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Abstract 

Background:  Facing a global epidemic of new infectious diseases such as COVID-19, non-pharmaceutical interven-
tions (NPIs), which reduce transmission rates without medical actions, are being implemented around the world to 
mitigate spreads. One of the problems in assessing the effects of NPIs is that different NPIs have been implemented 
at different times based on the situation of each country; therefore, few assumptions can be shared about how the 
introduction of policies affects the patient population. Mathematical models can contribute to further understanding 
these phenomena by obtaining analytical solutions as well as numerical simulations.

Methods and results:  In this study, an NPI was introduced into the SIR model for a conceptual study of infectious 
diseases under the condition that the transmission rate was reduced to a fixed value only once within a finite time 
duration, and its effect was analyzed numerically and theoretically. It was analytically shown that the maximum frac-
tion of infected individuals and the final size could be larger if the intervention starts too early. The analytical results 
also suggested that more individuals may be infected at the peak of the second wave with a stronger intervention.

Conclusions:  This study provides quantitative relationship between the strength of a one-shot intervention and the 
reduction in the number of patients with no approximation. This suggests the importance of the strength and time of 
NPIs, although detailed studies are necessary for the implementation of NPIs in complicated real-world environments 
as the model used in this study is based on various simplifications.
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Introduction
Because of the global spread of COVID-19, our human 
society is facing a major public health crisis. The COVID-
19 pandemic is caused by an emerging pathogen, SARS-
CoV-2, for which there is no immunized population, 

causing an overshooting increase in the number of 
infected patients and depleting medical resources in 
many countries. Medical institutions are facing a difficult 
situation in which they must control second transmis-
sions while treating critically ill patients, and as the num-
ber of patients increases, the medical system becomes 
swiftly tighter. When the number of patients exceeds the 
capacity, the quality of medical care deteriorates drasti-
cally, and the number of medical devices required for life 
support reaches its limit. This situation further increases 
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the fatality rate of this infectious disease and causes seri-
ous damage to our society.

No effective treatment for COVID-19 has been estab-
lished yet as of September, 2020, and only a public health 
approach can function as a control measure for the epi-
demic. To mitigate the spread of COVID-19, each coun-
try is implementing non-pharmaceutical interventions 
(NPIs) [1] to regulate social activities. NPIs comprise pol-
icies such as case isolation, voluntary home quarantine, 
closure of schools and universities, social distancing, 
stopping mass gatherings, and border closure. In major 
European countries, these NPIs were implemented, 
depending on the epidemic situation, during the first part 
of spring in 2020, with different timings and intensities 
[2, 3]. Although the first phase of the epidemic appeared 
to be suppressed by these mitigation measures, the re-
epidemic became clearer in almost all countries because 
of deregulation after the first epidemic.

Because the control of epidemics by NPIs has caused 
a situation involving the imposition of strong restric-
tions on human socioeconomic activities, it would be 
desirable to study in advance the optimal timing, inten-
sity, and duration of interventions that could bring about 
more promising results with minimal damage to society. 
Regarding COVID-19, for the purpose of ex-post verifi-
cation, the influence of NPIs implemented in each coun-
try on the effective reproduction number was estimated. 
In European countries, the correlation between the decay 
of the effective reproduction number and the implemen-
tation of various NPIs has been verified [3]. The impact 
of travel limitations in China on the spread of infection 
has been discussed [4, 5]. However, a reliable estimation 
of the effects of NPIs is difficult, because the differences 
in NPI strategies employed by each country are strongly 
related to various background factors, such as the epi-
demic situations, social structure, legal systems, and cul-
ture [2].

Mathematical modelling is an important method for 
estimating the effect of NPIs. In particular, the global 
pandemic of COVID-19 revealed that a situation in 
which only NPIs are effective against an emerging infec-
tious disease is possible in societies in the 2020s. Such 
a situation had been “neglected” as a practical research 
target, which enhances the importance of theoreti-
cal approaches. Recently, compartmental models such 
as the SIR model [6–9] have been extended to estimate 
the effects of NPIs on the number of patients [10–13]. 
In other settings, optimal policies where intervention 
intensity can change continuously over time have been 
discussed in the context of minimizing objective func-
tions [14–17]. These solutions are very useful if we can 
estimate the effect of NPIs on the change in transmission 
parameters precisely.

The impacts of NPIs should be evaluated as a discontinu-
ous change of the transmission rate in a model to represent 
the temporal discontinuity of intervention in the real world. 
The dynamics of the number of infected patients in con-
tinuous time in a system that includes discrete parameters, 
state spaces, and continuous-time dynamics can be mod-
eled as a hybrid dynamical system [18–22]. This framework 
has been applied to mathematical models of infectious dis-
eases [23–25]. In the simplest case, the one-shot interven-
tion model, in which the intervention is implemented only 
once during the epidemic, can be used to discuss the theo-
retical dependence of the effects of NPIs on the timing and 
intensity [26]. As the COVID-19 epidemic continues, the 
accumulation of theoretical research on the effects brought 
about by NPIs has become even more significant. Recently, 
compartmental models with intervention have been stud-
ied both numerically [27, 28] and using some analytical 
methods [29, 30] in line with the COVID-19 epidemic.

In this study, we provide exact solutions of a simple SIR 
model with one-shot intervention, represented by a sin-
gle discrete reduction in the transmission parameter dur-
ing an epidemic. These solutions describe the dependence 
of the peak number of infected patients on the reproduc-
tion number under consideration of the implementation of 
NPIs and intervention timing. Theoretical and numerical 
analyses revealed non-trivial relations among the inten-
sity of suppression of pandemics via NPIs, the number of 
infected individuals at the peaks, and the final size of infec-
tion cases.

The methods and results shown in this study provide 
basic theoretical understanding in the context of the evalu-
ation of NPIs.

Materials and methods
In this study, we focus on the dependence of the maxi-
mum fraction of infected individuals on the timing of the 
NPIs. Note that this analysis is motivated by the COVID-
19 epidemic, but we consider a hypothetical epidemic, 
whose properties are not necessarily the same as that of 
COVID-19.

Model
We here introduce the SIR model, where the time evolu-
tion of the fraction of susceptible (s(t)), infected (i(t)), and 
removed (r(t)) individuals is given by the following ordi-
nary differential equation (ODE):

(1)
ds

dt
=− βsi,

(2)
di

dt
=βsi − γ i,
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taking into account the one-shot intervention and 
the second wave after the intervention. For simplic-
ity, the total population is assumed to be unity, that is, 
s(t)+ i(t)+ r(t) = 1 holds. The summation of the right-
hand sides of Eqs.  (1)–(3) vanishes, which guarantees 
conservation of the total population. Therefore, as seen 
below, only Eqs.  (1) and (2) are numerically integrated 
to obtain the time evolutions of s(t), i(t), and r(t). In this 
model, the basic reproduction number and the effective 
reproduction number at time t are given by R0 = β/γ 
and Rt = βs(t)/γ , respectively.

Kermack and McKendrick [6] derived the equation 
for the maximum fraction of infected individuals and 
showed that the final size is obtained by solving a tran-
scendental equation with a given R0 in the SIR model 
without any intervention [7–9]. By applying the tech-
nique they employed in the derivation, we here provide 
the relationship between the fractions of susceptible and 
removed individuals at arbitrary times t0 and t1 , that is, 
s(t0) , r(t0) , and s(t1) , r(t1) as

See Additional file 1: Section S1  for details of the deri-
vation. All analytical results presented in this paper are 
derived based on this equality.

Non‑pharmaceutical intervention
In the present framework, an NPI in an isolated popula-
tion is represented by a change in the transmission rate 
β . Let β = βoff (> γ ) be the transmission rate without 
the intervention, and it is switched to βon(< βoff ) when 
the intervention starts at t = ton , and restored to βoff at 
t = toff = ton +�t . See Fig. 1 for the schematic diagram 
of the setting. Let the corresponding basic reproduction 
numbers be R0,off = βoff/γ and R0,on = βon/γ , respec-
tively. Here, �t denotes the duration of the intervention. 
In this paper, we study the effect of one-shot interven-
tion, one of the simplest implementation schemes, where 
the intervention is implemented only once. The mathe-
matical methods employed in this study can be applied to 
more complex cases, for example, where multiple inter-
ventions are implemented intermittently. If the fraction 
of susceptible individuals remains large enough and the 
herd immunity is not achieved after the intervention, a 
second wave occurs. It is thus necessary to consider this 
second wave to evaluate the effect of the intervention.

The one-shot intervention setting has been numerically 
studied by Bootsma and Ferguson [26], showing that the 
final size, which depends on the timing ton and toff , can 

(3)
dr

dt
=γ i,

(4)s(t1) =s(t0) exp

{

−
β

γ
[r(t1)− r(t0)]

}

.

be smaller for weaker intervention with larger R0,on . Di 
Lauro et  al. [28] numerically studied the dependence of 
the final size and the peak fraction of infected individu-
als on the timing of the intervention, where the interven-
tion was assumed to start when the fraction of infected 
and recovered individuals exceeds a threshold value. In 
particular, they concluded that the onset timing should 
be chosen so that the two peaks during and after the 
intervention are comparable. Morris et  al. [29] showed 
that the maximum fraction of infected individuals with 
one-shot interventions can approach that achieved by 
the optimal intervention, which requires an unrealis-
tic intervention, such as R0,on = 0 . Sadeghi et  al. [30] 
also suggested the existence of the optimal timing of the 
intervention based on discussion using a linearized equa-
tion and numerical simulation.

Analysis
Equations (1) and (2) were numerically integrated using 
open-source numerical solvers in Python. The codes and 
datasets generated by them are available in the repository 
[31]. The time step was set to 0.001. The noninterven-
tion transmission rate and the recovery rate are fixed as 
βoff = 2/7 days−1 and γ = 1/7 day−1 , that is, R0,off = 2 . 
The initial condition s(0) = 1− ǫ , i(0) = ǫ , and r(0) = 0 , 
where ǫ = 0.001 is employed in this study. As discussed 
in detail below, the system behaves qualitatively dif-
ferently for different values of R0,on . Here, we primarily 
focus on the cases for R0,on = 1.4 (Fig. 2) and R0,on = 0.7 
(Fig. 3), corresponding to relatively weaker and stronger 
intervention intensities, respectively. Note that R0,on > 1 
in the former case implies that the infection may spread 
even in the presence of the intervention. The time series 
without the intervention is shown in Figs.  2A and 3A. 
They are identical, because R0,on does not affect the 

Fig. 1  Flowchart of the model. The transmission rate β is switched 
from βoff to βon(< βoff ) during the intervention
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dynamics without the intervention. Figures  2B–E and 
3B–E show the time series with an intervention with a 
constant intervention duration �t = 60 days. The sec-
ond wave can occur if the herd immunity is not achieved 
when the intervention ends (Figs.  2C and 3B, C). Note 
that these time series approximate the time evolution 
observed in an agent-based model on a random network 
with the corresponding parameter values and initial con-
ditions. The comparisons of the time series are given in 
Additional file 1: Section S2.

Maximum fraction of infected individuals
In addition to the numerically obtained time series, we 
analytically show that peaks of the fraction of infected 
individuals can appear at the following four timings by 

applying Eq. (4): after the intervention, during the inter-
vention, at the onset of the intervention, and before the 
intervention. Note that there can be two peaks of the 
fraction of infected individuals if a second wave occurs. 
In such a case, the peak with a larger fraction gives the 
global maximum. Let us describe the four cases with 
respect to the timing of the maximum in detail. 

	(i)	 The maximum appears after the intervention 
(Figs. 2B, C, 3B, C). If the intervention ends before 
achieving herd immunity, a peak is observed dur-
ing the second wave after the intervention. The 
fraction of infected individuals for this peak gives 
the global maximum if it is higher than the first 
peak before or during the intervention.

Fig. 2  Weak intervention with large R0,on = 1.4 > 1 . Parameters are βoff = 2/7 days−1 and γ = 1/7 days−1 . A Time series of the fraction of infected 
and removed individuals, i(t) in blue and r(t) in orange, without the intervention. Time series with the intervention with βon = 1.4/7 days−1 and the 
intervention duration, �t = 60 days, with onset times B ton = 10 days, C ton = 19.2 days, D ton = 33.4 days, and E ton = 65 days, are depicted. The 
intervention is implemented for ton ≤ t ≤ toff = ton +�t and are represented by grey intervals in these panels. Conditions for the peaks of the 
fraction of infected individuals are given by s(t) = 1/R0,off , when the intervention is not implemented, and by s(t) = 1/R0,on during intervention. 
The final size of the outbreak for each case is represented by r(∞) . F and G represent the maximum fraction of infected individuals imax normalized 
by that without the intervention i0max , plotted in terms of r(ton) and �r = r(toff )− r(ton) , and ton and �t , respectively. Symbols A–E in F and G 
denote the intervention timings of the time series of the corresponding in A–E. Symbols (i)-(iv) in F denote the timing that the maximum infected 
fraction is observed, as described in the main text. The boundaries between regions shown in F are obtained analytically. See the main text for the 
details
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	(ii)	 The maximum appears during the intervention 
(Fig.  2D). If the effective reproduction number Rt 
declines and crosses unity during the interven-
tion, there is a peak in this timing. The condition 
R0,on > 1 is necessary for the existence of this peak, 
because the effective reproduction number has to 
be larger than unity at the onset of the intervention. 
Therefore, this peak does not appear for R0,on < 1 . 
This peak is the global maximum if it is larger than 
the second peak. The peak also appears at this tim-
ing in Fig. 2C, but the second peak is slightly higher 
than this peak.

	(iii)	 The maximum appears at the onset of the inter-
vention at t = ton (Fig. 3D). If Rton < 1 holds when 
the intervention starts, the fraction of infected 
individuals decreases during the intervention, and 
we observe a local peak at t = ton . There may be 
another peak if herd immunity is not achieved dur-
ing the intervention. If the fraction of infected indi-
viduals at the second peak is less than at this peak, 

the timing of the global maximum is given at ton . 
Note that this region also appears for R0,on > 1 , 
although the time series is not shown in Fig. 2B–E.

	(iv)	 The maximum appears before the onset of the 
intervention (Figs.  2E and 3E). The fraction of 
infected individuals reaches its maximum before 
the intervention. This case implies that the inter-
vention starts too late and fails to mitigate out-
breaks in terms of the maximum fraction of 
infected individuals.

The fraction of infected individuals at the peaks can 
be calculated analytically. Conditions for the peaks are 
given in terms of the fraction of susceptible individu-
als as s(t) = 1/R0,off = γ /βoff  without the intervention 
and s(t) = 1/R0,on = γ /βon with the intervention. The 
maximum fraction of infected individuals for cases 
(ii), (iii), and (iv) does not depend on the fraction of 
removed individuals at the offset of the intervention 
r(toff ) , because these peaks appear before toff  . For case 

Fig. 3  Strong intervention with small R0,on = 0.7 < 1 . Parameters are βoff = 2/7 days−1 and γ = 1/7 days−1 . A Time series of the fraction of 
infected and removed individuals, i(t) in blue and r(t) in orange, without intervention. Note that this time series is identical to that presented in 
Fig. 2(A). Time series with intervention with βon = 0.7/7 days−1 and the intervention duration �t = 60 days with onset times B ton = 12 days, C 
ton = 30.2 days, D ton = 42.7 days, and E ton = 61 days. The intervention is implementedfor ton ≤ t ≤ toff = ton +�t and are represented by the 
grey intervals. Symbols (i), (ii), and (iv) in F denote the times at which the maximum infected fraction is observed. Region (ii) is not observed in this 
case. Notations of other symbols are the same as those in Fig. 2
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(i), the maximum fraction of infected individuals imax is 
given as

which depends on �r := r(toff )− r(ton) , the difference 
in the fraction of removed individuals between the onset 
and offset of the intervention. See Additional file 1: Sec-
tion S3 for the explicit form of imax for all cases and its 
derivation.

The boundaries between regions (i) and (ii), (i) and (iii), 
(ii) and (iii), and (iii) and (iv) can be obtained analytically 
with respect to r(ton) and �r (Figs.  2F and 3F). On the 
boundaries, the fraction of infected individuals at two 
peaks is comparable (Figs.  2C and 3C). See Additional 
file 1: Section S4 for details of the derivation.

Final size with intervention
The final size also reflects the effect of the intervention. 
The final size of removed individuals r(∞) with the inter-
vention is obtained by solving the equation

in a self-consistent manner [32]. Specifically, as r(∞) 
appears on both sides, this equation can be solved 
numerically or using the Lambert W function, except for 
some special cases. This equation implies that the final 
size depends on �r = r(toff )− r(ton) . Another important 
implication of this equation is that r(toff ) has the upper 
bound r̃ depending on r(ton) , which is given by

See Additional file  1: Section S5 for the details of the 
derivation. The final state represented by Eq.  (6) is the 
equilibrium in the presence of the intervention. One can 
show that the Jacobian matrix of the linearized equation 
for this final state has zero eigenvalue, which implies that 
this equilibrium is neutrally stable See Additional file 1: 
Section S6 for the derivation of the detailed discussion.

Using this equality, one can show that the final size in 
the presence of the intervention is always smaller than 
that without the intervention. For

one can achieve r(∞) ≈ 1− 1/R0,off by setting ton prop-
erly, which is the smallest prevalence to achieve herd 

(5)

imax =1−

(

1−
R0,on

R0,off

)

�r −
1

R0,off

[

1+ log
(

R0,off

)

]

,

(6)

r(∞) =1− exp

[

(

R0,off − R0,on

)

�r

]

exp

[

− R0,off r(∞)

]

,

(7)r̃(r(ton)) =1− exp

[

− (R0,off − R0,on)r(ton)

]

exp

[

− R0,on r̃

]

.

(8)R0,on <
R0,off

R0,off − 1
log

(

R0,off

)

,

immunity, with an intervention duration �t that is large 
enough [32]. See Supplementary Additional file  1: Sec-
tion S6 for details of the derivation. Numerical results 
regarding the final size are summarized in Additional 
file 1: Section S7.

Results
We report the numerical and analytical results, when 
the reproduction number under the intervention R0,on is 
large (Fig. 2) and small (Fig. 3), showing qualitatively dif-
ferent behaviors.

In Figs. 2F, G, 3F, G, the dependence of the maximum 
fraction of infected individuals on the timing of the inter-
vention is plotted. Here, imax is normalized by that in the 
absence of the intervention i0max (Figs.  2A and 3A). As 
the maximum infected fraction drops in the presence of 
the intervention, imax/i

0
max is less than unity and quanti-

fies the effectiveness of the intervention in terms of the 
maximum fraction of infected individuals. As this ratio 
decreases, the intervention shows more success in reduc-
ing the maximum fraction.

It is difficult to obtain the time series of the SIR model 
analytically without any approximations, for example, lin-
earization, or the method presented in [6]. Therefore, imax 
is numerically computed with different onset and offset 
times for the intervention, ton and toff (Figs. 2G and 3G). 
However, imax can be analytically calculated with respect 
to the fraction of the recovered individuals at the onset, 
r(ton) , and the offset, r(toff ) , of the intervention (Figs. 2F 
and 3F). Note that there exists a one-to-one correspond-
ence between {ton, toff } (panels (F)) and {r(ton), r(toff )} 
(panels (G)) in Figs. 2 and 3.

Weak intervention (large R0,on = 1.4)
In this case, the reproduction number is larger than unity 
even in the presence of the intervention. Therefore, the 
fraction of infected individuals may increase during the 
intervention period. The peaks of infected individuals 
can be observed during the intervention, and the maxi-
mum infected fraction can appear at any of the four tim-
ings (i)–(iv) classified above. Figures 2B–E show that imax 
is minimized in the intermediate onset time ton near (C), 
where the peaks during and after the intervention are 
comparable. This non-monotonic dependence on ton is 
clearly visualized in Fig.  2G. The peak of infected indi-
viduals during the intervention is smaller than that with-
out intervention. This intervention mitigates the second 
wave.
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As shown in Eq. (5) and Fig. 2F, the maximum fraction 
of infected individuals is linear in �r if the peak of the 
second wave is the maximum, that is, case (i). This is veri-
fied by the fact that the contours lie horizontally in case 
(i). To clarify this point, the contours are explicitly shown 
in Additional file  1: Section S8. If the fraction of the 
infected individuals reaches the maximum during or at 
the onset of the intervention (cases (ii) and (iii), respec-
tively), the maximum fraction depends only on ton , which 
has one-to-one correspondence to r(ton) . This is verified 
in Fig. 2F, G, and Additional file 1: Section S8. If the max-
imum appears before the intervention, that is, case (iv), 
the maximum is independent of both ton and toff.

Onset and offset times for the intervention with con-
stant �t corresponding to Figs.  2A–E are plotted in 
Figs. 2F, G. As suggested by the time series, the maximum 
infected fraction is smallest in the intermediate interven-
tion onset ton , near (C). It is clear from panel (F) that this 
point is located close to the boundary between cases 
(i) and (ii), where peaks during and after the interven-
tion are comparable. In case (ii), the maximum does not 
depend on �r , which implies that a longer intervention 
does not reduce the maximum. Note that the relationship 
between (ton, toff ) and (r(ton), r(toff )) is non-monotonous.

Strong intervention (small R0,on = 0.7)
When the transmission rate is small during the inter-
vention, the maximum infected fraction is minimized 
in the intermediate starting time of the intervention ton , 
namely, early implementation of the intervention does 
not necessarily minimize the infected fraction (Figs.  3F, 
G). This result is intuitively understood as follows. If 
the intervention starts too early, the infection does not 
spread because of the small intervention transmission 
rate. Therefore, the second wave after the intervention 
is large, thus the early intervention is not effective. If the 
timing of the intervention is characterized in terms of 
r(ton) and r(toff ) (Fig.  3F), the maximum of the second 
wave depends only on �r . If the maximum fraction is 
found during the intervention, its value is independent 
of toff and r(toff ) . The peak does not appear during the 
intervention, that is, case (ii) does not appear because 
Rt,on < 1 holds.

Maximum infected fraction ¯imax versus reproduction 
number under the intervention R0,on
For each R0,on , there exist onset and offset timings of the 
intervention that minimize the maximum fraction of 
infected individuals imax (Figs. 2F, G and 3F, G). Let this 
value be īmax(R0,on) . Figure 4 plots the dependence of īmax 
on R0,on . As seen in the figure, it is minimized at a non-
trivial intermediate value of R0,on = R∗

0,on ≈ 1.23 > 1 . 
This implies that the maximum fraction of infected 

individuals is minimized for a weak intervention under 
the one-shot condition. For R0,on ≥ R∗

0,on , īmax is achieved 
at the boundary between regions (i) and (ii) at ton = 0 , 
where the peaks during and after the intervention are 
comparable (Fig.  2C). For R∗

0,on ≥ R0,on ≥ R
(1)
0,on , the 

boundary between regions (i) and (ii) with ton > 0 gives 
īmax , where R(1)

0,on ≈ 1.08 is the parameter value below 
which region (ii) does not exist. For strong intervention 
R0,on ≤ R

(1)
0,on , īmax is found at the boundary between 

regions (i) and (iii), where the peaks of the onset and after 
the intervention are comparable (Fig.  3(C)), at ton > 0 . 
Conditions for īmax are analytically derived in all cases, 
shown by the solid line in Fig. 4. The conditions for īmax 
for R0,on ≥ R

(1)
0,on can be explicitly solved. The condition 

for small R0,on ≤ R
(1)
0,on cannot be solved explicitly, and 

the parametric equations for īmax and R0,on are used to 
plot the theoretical curve in Fig. 4. See Additional file 1: 
Section S9 for details of the derivation.

Intervention strategies
It is possile to optimize the onset and offset timings of 
the NPI by minimizing an objective function under cer-
tain constraints. In the present framework, this can be 
formulated as an optimization problem in a hybrid non-
linear dynamical system. The optimal intervention strat-
egy depends on the objective function. Here, we discuss 
the following two simple scenarios to minimize imax . In 
general, more complex objective functions can be used 
for optimization. The following discussion may provide 

Fig. 4  Dependence of īmax , the maximum fraction of infected 
individuals minimized by choosing the onset and offset timings of 
intervention, on the intervention reproduction number R0,on . The 
symbols and solid line represent the numerical and analytical results 
(Additional file 1: Section S9), respectively. The numerical results 
verifies the theoretical prediction that īmax takes the minimum value 
at R∗0,on ≈ 1.23
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some intuition for considering such cases, taking into 
account the second wave.

Minimizing imax with a constraint in the intervention 
duration
Let us start with a case where the intervention duration 
�t is less than a certain value. As imax is monotonically 
decreasing in �t for a fixed ton , we can assume that �t is 
a constant, and ton is varied. This case has been studied in 
Figs. 2B–E and 3B–E. This scheme fixes the intervention 
duration, so it is easier to anticipate the economic impact 
of the intervention, which depends on the duration of the 
intervention, than in the next scenario based on the frac-
tion of recovered individuals.

As discussed above, imax is minimized in the intermedi-
ate onset time ton , when the first peak during the inter-
vention and the second peak after the intervention are 
comparable. For larger R0,on , ton giving the minimum imax 
converges to zero for large �t (Fig. 2G), but converges to 
non-zero for large �t for smaller R0,on (Fig. 3(G)). These 
results are understood as follows: for a strong interven-
tion with small R0,on , the intervention immediately sup-
presses the fraction of infected individuals. Therefore, the 
early onset of the intervention prevents more individuals 
from achieving immunity during the intervention and 
eventually increases the maximum fraction of infected 
individuals.

Minimizing intervention duration with a constraint in imax

Another possible constraint is to minimize the inter-
vention duration �t , keeping the maximum fraction of 
infected individuals imax constant. This corresponds to 
choosing ton along a contour of imax , which prevents the 
overcapacity of medical support. In Figs. 2G and 3G, �t 
is minimized for an intermediate ton . Namely, a contour 
that crosses point (C) ( �t = 60 ) reaches �t ≈ 20 if the 
onset time is later than ton = 19.2 (Fig. 2(C)). As we have 
already discussed, the maximum fraction depends on �r 
in region (i). It takes a shorter time to achieve the same 
�r if the intervention starts later in this case. As the max-
imum fraction of infected individuals depends on r(ton) 
but is independent of �r in cases (ii) and (iii), the optimal 
r(ton) is determined by the boundary between regions 
(i) and (ii) or that between (i) and (iii) in Figs. 2F and 3F. 
Evidently this timing is an intermediate value of ton > 0 . 
It may be easier to set a plan for the intervention with 
respect to r(ton) and r(toff ) , rather than the timing ton and 
toff.

Similar optimization problems can be considered using 
the final size as the objective functions. These problems 
are discussed in Additional file 1: Section S10.

Conclusion
In the present study, in consideration of the actual 
COVID-19 situation, we studied the situation in which 
the reproduction number of an infectious disease is 
temporarily reduced by implementing an NPI once dur-
ing the epidemic, using a simple mathematical model. 
The results provide theoretical implications as to how 
strong NPIs should be introduced during an epidemic 
of an emerging infectious disease. If the effective repro-
duction number during the intervention is too small, the 
fraction of infected individuals at the peak in the second 
wave may be higher than the first peak. It was also shown 
numerically and analytically that the fraction of infected 
individuals can also increase if the intervention is started 
too early. The upper limit of medical capacity is an essen-
tial practical constraint. In particular, for infectious 
diseases such as COVID-19, which is too emergent to 
expect effective treatments, it is more important to avoid 
exhausting the medical system. This study suggests that it 
will be necessary to be alert for a larger second wave that 
may occur after strong intervention in such cases.

We analytically derived the peak fractions of infected 
individuals in the SIR model with the one-shot interven-
tion. These analytical results suggest that the peak frac-
tions can be smaller with non-trivial intervention timings. 
The maximum fraction is smallest for R0,on > 1 , that is, 
the intervention reproduction number is not in the dis-
ease-free regime. In the literature, Bootsma and Fergu-
son [26] showed that the final size can be minimized for 
non-trivial intervention timing and R0,on numerically. Di 
Lauro et al. [28] numerically showed that the peak frac-
tion of infected individuals also depends on the timing of 
the intervention. We obtained analytical expressions for 
these quantities in this study. The analytical results for 
the final size are presented in Additional file  1: Section 
S6. It should be noted that the formulae for the peak frac-
tion depend on the timing of the peak, resulting in vari-
ous cases compared with the final size. Some analytical 
results are available for this system. Sadeghi et  al. [30] 
explained these non-trivial effects based on solutions of 
the linearized equation, which exponentially grows and 
decays without and with the intervention, respectively. 
Linearization is one of the simplest approximations and 
is applicable in this case; in particular, this approxima-
tion is useful in discussions regarding timing. Conversely, 
linearization cannot be used to discuss the important 
case where R0,on > 1 , as the linearized equation cannot 
explain the declining number of infected individuals. The 
proposed method in this study provides a unified frame-
work, including the cases where linearization is not fea-
sible. Morris et al. derived [29] an equation for the peaks 
of the fraction of infected individuals in terms of s(ton) , 
s(toff ) , i(ton) , and i(toff ) . In this work, we further show the 
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peak fractions in terms of the two parameters r(ton) and 
r(toff ) for a general initial condition.

Although concrete measures and guidelines for 
COVID-19 are required, it is emphasized again that 
the results in this study were derived using a simpli-
fied model with many assumptions. First, the results 
presented in this study are based on the simplified 
SIR model, which takes into account neither the real-
istic pathology of COVID-19 nor societal response. 
This model assumes uniform and random contact 
within a group and does not consider interactions 
between different subgroups in the population. Recov-
ered patients are assumed to have complete immunity 
in this model. These assumptions are not applicable 
to COVID-19, where there are still many unclear fac-
tors regarding heterogeneity in contact networks and 
the immune response of patients after recovery. It has 
been shown that heterogeneous contacts can affect the 
infection dynamics [33]. The presented method could 
be applied in such a case, if the mean field approxi-
mation describes the epidemic process well. If a soci-
ety develops other public health measures during the 
intervention, the basic reproduction numbers before 
and after the NPI may be different. Next, this study is 
a one-shot intervention model, in which the transmis-
sion coefficient returns to the original value after a sin-
gle intervention. Practically, each re-pandemic requires 
multiple intermittent interventions [34], making the 
intervention process much more complex [35]. Change 
in the parameter β between βoff  and βon occurs dis-
continuously in the present model. However, it should 
take a finite time in realistic case reflecting the time 
for responses of people to an NPI [36]. The finite time 
interval for the parameter change gives a correction 
to the results presented here. Detailed discussions are 
given in Additional file  1: Section S11. Furthermore, 
the model is based on a deterministic dynamical system 
of an isolated population. Therefore, important NPI 
measures such as border control cannot be estimated 
in the present framework. The deterministic nature 
of the model assumes that the infectious disease can-
not be eradicated, as the number of infected individu-
als remains non-zero for a finite time. If the population 
is small enough and no imported cases are assumed, 
strong and early intervention, which is not necessarily 
recommended in this study, may eradicate the disease, 
and a second wave does not occur. Strong interven-
tion would be necessary in other cases, for example, 
when the number of infected patients approaches the 
capacity of the medical system. These complex situa-
tions may be analyzed in detail by extending the meth-
ods presented in this study to e.g., stochastic epidemic 
models [37], which may lead to different conclusions 

from those reached in this study. Another important 
situation would be cases where the endemic state exists 
[38, 39]. Such systems behave qualitatively differently, 
e.g., existence of the Lyapunov function may lead to the 
global stability of the steady state. It would be impor-
tant to discuss an effective intervention strategies to 
such systems.

It is also important to consider dynamics using 
a different criterion, such as the fraction of new 
cases, as a trigger of an NPI. Here, let us briefly 
discuss the possibility to use i(t) for onset/off-
set criteria for the intervention. If we can map 
i(t) to r(t), then we can apply the present frame-
work. The conservation of the total population 
i(t) = 1− r(t)− s(t) = 1− r(t)− exp(−R0,off r(t)) 
enables to determine i(t) from r(t) at the onset of the 
intervention. However, there can be multiple r(t) values 
corresponding to a given i(t). Therefore, if we specify 
the branch of r(t), we can apply the present framework 
using i(t) as the trigger of the intervention. The detailed 
formalization would be an imporntant future work.

In this study, the effect of NPIs was modeled as a 
hybrid dynamical system, which may further enable us to 
approach more refined models in future investigations. The 
influence of NPIs with respect to political decisions and 
behavioral changes of people can be expressed more accu-
rately by introducing a hybrid dynamical system. In recent 
years, dynamical systems theory and control theory have 
been developed, and phenomena specific to hybrid systems 
such as Zeno solutions and sliding motions have been dis-
cussed [18–22]. Some studies, such as [40] and [41], have 
proposed control of infectious diseases using sliding mode 
control. The optimal policy under NPIs can be discussed by 
modeling the effect of economic damages associated with 
execution and then minimizing the cost function. Discrete 
changes in parameters such as the transmission coefficient 
in NPI implementation are strongly linked to the intensity 
of measures, suppression of economic activity, and changes 
in human mobility. For example, the correlation between 
the decrease in human mobility with NPIs and the effec-
tive reproduction number for the COVID-19 pandemic has 
been studied [42, 43]. Such studies can contribute to mod-
eling the costs of NPIs. The mathematical model of the epi-
demic suppression effect can be constructed using a hybrid 
dynamical system, taking into account the negative socio-
economic impact of NPIs.
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