_temp, means the maximum 
temperature, and the results show that its lower value 
will instead drive up the predicted value of TB incidence. 
The fifth feature, hour_sun, indicates the monthly sun-
shine hours, and its higher value pushes up the predicted 
value. Finally, the scatter of the last five features oscil-
lates around the SHAP value equal to 0, and there is no 
spread to either side, which suggests that these features 
are not associated with the predicted values. The absolute 
value of SHAP value was first taken and then averaged to 
serve as the feature importance, as illustrated in Fig. 9b. 
The five most important features affecting the incidence 
of TB in Liaoning Province are maximum temperature 
(max_temp), average relative humidity (rel_humidity), 
local financial budget (fin_budget), monthly sunshine 
percentage (month_sun), and monthly sunshine hours 
(hour_sun).

Discussion
This study aimed to design accurate forecasting models 
for TB incidence to serve as a reference for epidemic 
prevention and control departments in Liaoning 
province. At any stage, using a multivariate 2-step LSTM 
model can reduce the error by 8.25% to 22.04%, and this 
performance is on the same level as similar studies. In 
medium and long-term prediction, if pursuing higher 
accuracy, the 3-step ARIMA–LSTM hybrid model can be 
used, and each error can be reduced by 13.48% to 36.79%, 
an effect that is higher than similar studies over 10% to 
20%.

The ARIMA model, as a baseline, is valid for the major-
ity of infectious disease predictions and is therefore 
widely used as a comparison to evaluate the performance 
of new models. The SARIMA model was proved to be 

A

B

Fig. 5  a ARIMA (2, 1, 4) model prediction. b SARIMA 
(1, 1, 1)× (0, 1, 1)12 model prediction

A B

Fig. 6  a Multivariate 2-step LSTM model prediction. b 3-step ARIMA–LSTM hybrid model prediction
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Table 4  Comparison of the forecast performance of each model

The data format x(y), x is the error value and y is the percentage change compared to the ARIMA model. Particularly, (–) indicates the null value. A is the ARIMA model 
and B is the SARIMA model. The new model proposed in this paper is labeled by superscript ⋆ . C⋆ is the multivariate 2-step LSTM model and D⋆ is the 3-step ARIMA–
LSTM hybrid forecasting model

Model RMSE MAE MAPE (%) sMAPE (%)

6-step ahead prediction between January 2016 to June 2016

 A 0.3244 (−) 0.2811 (−) 6.0454 (−) 5.8097 (−)

 B 1.0157 (+ 213.10%) 0.9339 (+ 232.23%) 20.0035 (+ 230.89%) 17.9006 (+ 208.12%)

 C⋆ 0.2825 (− 12.92%) 0.2363 (− 15.94%) 5.0797 (− 15.97%) 4.9490 (− 14.81%)
 D⋆ 0.4659 (+ 43.62%) 0.3206 (+ 14.05%) 6.8661 (+ 13.58%) 7.4156 (+ 27.64%)

12-step ahead prediction between January 2016 and December 2016

 A 0.4425 (−) 0.3917 (−) 9.7674 (−) 9.1462 (−)

 B 0.7825 (+ 63.40%) 0.6508 (+ 66.15%) 14.5400 (+ 48.86%) 13.2301 (+ 44.65%)

 C⋆ 0.4060 (− 8.25%) 0.3073 (− 21.55%) 7.8076 (− 20.06%) 7.5203 (− 17.78%)

 D⋆ 0.3753 (− 15.19%) 0.2619 (− 33.14%) 6.1742 (− 36.79%) 6.4240 (− 29.76%)
24-step ahead prediction between January 2016 and December 2017

 A 0.4672 (−) 0.4177 (−) 9.9328 (−) 9.3198 (−)

 B 0.7634 (+ 63.40%) 0.6384 (+  52.84%) 14.1518 (+ 42.48%) 13.0495 (+ 40.02%)

 C⋆ 0.4108 (− 12.07%) 0.3295 (− 21.12%) 7.7436 (− 22.04%) 7.4895 (− 19.64%)

 D⋆ 0.4042 (− 13.48%) 0.3070 (− 26.50%) 6.9664 (− 29.86%) 7.2245 (− 22.48%)

Fig. 7  Impact of single sample characteristics (January 2016 forecast)

f(x
)

Sample order by simlarity

Fig. 8  Feature impact (24 samples of the test set)
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an unreasonable model in predicting the monthly inci-
dence of TB, and in the short term, the error value was 
even three times higher than the optimal ARIMA model, 
probably due to the less significant seasonal incidence 
characteristics of the region.

There is no fixed incidence trend of monthly incidence 
of TB in Liaoning Province. For instance, the incidence 
rate decreased and then increased from January to March 
from 2013 to 2015, while it showed a linear downward 
trend from April to July. The trends did not follow the 
previous pattern from January to July between 2016 and 
2017. However, the applicability of the SARIMA model 
for TB cannot be denied, and some such studies have still 
given favorable conclusions.

The factor set size of 17 had the most significant 
improvement in the prediction of the LSTM model and 
can be considered to contain the most important features 
influencing TB. The set size of 24 contained excessive 
irrelevant factors. In other words, there was noise in the 
data, which led to poor performance. The factor sets of 
sizes 10 and 5 lack important features, and the traditional 
LSTM model is based only on time series, so they do not 
improve prediction accuracy.

The suitable input step size mitigates the increasing 
trend of incidence. Thus, the forecast performance of the 
multivariate LSTM model is further improved. In long-
term forecasting, the multivariate 2-step LSTM model 
still achieves better effects than the ARIMA model, per-
haps attributed to the unique “forget gate” structure of 
the LSTM, resulting in excellent memory capability for 
previous sequences [29, 30].

Based on the results of the SHAP explanation, we can 
know which are the important features and what role, 
positive or negative, these features play in the genera-
tion of predicted values by the model. Meteorological 
factors are crucial in the incidence of TB, and many 
studies have shown clear conclusions. That also corre-
sponds to the SHAP results in this paper. Temperature, 
sunshine hours, and humidity are all positive factors, 
and they may increase the risk of incidence. Higher 
temperatures may be associated with longer sunshine 
hours, and under such conditions, pathogens are more 
likely to replicate [31]. There is an experiment demon-
strating that a room with humidity higher than 75% is 
double the likelihood of being positive for Mycobacte-
rium TB [32]. However, wind speed is a negative factor. 
Areas with lower wind speed tend to have poor ventila-
tion and the people there are more easily infected [33, 
34].

Some results cannot be proven from previous studies, 
but the reasons are complex and vary from region to 
region. SHAP results indicate that lower local financial 
budgets are associated with lower incidence rates. 
Poor and remote areas generally face a higher risk of 
incidence [35]. In a region, there is a strong connection 
between the economic situation and the population 
density, medical conditions, and living environment of 
the residents. Therefore, we are unable to determine 
which factor plays a dominant role. There are countless 
factors influencing the incidence of TB, such as age, 
individual’s nutritional condition, whether they smoke 
or have been vaccinated with anti-tuberculosis drugs, 
race, air pollution, and living conditions [36–38]. In 

A B

Fig. 9  a Scatter plot of feature density. b Feature importance SHAP values
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conclusion, collecting more valid factors is promising 
for improving prediction performance.

Our study has some limitations and drawbacks. First, 
we selected a few factors, which were largely limited by 
the dataset resources. Considering more factors and 
regions may lead to more meaningful findings. Second, 
the LSTM designed in this paper has only three layers, 
and a more complex network structure, combined 
with parameter tuning methods, may obtain better 
performance.

The causes of TB pathogenesis are complex, so we need 
to consider temporal and spatial conditions sufficiently, 
and we can add the Graph Neural Networks (GNN) to 
our prediction model to realize the connection between 
multiple regions [39]. It may be more meaningful to 
assess the risk of infection in specific groups.

Conclusions
In conclusion, the prediction accuracy of the multivariate 
2-step LSTM model and the 3-step ARIMA–LSTM 
hybrid model are both better than that of the traditional 
ARIMA model and LSTM model. In particular, the 
hybrid models show excellent performance in the 
medium and long term. Furthermore, the explanation 
results of the ML forecasting models can lead us to pick 
more important features that affect the incidence of TB.

Methods
Data sources
Liaoning Province is located in the southern part of 
northeast China, between 3843′ N and 4326′ N, and 
between 11853′ E and 12546′ E, with a total area of 
148,600 km2. From the Public Health Science Data Center 
(https://​www.​phsci​enced​ata.​cn), TB incidence data 
in Liaoning Province from 2005 to 2017, 156 months, 
were collected. From the National Meteorological 
Science Data Center (https://​data.​cma.​cn), 15 sets of 
corresponding meteorological data were obtained, 
including temperature, humidity, sunshine duration, 
precipitation, pressure, etc. From the National Bureau 
of Statistics (https://​data.​stats.​gov.​cn), 9 economic and 
social data were obtained, including Consumer Price 
Index (CPI), number of tourists, industrial output, etc 
(Additional files 1, 2, 3, 4).

Data cleaning
The data used in this paper has a good consistency and 
no outliers. However, some sites were missing data for 
several months for 24 sets of factor data. The missing 
values are alternately filled by the k-Nearest Neighbor 
(kNN) algorithm and the multivariate feature imputation. 
The principle of kNN is to find the “nearest” numbers of 

k samples in the data set to target and interpolate with 
the average value of k samples [40]. Such “nearest” is 
measured by Euclidean distance. The multivariate feature 
imputation is an alternative method when kNN fills in all 
missing values with the same value [41].

Feature selection
Factor data were not all significantly associated with TB 
incidence, so it was necessary to use LASSO to remove 
the irrelevant factors first. To obtain a range of smaller 
sets of factors, we then used Random Forest to rank the 
feature importance. The core of LASSO is to compress 
the coefficient before the irrelevant variable to zero in the 
regression problem [42]. The regression problem in this 
paper can be expressed as

where, yi , xi and ωT represent the monthly incidence 
of TB, factors, and regression coefficients. The cost 
function J(w) is introduced to evaluate the accuracy of 
the regression model. It is necessary to find the � that 
minimizes the value of J(w).

Division of train set and test set
For all models, 132 months of data between January 2005 
and December 2015 were used as the train set. The test 
set selected data from January 2016 to December 2017, 
in which 6, 12, and 24 months after January 2016 were 
employed as the verification of 6, 12, and 24 steps ahead 
prediction.

Building ARIMA model and SARIMA model
In the ARIMA model, “AR” represents autoregression, 
describing the past and present data relationship. “I” 
denotes differential operational. “MA” stands for moving 
average, which is the sum of the error terms in “AR” 
[43]. The ARIMA model is denoted as ARIMA(p,  d,  q), 
where p, d and q represent the order of autoregression, 
difference, and moving average. The SARIMA model 
is denoted as SARIMA(p, d, q)× (P,D,Q)s . P, D, and Q 
represent the order of seasonal model parameters, and s 
is the cycle length.

Before building, we can obtain the characteristics 
of the data (e.g. seasonality and periodicity) by using 
the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF). On this basis, 
approximate p and q values are determined. ADF test was 
used to verify the stationarity of the time series. We used 
information criteria, AIC and BIC to determine the order 

(1)yi = ωTxi + b

(2)J (w) =
1

m

m
∑

i=1

(yi − ωTxi)
2
+ �

m
∑

i=1

|wi|, � > 0

https://www.phsciencedata.cn
https://data.cma.cn
https://data.stats.gov.cn
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of parameters. AIC is an index to evaluate the fitting 
effect of the model based on entropy, as shown in Eq. 3. 
BIC strengthened the punishment item and included the 
sample number n into the assessment, as shown in Eq. 4. 
We verify the applicability of these models according to 
the QQ plot, D–W test, and white noise test. After model 
establishment, the ACF and PACF plots of the residuals 
are used to evaluate whether this model is suitable for 
prediction.

where L is the likelihood function and k is the number of 
model parameters.

A new interpretable prediction system: multivariate 
multi‑step LSTM model and SHAP
In this section, we applied the multivariate multi-step 
LSTM model to predict incidence in the field of infec-
tious diseases for the first time. The model is selected 
according to four error indicators. Combined with SHAP, 
a model explanation method, an interpretable prediction 
system is proposed.

LSTM structure and theory
LSTM is a variant of Recurrent Neural Network (RNN). 
Compared with RNN, the memory ability of LSTM was 
significantly improved. LSTM introduces the concept of 
“gate”, namely forget gate, input gate, and output gate. 
Forget gate determines how much information about the 
previous cell is retained. The input of the forget gate at 
time t includes output ht−1 of the hidden layer at time 
t − 1 and new input xt , which is processed by weighting 
and Sigmoid activation function, as shown in Eq. 5. Input 

(3)AIC = −2 ln(L)+ 2k

(4)BIC = −2 ln(L)+ k ln(n)

gate controls the input and update of cell state. ft is the 
extent to which previous information ct−1 is forgotten, 
and it is also the extent to which new information c̃t is 
added to the cell, as shown in Eqs. 6 to 8. Then, output 
gate selectively outputs which parts, as shown in Eqs. 9 
and 10. The three-layer LSTM structure used in this 
paper is illustrated in Fig. 10.

Definition of “multivariate” and “multi‑step”
In the multivariate multi-step LSTM model, if numbers 
of m factors are selected, “multivariate” means that the 
input xt at time t is a 1×m row vector concatenated from 
m factor data. “multi-step” means that predicting the 
incidence at time t requires t, t − 1, . . . , t − n+ 1 data 
as input, which is similar to the “sliding window”. n is the 
step size. The 2-step forecasting diagram is depicted in 
Fig.  11a. The multivariate multi-step LSTM model can 
fully consider the factors affecting the incidence of TB, 
and alleviate the increasing trend by setting multi-step, 
thereby may obtain a higher prediction accuracy.

(5)ft = sigmoid(Wf [ht−1, xt ] + bf )

(6)it = sigmoid(Wi[ht−1, xt ] + bi)

(7)c̃t = tanh(Wc[ht−1, xt ])

(8)ct = ft ct−1 + it c̃t

(9)ot = sigmoid(Wo[ht−1, xt ] + bo)

(10)ht = ot tanh(ct)

Fig. 10  The three-layer LSTM internal and external structure used in this paper
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Model selection
We introduced four error measures to assess the accuracy 
of these models. The RMSE and MAE were chosen as 
scale-dependent measures, and the MAPE and sMAPE 
were selected as scale-independent measures, which are 
calculated by Eqs. 11 to 14.

where, ŷi is the predicted value, yi is the observed value, 
and n is the series length.

Model explanation
SHapley Additive exPlanation (SHAP) is a post-hoc 
method of interpretation. SHAP regards all features as 
‘contributors” and constructs an additive model by calcu-
lating the marginal contribution of features to the model 
output, as shown in Eq.  15 [44–46]. And it can explain 
why ML forecasting models, even some of the “black box”, 
make certain prediction results. Model interpretation can 
be divided into Local Interpretation and Global Interpre-
tation. Local interpretation explains a single instance, or 
the relationship between independent and dependent var-
iables in a data subset [47]. Global interpretation is based 
on the entire data set or model level [48].

(11)RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi)2

(12)MAE =
1

n

n
∑

i=1

∣

∣ŷi − yi
∣

∣

(13)MAPE =
100%

n

n
∑

i=1

∣

∣

∣

∣

ŷi − yi

yi

∣

∣

∣

∣

(14)sMAPE =
100%

n

n
∑

i=1

2
∣

∣ŷi − yi
∣

∣

∣

∣ŷi
∣

∣+
∣

∣yi
∣

∣

where, yi is the predicted value, ybase is the base value of 
the model, and f (xik) is the SHAP value of feature k.

A new method: multi‑step ARIMA–LSTM hybrid model
The hybrid forecasting model can combine the strengths 
of many models. In this paper, the ARIMA–LSTM hybrid 
model takes the predicted value of the optimal ARIMA 
model and LSTM model as input, and takes the actual 
value of TB incidence as the label, using the LSTM for 
training, as presented in Fig. 11b. We introduced multiple 
steps to the hybrid model, pioneering, eliminating the 
increasing trend of the series, thereby improving the 
prediction accuracy.
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