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Abstract 

Background: Diagnosis of pulmonary tuberculosis (PTB) among people living with HIV (PLHIV) was challenging. The 
study aimed to develop and validated a simple, convenient screening model for prioritizing TB among PLHIV.

Methods: The study included eligible adult PLHIV participants who attended health care in Yunnan, China, from 
January 2016 to July 2019. Participants included before June 2018 were in the primary set; others were in the inde-
pendent validation set. The research applied the least absolute shrinkage and selection operator regression to identify 
predictors associated with bacteriological confirmed PTB. The TB nomogram was developed by multivariate logistic 
regression. The C-index, receiver operating characteristic curve (ROC), the Hosmer–Lemeshow goodness of fit test 
(H–L), and the calibration curves were applied to evaluate and calibrate the nomogram. The developed nomogram 
was validated in the validation set. The clinical usefulness was assessed by cutoff analysis and decision curve analysis 
in the primary set.

Result: The study enrolled 766 PLHIV, of which 507 were in the primary set and 259 in the validation set, 21.5% and 
14.3% individuals were confirmed PTB in two sets, respectively. The final nomogram included 5 predictors: current 
CD 4 cell count, the number of WHO screen tool, previous TB history, pulmonary cavity, and smoking status (p < 0.05). 
The C-statistic was 0.72 (95% CI 0.66–0.77) in primary set and 0.68 (95% CI 0.58–0.75) in validation set, ROC performed 
better than other models. The nomogram calibration was good (H–L χ2 = 8.14, p = 0.15). The area under the decision 
curve (0.025) outperformed the existing models. The optimal cutoff for screening TB among PLHIV was the score of 
100 (sensitivity = 0.93, specificity = 0.35).

Conclusion: The study developed and validated a discriminative TB nomogram among PLHIV in the moderate preva-
lence of TB and HIV. The easy-to-use and straightforward nomogram would be beneficial for clinical practice and rapid 
risk screening in resource-limited settings.
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Background
The prevalence of human immunodeficiency virus 
(HIV) and coinfection with tuberculosis (TB) was chal-
lenging to control the HIV and TB epidemic. TB was a 

critical opportunistic infection for people living with HIV 
(PLHIV). HIV-related TB had an incremental risk and 
derived disease burden globally [1]. The World Health 
Organization (WHO) estimated 815,000  TB incidence 
among HIV-positive people with 208,000 death in 2019, 
while the number was 14,000 and 2200 in China [2].

Regular screening for active pulmonary tuberculosis 
(PTB) in PLHIV, rapid PTB diagnosis are the key points 
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for controlling the TB/HIV coinfection, also crucial to 
stop PTB transmission and reduce mortality among the 
susceptible population [3–5]. However, the diagnosis of 
PTB among PLHIV was particularly challenging. TB/
HIV co-morbidity individuals might have atypical, non-
specific clinical features and often a smear-negative dis-
ease [6]. WHO developed a symptom-based screening 
tool for intensifying PTB case detection in PLHIV, and 
it was recommended as routine work under the national 
TB program (NTP) to prioritize TB for isoniazid pre-
ventive therapy (IPT) in the low-resource setting [7, 8]. 
The WHO-recommended four symptom screen (W4SS) 
could identify PLHIV as having a high probability of PTB 
disease with one of four symptoms: current cough, fever, 
weight loss, or night sweat. The latest evidence of WHO 
guidelines showed that W4SS has relatively high sensi-
tivity in adults and adolescents living with HIV, 83%, but 
low specificity, 38%. The sensitivity of W4SS among out-
patients on ART was relatively low, 53%, indicating that 
W4SS alone would not be sufficient to detect TB among 
people in regular ART care. W4SS was relatively sensitive 
in outpatients not on ART (84%), indicating that W4SS 
is useful in finding people with TB among those starting 
HIV care, but the lack of specificity has implications for 
resources and rational use of diagnostic testing [9, 10].

The molecular test was applied for diagnosis of TB 
among PLHIV to improve the yield and speed of diagno-
sis, included the GeneXpert MTB/RIF assay (Cepheid, 
Sunnyvale, USA) (Xpert), and updated the Xpert Ultra 
(Ultra) [11–14]. WHO endorsed and recommended 
using the molecular WHO-recommended rapid diagnos-
tics (mWRDs) for TB screening among inpatient HIV in 
medical wards where TB prevalence over 10% [15]. The 
challenge was Xpert equipment and reagent remains 
unavailable in primary health care units under resource-
limited setting. Meanwhile, the symptom-based screen-
ing rule generated a large number of PLHIV without 
active PTB. The sequential screening strategy of W4SS 
algorithm then Xpert test was impractical. Thus, there 
was the need to predict the highest risk, prioritize the 
PTB screen, and sustain the resource.

Previous studies developed the multivariable predic-
tion model (MPM) to calculate the probability of TB dis-
ease or improve TB case finding among PLHIV [16–18]. 
Although the researches were conducted in high TB and 
HIV prevalence locations, models could not validate 
in different TB/HIV prevalence settings. Furthermore, 
many predictors of the models were unavailable for 
resource-limited settings.

This study aimed to develop, validate, and assess a prac-
tical screening nomogram that integrated demographics, 
symptoms, and clinical factors. In addition, to deter-
mine whether the nomogram provides more accurate 

prediction and utility of the detection for bacteriologi-
cal confirmed PTB among PLHIV in a moderate TB and 
HIV prevalence setting.

Methods
Study setting and participants
Yunnan province located southwest of China, shares a 
border with Myanmar, Laos, and Vietnam, with a moder-
ate TB and HIV prevalence [19]. We developed and vali-
dated our nomogram applied the operational research 
data, a cross-sectional study that evaluates bacteriologi-
cal confirmed PTB among PLHIV in Yunnan Provincial 
Hospital of Infectious Disease.

The study consecutively recruited eligible participants 
as a primary set between January 2016 and June 2018 in 
the study site. Then an independent set included eligible 
participants as a validation set between July 2018 and 
July 2019. The eligible participants in the primary and 
validate set were included or excluded using the same 
criteria, and they followed the identical investigation and 
laboratory testing.

The participants who met the inclusion criteria were 
recruited as eligible patients: inpatient or outpatient 
infected with HIV or diagnosed AIDS patients regard-
less of ART status and previously TB; age over 15 years; 
any symptomatic PLHIV, suitable for the TB screening 
and testing without critical or severe illness; and gave 
written informed consent to participate in the study. 
The exclusion criteria were as follows: refused to par-
ticipate; did not give writing consent in the survey; cur-
rent under anti-TB treatment; pregnant and maternal 
woman; abnormal mental condition, severe or emergency 
condition.

This study was conducted and reported by following 
the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) 
guideline developing, validating, or updating a prediction 
model [20]. TRIPOD checklist was displayed in Addi-
tional file 1: Table S1.

Study outcome
We defined the study outcome as bacteriological con-
firmed PTB and not PTB among PLHIV. Four sputum 
samples were requested when submitting a sputum test 
(two instant spot sputums, the third at night, and the 
fourth in the following morning). The bacteriological 
confirmed PTB was those PLHIV have any of the positiv-
ity of laboratory result: (1) Xpert MTB/RIF or (2) smear-
positive or (3) M. tuberculosis culture-positive from any 
of the sputum samples. The laboratory procedure was 
stated in Additional file 2: Method S1.
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Predictors
Potential predictors associated with PTB among PLHIV 
were pre-specified based on epidemiological, clinical 
experience, and current literature review [21–26]. The 
factors included age, sex, body mass index (BMI, kg/
m2), ART status (Pre-ART, On-ART), current CD 4 cell 
count (cells/ul), current cough (yes, no), fever (yes, no), 
unintentional weight loss (yes, no), night sweats (yes, 
no), hemoptysis (yes, no), tired (yes, no), the number 
of WHO screen tool of TB symptoms (current cough, 
fever, weight loss, and night sweats), previous TB his-
tory (yes, no), abnormal chest radiograph (yes, no), pul-
monary cavity (yes, no), smoking status (never smoked, 
current smoking), alcohol use (never drank, current 
drinking). The following factors were self-reported by 
participants: age, TB symptoms, previous TB history, 
smoking status, and alcohol use; the rest were from the 
medical examination, test, or investigation.

Sample size calculation
The calculation of study sample size followed the 
method of developing a clinical prediction model [27, 
28]. The parameters of C-index were set as 0.8, the TB/
HIV prevalence was estimated as 0.2 [29], number of 
predictors was 17, the calculation resulted the mini-
mum sample size was 752.

Statistical analysis
All statistical analysis was conducted with R software 
3.6.2 (http:// www. Rproj ect. org). The level of p < 0.05, 
two-sided was set as statistical significance.

Demographic and clinical characteristics were 
grouped based on the study outcome. The categorical 
variables were summarized as frequency and compared 
using the chi-square test and Fisher’s exact test as 
appropriate. The continuous variables were presented 
as the median and interquartile range (IQR).

Predictor selection
The least absolute shrinkage and selection operator 
(LASSO) method [30, 31], which suitable for the mul-
tiple variable selection and regression in high-dimen-
sion or highly correlated data, was applied to select 
the predictive features in the primary set. The 1-SE 
criteria defined the best LASSO parameter λ, which 
the regularized model that the ten-fold cross-validated 
error was within one standard error of the minimum. 
The optimal LASSO shrinkage parameter λ was in the 
1-SE criteria with least number variables. The LASSO 
coefficient trace plot against variables determined the 

nonzero coefficients and variables analyzed in next 
model build step.

Development of the nomogram
The association between LASSO selected variables and 
the study outcome was assessed by univariate binary 
logistic regression. The multivariate prediction model 
was performed by using LASSO-selected variables. 
Based on the multivariate logistic regression results in 
the primary set, we built a quantitative and scoring tool 
of a nomogram to predict the PLHIV individual prob-
ability of PTB diagnosis. The scores of variables in nomo-
gram were defined by ratio method. The score of variable 
i could be calculated as scorei = βi

100

βmax
 , where the βi was 

regression coefficient of variable i, βmax was the max β 
of all regression coefficients, the score of max β variable 
was set as 100. Total score of nomogram was defined as 
scoretotal =

∑
n

i=1
scorei.

Model evaluation and calibration
Harrell’s C-index assessed the performance of the nomo-
gram. The C-index represented the discriminative ability; 
the larger C-index, the more accurate the prediction was. 
Meanwhile, the sensitivity and specificity of nomogram 
were performed with receiver operating characteristic 
curve (ROC). The previous XPHACTOR model (predic-
tors included: BMI, ART status, current CD 4 cell count, 
the number of WHO screen tool of TB symptoms) [17], 
and W4SS algorithm was compared the area under the 
curve (AUC) with the tuberculosis nomogram.

The Hosmer–Lemeshow goodness of fit test (H–L test) 
was applied for model calibration; a nonsignificant sta-
tistic of the H–L test implied the nomogram calibrated 
perfectly [32–34]. To assess the agreement between 
actual and predicted outcomes, we generated calibration 
curves to evaluate the nomogram. The in-sample and a 
bootstrapping validation (1000 bootstrap samples) were 
applied for depicted calibration curves.

Model validation
The independent validation was conducted in the vali-
dation set to test the generalization performance of the 
nomogram. The data of validation set were reintroduced 
into the previous established nomogram for internal vali-
dation. The performance of the nomogram in the vali-
dation set was assessed by C-index, ROC analysis, AUC 
comparison, H–L test, and calibration curves, as stated 
before.

Clinical utility
The cutoff analysis was performed to evaluate the appli-
cability of the nomogram. The continuous scores and 
corresponding cutoffs were depicted with sensitivity 

http://www.Rproject.org
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and specificity of nomogram, aimed to find the opti-
mal threshold for screening TB among PHILV. Decision 
curve analysis (DCA) was performed to evaluate the 
clinical usefulness of the nomogram. The clinical useful-
ness was defined as a net benefit (summing the true posi-
tives diagnosis and subtracting the weighted risk of false 
positives diagnosis) at sequential threshold probability. 
Thus, the balanced net benefit was the benefit of PLHIV 
with TB started empiric treatment (true positives) minus 
the harm of PHLHV without TB began empiric treat-
ment (false positives) under various thresholds. We com-
pared the net benefit of our nomogram to the previous 
XPHACTOR model and W4SS algorithm. A net benefit 
value of 0 meant no benefit of the model; higher values 
indicate more benefit [35, 36]. The benefit–cost ratio and 
area under the decision curve (AUDC) were used to eval-
uate the clinical utility of the risk model.

Sensitivity analysis
To test the stability and applicability of the model in dif-
ferent settings, we thus conducted sensitivity analysis 
based on the developed nomogram. By introducing and 
substituting variables in the model, we assessed the sensi-
tive model with C-index, H–L test, and DCA analysis.

Results
Study population and characteristics
In total, the study enrolled 766 PLHIV for investigation 
and examination, of which 66.2% (507/766) were in the 
primary set and 33.8% (259/766) in the validation set, 
respectively. The primary set identified 21.5% (109/507) 
bacteriological confirmed individuals and 78.5% 
(398/507) participants with negative test results; the pro-
portion was 14.3% (37/259) and 85.7% (222/259) for the 
validation set.

PLHIV characteristics and the comparisons were 
shown in Table 1. The primary set consisted of 373 males 
and 134 females; the median age was 45 years. The vali-
dation set comprised 178 males and 81 females; the 
median age was 45  years. Ten of the factors in the pri-
mary set was significantly associated with bacteriologi-
cal confirmed PTB, included the ART status, current CD 
4 cell count, current cough, night sweats, unintentional 
weight loss, the number of WHO screen tool, previous 
TB history, abnormal chest radiograph, pulmonary cav-
ity, and smoking status (p < 0.05).

Predictor selection
The LASSO logistic regression model returned five 
nonzero coefficients while choosing the minimum cri-
teria optimal shrinkage factor (Fig. 1). Based on the pri-
mary set, the collected 17 features were reduced to 5 
predictors for the next step model development: current 

CD 4 cell count, the number of WHO screen tool, previ-
ous TB history, pulmonary cavity, and smoking status.

Development of prediction model
Table  2 summarized the development of the risk pre-
diction model. The table showed that the predictors 
included current CD 4 cell count, the number of WHO 
screen tool, pulmonary cavity, previous TB history, and 
smoking status had a significant relationship with con-
firmed PTB (p < 0.05). All predictors were fitted into the 
multivariable binary logistic regression and shown as 
independent predictors. The TB nomogram that inte-
grated all the above significant predictors for the primary 
set was developed and presented in Fig. 2A. The practi-
cal step-by-step TB risk calculator among PLHIV was 
showed in Fig. 2B. Additional file 3: Table S2 showed the 
calculation to define the points of variables.

The C-index of the PTB model among PLHIV in the 
primary set was 0.72 (95% CI, 0.66–0.77). The AUC of 
ROC for the nomogram (0.72) was bigger than XPHAC-
TOR model (0.61) and W4SS algorithm (0.55, p < 0.05, 
Fig.  3A). The H–L test showed a nonsignificant statis-
tic (χ2 = 8.14, p = 0.15), suggested that the nomogram 
performance was no departure from the ideal fit. The 
calibration plot showed that it along with the diagonal, 
though over prediction presented in the high-risk section 
(Fig. 4A).

Validation of the nomogram
The independent validation of nomogram performed 
in the validation set, the C-index of the PTB nomo-
gram was 0.68 (95% CI, 0.58–0.75). The AUC of ROC 
for nomogram (0.68) was bigger than W4SS algorithm 
(0.59, p < 0.05), but it was identical with XPHACTOR 
model (p > 0.05, Fig. 3A). The calibration curve presented 
a favorable overall agreement between the observed and 
predicted probability of PTB (Fig. 4B).

Clinical utility
The optimal cutoff for screening TB among PLHIV was 
the score of 100 (Fig.  5A, sensitivity = 0.93, specific-
ity = 0.35). More information of threshold analysis was 
in Additional file 4: Table S3. The decision curve analysis 
for the PTB nomogram among PLHIV was presented in 
Fig. 5B. The curve showed that the proposed nomogram 
provided the highest net benefit within the risk thresh-
old range of 10% to 41% compared with the XPHACTOR 
rule, diagnosis-all, or diagnosis-none scheme. Cost to 
benefit ratio was from 1:9 to 2:3 in that threshold range. 
The area under the decision curve was 0.025, higher than 
the XPHACTOR rule (0.016), W4SS algorithm (0.005), 
diagnosis-all (0.014), or diagnosis-none (0.00) strategy, 
respectively.
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Table 1 Baseline and clinical characteristics of primary and validation population

Characteristics Primary set N (%) Validation set N (%)

Confirmed PTB cases Not PTB p Confirmed PTB cases Not PTB p

All 109 (21.5%) 398 (78.5%) 37(14.3%) 222(85.7%)

Sex

 Female 88 (80.7%) 285 (71.6%) 0.06 23 (62.2%) 155 (69.8%) 0.35

 Male 21 (19.3%) 113 (28.4%) 14 (37.8%) 67 (30.2%)

Age (years)

Median (IQR) 43(37–49) 45(37–55) 42(31–52) 45(36–56)

 < 25 3 (2.8%) 9 (2.3%) 0.29 2 (5.4%) 3 (1.4%) 0.28

 25–44 59 (54.1%) 176 (44.2%) 19 (51.4%) 101 (45.5%)

 45–64 38 (34.9%) 170 (42.7%) 12 (32.4%) 89 (40.1%)

 ≥ 65 9 (8.3%) 43 (10.8%) 4 (10.8%) 29 (13.1%)

BMI (kg/m2)

Median (IQR) 18.9(17.2–20.6) 19.9(17.7–22.0) 17.9(16.9–19.8) 20.0(18.0–21.9)

 < 18.5 44 (40.4%) 146 (36.7%) 0.38 19 (51.4%) 72 (32.4%) 0.08

 18.5–24 59 (54.1%) 214 (53.8%) 15 (40.5%) 127 (57.2%)

 ≥ 24 6 (5.5%) 38 (9.5%) 3 (8.1%) 23 (10.4%)

ART status

 On ART 44 (40.4%) 221 (55.5%)  < 0.01* 15 (40.5%) 143 (64.4%)  < 0.01*

 Pre-ART 65 (59.6%) 177 (44.5%) 22 (59.5%) 79 (35.6%)

Current CD 4 cell count (cells/μl)

 Median (IQR) 52 (32–114) 119 (44–298) 84 (31–158) 151 (50–343)

 < 100 73 (67.0%) 176 (44.2%) < 0.01* 22 (59.5%) 90 (40.5%) < 0.01*

 100–199 16 (14.7%) 74 (18.6%) 10 (27.0%) 38 (17.1%)

 ≥ 200 20 (18.3%) 148 (37.2%) 5 (13.5%) 94 (42.3%)

Symptoms

 Cough (yes) 79 (72.5%) 226 (56.8%) < 0.01* 22 (59.5%) 92 (41.4%) 0.04*

 Fever (yes) 66 (60.6%) 204 (51.3%) 0.08 21 (56.8%) 77 (34.7%) 0.01*

 Weight loss (yes) 62 (56.9%) 164 (41.2%) < 0.01* 22 (59.5%) 96 (43.2%) 0.06

 Night sweat (yes) 54 (49.5%) 128 (32.2%) < 0.01* 16 (43.2%) 60 (27.0%) 0.04*

 Hemoptysis (yes) 6 (5.5%) 13 (3.3%) 0.26 3 (8.1%) 5 (2.3%) 0.09

 Tired (yes) 34 (31.2%) 154 (38.7%) 0.15 11 (29.7%) 86 (38.7%) 0.29

No. of WHO symptoms

 0 13 (11.9%) 90 (22.6%) < 0.01* 7 (18.9%) 80 (36.0%) 0.04*

 1 17 (15.6%) 75 (18.8%) 5 (13.5%) 44 (19.8%)

 2 28 (25.7%) 106 (26.6%) 7 (18.9%) 42 (18.9%)

 3 16 (14.7%) 73 (18.3%) 10 (27.0%) 27 (12.2%)

 4 35 (32.1%) 54 (13.6%) 8 (21.6%) 29 (13.1%)

Previous TB history

 Yes 28 (25.7%) 55 (13.8%) < 0.01* 8 (21.6%) 40 (18.0%) 0.64

 No 81 (74.3%) 343 (86.2%) 29 (78.4%) 182 (82.0%)

Abnormal chest radiograph

 Yes 95 (87.2%) 306 (76.9%) 0.02* 34 (91.9%) 166 (74.8%) 0.02*

 No 14 (12.8%) 92 (23.1%) 3 (8.1%) 56 (25.2%)

Pulmonary cavity

 Yes 12 (11.0%) 15 (3.8%) < 0.01* 5 (13.5%) 3 (1.4%)  < 0.01*

 No 97 (89.0%) 383 (96.2%) 32 (86.5%) 219 (98.6%)

Smoking status

 Never 50 (45.9%) 263 (66.1%) < 0.01* 21 (56.8%) 128 (57.7%) 0.91

 Current 59 (54.1%) 135 (33.9%) 16 (43.2%) 94 (42.3%)

Alcohol use

 Never 86 (78.9%) 330 (82.9%) 0.33 28 (75.7%) 171 (77.0%) 0.84

 Current 23 (21.1%) 68 (17.1%) 9 (24.3%) 51 (23.0%)
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Sensitivity analysis
The Additional file  5: Table  S4 presented the sensitivity 
analysis results. The sensitive models with different pre-
dictors (by introducing ART status, and substituting CD4 
count by ART status) presented no further discrimina-
tive information; performed the constant C-index and 
calibration H–L test results with the favorite nomogram. 
The AUDC presented no more extra benefit in sensitivity 
models.

Discussion
We developed and validated the nomogram to calculate 
individualized risks, which estimated the active PTB 
among PLHIV under moderate TB/HIV prevalence. 
Although its rule was simple and the predictors were 
accessible, this integrated prediction model accurately 
discriminated PLHIV who had bacteriological confirmed 
PTB from those without PTB. The predicted and actual 
risks were concordances in both primary and validated 

Table 1 (continued)
*p value < 0.05

PTB pulmonary tuberculosis, IQR interquartile range, BMI body mass index, ART  antiretroviral therapy, WHO World Health Organization

Fig. 1 Feature selection applying the least absolute shrinkage and selection operator with binary logistic regression model. A LASSO shrinkage 
parameter λ selected by 10- fold cross-validation with minimum criteria. The Mean-Squared Error (red dots) and its 95% error bar (grey interval) 
was plotted against ln(λ) sequence. Vertical line shown the optimal value of λ selected by the minimum criteria (1-SE criteria: the regularized 
model that the cross-validated error is within one standard error of the minimum). A shrinkage factor λ of 0.041, with ln(λ) = − 3.19 was chosen for 
optimal parameter. B LASSO coefficient trace of features. LASSO coefficient trace was plotted against the ln(λ) sequence, vertical line was drawn 
by the optimal λ value selected in the first step, where result in 5 nonzero coefficients (current CD 4 cell count, the number of WHO screen tool of 
TB symptoms, pulmonary cavity, previous TB history and smoking status) with the minimum criteria. LASSO least absolute shrinkage and selection 
operator, MSE mean-squared error, TB tuberculosis

Table 2 Binary logistic regression model for predicting bacteriological confirmed tuberculosis in people living with HIV

WHO World Health Organization, TB tuberculosis

Factors Unadjusted Odds 
Ratio

95% CI p Adjusted Odds 
Ratio

95% CI p

CD 4 count (< 100 vs. ≥ 200) 3.07 (1.82–5.39) < 0.01 2.55 (1.44–4.64)  < 0.01

CD 4 count (100- 199 vs. ≥ 200) 1.60 (0.77–3.26) 0.19 1.51 (0.72–3.14) 0.27

No. of WHO symptoms 1.38 (1.17–1.62) < 0.01 1.18 (1.01–1.42) 0.05

Pulmonary cavity (yes vs. no) 3.16 (1.41–6.96) < 0.01 2.42 (1.03–5.57) 0.04

Previous TB history (yes vs.no) 2.16 (1.28–3.59) < 0.01 1.80 (1.03–3.10) 0.04

Smoking status (current vs. never) 2.30 (1.50–3.54) < 0.01 2.23 (1.43–3.51) < 0.01
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Fig. 2 Tuberculosis nomogram and risk calculator among people with HIV/AIDS. A Tuberculosis nomogram for people with HIV/AIDS. B 
Tuberculosis risk calculator for people with HIV/AIDS. To use the nomogram in A, an individual PLHIV category located on each predictor axis, 
which corresponding to the Points axis overhead, a vertical line could be drawn to determine the score of each variable. The summation score 
of 5 variables located on the Total Points axis, a vertical line could be drawn downward to the Risk of TB axis to determine the likelihood of the 
bacteriologically confirmed tuberculosis in PLHIV. The risk calculation was followed the steps in B. First, define and choose the nomogram scores 
corresponding to the PLHIV individual category, then sum up all five assigned scores, and got the total points of PLHIV individual. Second, find the 
risk of bacteriologically confirmed tuberculosis in PLHIV in the right-hand side table corresponding the total points. PLHIV people with HIV/AID; TB, 
tuberculosis

Fig. 3 Receiver operating characteristic area under the curve showing the discriminative performance of 3 different algorithms. A Predictive 
performance for the primary set. B Predictive performance for the validation set. The red line represents the ROC and AUC of tuberculosis 
nomogram, The green line represents the ROC and AUC of XPHACTOR study rule (included ART status, CD4 count, BMI, and the number of WHO 
symptoms), The blue line represents the ROC and AUC of W4SS algorithm. The vertical lines show the comparison between different algorithm 
AUCs, the red vertical lines with asterisk were AUC difference significant p < 0.05, the black vertical line was insignificant and p > 0.05. ROC receiver 
operating characteristic curve, AUC  area under the curve, W4SS WHO-recommended four symptom screen
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Fig. 4 Calibration curve of the tuberculosis nomogram. A Calibration curve of the tuberculosis nomogram in the primary set. B Calibration curve of 
the tuberculosis nomogram in the validation set. The calibration curve represents the agreement between nomogram-predicted risk of confirmed 
TB and actual diagnosis outcome. The spike histogram at the top shows the distribution of predicted risks. The dash line in diagonal shows a 
perfectly-calibrated model. Red and black solid lines show the nomogram in-sample calibration outcome and the bias-corrected calibration by 
bootstrap resampling 1000 times respectively

Fig. 5 Performance of cutoffs and decision curve analysis for tuberculosis diagnostic nomogram among people with HIV/AIDS. A The sensitive 
and specific performance of the tuberculosis nomogram at different cut-offs. B Decision curve analysis compares the standardized net benefit of 
different strategies. The clinical utility of four diagnostic strategies is compared by plotting the net benefit (y axis) for the threshold based on the risk 
of bacteriological confirmed tuberculosis (x axis). Net benefit calculated by summing the benefits (true positives) and subtracting the harms (false 
positives, weighting by the relative harm of withdraw treatment and an unnecessary treatment). The red line represents the developed nomogram 
yielded highest net benefit and area under decision curve for potential thresholds (ranging from 10 to 41%). The green line represents the net 
benefit of XPHACTOR study rule (included ART status, CD4 count, BMI, and the number of WHO symptoms). The blue line represents the net benefit 
of W4SS algorithm. The black line represents the assumption that all PLHIV diagnosis with confirmed TB. The grey line represents the assumption 
that no PLHIV diagnosis with confirmed TB. PLHIV people with HIV/AID, TB tuberculosis, W4SS WHO-recommended four symptom screen
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sets. Furthermore, the nomogram had an additional 
benefit and outperformed the existing multivariate pre-
dict model, suggested the remarkable clinical utility in 
practice.

The potential impact of this study was the nomogram 
could be integrated into the disease control policy. The 
application was the nomogram as a tool to help routine 
TB control work. The health care provider (HCP) could 
rapidly calculate risk by hand and improve PTB case find-
ings. In the constrained-resource setting, the bacteriol-
ogy or molecular test for TB might be unavailable, or the 
long delay of laboratory test results reported, all of which 
might lead to the unfavorable consequence of the clinical 
decision and poor PTB treatment prognosis. The utility 
of the risk calculator was shortening the diagnosis delay 
and the time waiting for the TB laboratory tests results. 
The model predefined the highest probability of active 
PTB, which was considered the initiation of anti-TB 
treatment by its high sensitivity.

The significant advantage of the predictive nomogram 
was laid on its predictors, the PLHIV information con-
tained current CD 4 cell count, the number of WHO 
screen tool, pulmonary cavity, previous TB history, and 
smoking status; which enhanced the nomogram accurate 
and was available and accessible for primary health care 
unit. The self-reported predictors of symptoms, previ-
ous TB history, and smoking status were conveniently 
collected by HCP. Medical test and examination of CD 4 
cell count and Chest X-ray (CXR) was available in most 
resource-limited situations.

The LASSO method selected the combination of 5 
characteristics for the nomogram and met the optimal 
criterion. Although ART status was an indicator in other 
clinical models [17, 18], our risk calculator excluded it. 
In the sensitivity analysis, we added the ART status as an 
additional predictor. The model with six predictors pre-
sented no further discriminative information compared 
with developed nomogram; The AUDC obtained no more 
extra benefit for ART status. Another model by substitut-
ing CD4 count with ART status performed worse dis-
criminative and AUDC than the developed nomogram. 
Thus, the HCP could calculate the PTB risk with the 
above 5 predictors regardless of ART status. For the con-
sideration that in some resource limited countries, CD4 
testing was not systematically performed under NTP or 
the testing might be unavailable, substituting CD4 count 
by ART status might be an advantage model due to the 
slight loss of performance in sensitivity model (C-index, 
0.70, 95%CI, 0.64–0.76).

The risk calculator integrated with the WHO screen-
ing tool could potentially pragmatically impact clinical 
practice. The latest evidences supported the standpoint 
that any TB screening tool used alone was insufficient 

to detect PTB and to excluded no-PTB in PLHIV, 
because either the low sensitivity or the low specificity 
of the existing tools [10]. The W4SS algorithm alone has 
relatively high sensitivity but low specificity (sensitiv-
ity = 83%, specificity = 38%) in adults and adolescents liv-
ing with HIV [15]. A meta-analysis presented the W4SS 
addition with any abnormal CXR in people on-ART 
could improve sensitivity to 84.6% but decrease the spec-
ificity to 29.8% [37]. Our study supplied a measurement 
that integrated the WHO tool and other risk predictors, 
yielded more accurate discrimination and potentially 
impacts clinical practice. In the ROC and AUC analysis 
in primary and validation set, the yield of both sensitiv-
ity and specificity suggested that the nomogram not only 
could detect the high PTB risk PLHIV individual but also 
could be beneficial to rule out the active TB cases.

Another important contribution of this study is that in 
the cutoff analysis, we defined an optimal threshold score 
of TB nomogram (cutoff = 100). The interpretation of this 
would be PLHIV with CD4 count less than 100 cells/mm3 
was enough to reach 100 points for the nomogram. This 
would mean that any PLHIV with any symptom and CD4 
less than 100 cells/mm3 should be systematically inves-
tigated for TB. The result was consistent with a recent 
clinical trial [38]. The high number of PLHIV detected 
with TB by intensive case finding with urine lipoarabi-
nomannan (LAM), Xpert and chest X-ray regardless on 
symptom among ART naïve PLHIV with CD4 < 100 cells 
/mm3. Despite the targets proposed by WHO for screen-
ing test was 90% for sensitivity and 70% for specific-
ity, the nomogram performed better than other existing 
tools, which could be applicable for TB screening (sen-
sitivity = 93%, specificity = 35%). There was other use of 
this nomogram, if the individual with low probability of 
PTB accompanied by latent TB infection (LTBI) diag-
nosis, suggested the potential eligibility for the isoniazid 
preventive therapy.

Previous studies have developed multivariate pre-
diction models for identifying TB among PLHIV. The 
research by Balcha et  al. developed a scoring system of 
PTB in adult PLHIV in Ethiopia [39]. The model predic-
tors included cough, Karnofsky score, mid-upper arm 
circumference (MUAC), peripheral lymphadenopathy 
and hemoglobin. Though the area under curve (AUC) 
was 0.75, the system was never calibrated and validated. 
Thus, the generalization ability of the scoring system was 
unknown. The study by Boyles et al. in South Africa [18] 
developed an MPM and concluded the lack of response 
to empiric antibiotics therapy was a strong predictor of 
TB in PLHIV, C-reactive protein (CRP) adds predictive 
value only while the second visit and measured after anti-
biotics (C-index, 0.75). The sample size was small, and 
no external validation was done yet. Another research 
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was conducted by Hanifa et al. in South Africa [17]. They 
developed the XPHACTOR rule, which included ART 
status, CD4 count, BMI, and the number of WHO symp-
toms. The rule shown an acceptable C-index (0.75) and 
good calibration (H–L test p = 0.31). We thus did exter-
nal validation applied the XPHACTOR algorithm to our 
primary set data. The MPM performance was shown an 
ordinary discriminative ability (C-index, 0.61) and ade-
quately calibrated by the H–L test (χ2 = 4.37, p = 0.49). 
The deficient validation performance might attribute 
to the differential study populations and epidemiology 
risks. More evidences and external validations in differ-
ent population were needed to verify the generalization 
and applicability of the XPHACTOR rule. Meta-analysis 
showed the BMI had a consistent log-linear association 
with TB incidence in the general population [40]. Higher 
BMI decreased the HIV-related TB incidence [41]. In 
our study, both in the primary and validated set, BMI 
was insignificantly associated with PTB incidence among 
PLHIV. The reason was that the exposure of high BMI 
contributed to reducing the PTB epidemic in high and 
middle-high socio-demographic index (SDI) countries 
recent years [42]. Meanwhile, the population malnutri-
tion status was still constantly the main risk in the low 
and middle SDI countries. The demographic and geo-
graphical disequilibrium of risk distribution led to the 
different risk models.

The most important argument for applying the nomo-
gram was based on the interpretation of the individual 
needs for further treatment or health care. Therefore, 
to sustain the clinical usefulness of the nomogram, we 
assessed whether the nomogram decision improved 
clinical outcomes. The novel method of decision curve 
analysis was applied to explore the consequence based on 
threshold probabilities. The indicator of high net benefit 
derived worthwhile clinical practice. The decision curve 
showed that if the risk threshold was defined between 10 
and 41%, the current nomogram added more benefit than 
the XPHACTOR rule, W4SS algorithm, diagnosis-all, or 
diagnosis-none scheme.

The remarkable clinical utility of the nomogram lied in 
the accurate individualized quantification of the TB risk 
among PLHIV. By treating the TB risk as a continuum 
instead of the stratified risk into high-, middle-, or low-
risk groups, the study presented TB diagnostic infor-
mation that could assist the clinical decision-making. 
Meanwhile, the nomogram provided the clinician and 
patient with indispensable knowledge to promote the 
well-informed clinical decision in practice. While the 
risk threshold in the study was undefined, the nomogram 
performed better and yield more than existed model and 
algorithm at any risk threshold. Therefore, the model 
could be set as the standard for conventional clinic and 

disease control practice for the rapid screening of TB in 
the PLHIV, especially in implementing the large-scale 
active case finding strategy. In addition, PLHIV could 
revalue and examined the TB risk periodically by using 
the nomogram themselves. This would benefit the pri-
mary prevention for TB among HIV.

Our study has the strength that the well-designed 
cross-sectional study consecutively included the PLHIV; 
the representative samples allowed us to develop and val-
idate the practical nomogram. In addition, the study was 
implemented and reported compliance with TRIPOD 
guidelines. Furthermore, the novel predictor selection 
method and decision curve analysis improved the power 
and interpretation of the research.

However, the study has the limitation that the outcome 
was based on laboratory bacteriological confirmed PTB, 
though the updated Ultra outperformed Xpert among 
PLHIV. The systematic review reported the substan-
tially improved sensitivity for Ultra (90%) compared with 
Xpert (77%) in PLHIV [14]. This suggested the further 
study was needed to assess the nomogram by applying 
the new diagnostic tools. The nomogram did not incor-
porate some new point of care tests that could potentially 
have value in screening of TB, include urine LAM and 
CRP, and these diagnostic tests need further evaluation 
[15, 43, 44]. Bacteriologically confirmed TB represented 
only a fraction of all TB cases among PLHIV, and this 
fraction is even lower when PLHIV are severely immu-
nosuppressed, a prospective cohort using a TB case vali-
dation by an independent review committee is needed 
in further study. Besides, the predictor was self-reported 
by participants, such as smoking habit and previous TB 
history, meanwhile, it did not consider of the quantity 
and duration for the smoking and drinking. The model 
would be imprecise with inaccurate exposure measure-
ment. Additionally, in many sub-Saharan African coun-
tries with more constrained resource, CD4 and CXR test 
might unavailable, risk factors of TB were dissimilar to 
Asian, so more evidence was needed for the nomogram 
generalization in different population. By considering the 
relative low specificity, future sensitivity analysis should 
focus on that without CXR or identifying the proportion 
of patients who reach 100 points without CXR in limited 
resource countries.

Conclusions
The study developed and validated a TB nomogram 
among PLHIV; the simple rule integrated PLHIV’s infor-
mation: CD 4 cell count, the number of WHO screen 
tool, pulmonary cavity, previous TB history, and smoking 
status. The nomogram could benefit in clinical and public 
health practice and TB intensified case finding strategy, 
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and it should be prioritized for rapid TB screen in PLHIV 
in a moderate setting.
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