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Abstract 

Background: This study evaluated the performance of a novel fast broad range PCR and sequencing (FBR-PCR/S) 
assay for the improved diagnosis of invasive fungal disease (IFD) in high-risk patients in a large Canadian healthcare 
region.

Methods: A total of 114 clinical specimens (CS) including bronchoalveolar lavages (BALs) were prospectively tested 
from 107 patients over a 2-year period. Contrived BALs (n = 33) inoculated with known fungi pathogens were also 
tested to increase diversity. Patient characteristics, fungal stain and culture results were collected from the labora-
tory information system. Dual-priming oligonucleotide (DPO) primers targeted to the internal transcribed spacer 
(ITS) (~ 350 bp) and large subunit (LSU) (~ 550 bp) gene regions were used to perform FBR-PCR/S assays on extracted 
BALs/CS. The performance of the molecular test was evaluated against standard microbiological methods and clinical 
review for the presence of IFD.

Results: The 107 patients were predominantly male (67, 62.6%) with a mean age of 59 years (range = 0–85 years): 74 
(69.2%) patients had at least one underlying comorbidity: 19 (34.5%) had confirmed and 12 (21.8%) had probable IFD. 
Culture recovered 66 fungal isolates from 55 BALs/CS with Candida spp. and Aspergillus spp. being most common. For 
BALs, the molecular assay vs. standard methods had sensitivity, specificity, positive predictive value (PPV) and negative 
predictive value (NPV), and efficiency of 88.5% vs.100%, 100% vs. 61.1%, 100% vs. 88.5%, 61.1% vs. 100%, and 90.2% 
for both. For other CS, the molecular assay had similar performance to standard methods with sensitivity, specificity, 
PPV, NPV and efficiency of 66.7%, 87.0%, 66.7%, 87.0% and 81.3% for both methods. Both methods also performed 
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Background
Invasive fungal disease (IFD) has increased significantly 
in the last few decades due to the expansion of patients 
with acquired immunosuppression [1–4]. IFD results in 
increased morbidity and mortality and higher healthcare 
costs [5–10]. Delayed diagnosis is associated with poor 
clinical outcomes because appropriate treatment meas-
ures are not promptly started [1, 11, 12]. However, IFD 
is often difficult to diagnose because clinical and radio-
graphic findings are non-specific [4]. Traditional micro-
biological methods such as fungal culture also have low 
sensitivity ranging from 30 to 60% [13, 14], and the lack 
of concordance between histopathology and cytology 
examination and culture is well documented [15–17].

Molecular methods including broad-range PCR fol-
lowed by sequencing are increasingly being used 
for definitive identification of fungal pathogens and 
improved diagnosis of IFD [4, 14, 18]. The aim of this 
study was to identify unique primer candidates for broad-
range amplification of the fungal internal transcribed 
spacer (ITS) and large subunit (LSU) gene regions to 
use in a fast PCR/sequencing assay that could be rapidly 
completed in a clinical laboratory. Prior studies evaluat-
ing panfungal PCR assays have relied on conventional 
primers targeted to one or more regions of the fungal 
multi-copy ribosomal RNA (rRNA) such as 18S rRNA, 
D1and D2 regions of 28 s rRNA, 5.8S rRNA, and internal 
transcribed spacers 1 and 2 (ITS1 and ITS2) with variable 
success [19–28]. We designed a new primer pair based 
on the dual priming oligonucleotide (DPO) principle 
because of our success with this approach in previously 
implementing a broad-range 16S rRNA PCR/sequenc-
ing assay with robust sensitivity and improved specific-
ity due to elimination of cross-reactivity with human 
material [29]. A DPO consists of two functional seg-
ments with distinct annealing properties connected by 
five consecutive deoxyinosine bases or a poly (I) linker; 
(1) a 5’ segment (18–25 bp) allows for stable positioning 
and annealing of the primer, and (2) a shorter segment 
(6–12  bp) that will only bind if there is stable anneal-
ing of the 5’ end to ensure target-specific extension [30] 
Diagnostic performance of our novel fungal FBR-PCR/S 
assay was compared to standard microbiological meth-
ods already in use in our laboratory (i.e., morphology, 
fungal culture with identification using matrix-assisted 

laser desorption ionization-time of flight mass spectrom-
etry (MALDI-TOF MS) and PCR/sequencing using con-
ventional ITS 1/2 universal primers). A recommended 
algorithm is provided for clinical laboratories to allow 
reporting the same day by efficient integration of tech-
nologists’ workflow for simultaneously performing bacte-
rial and fungal broad-range PCR/cycle sequencing assays 
within a standard ~ 8 h dayshift.

Materials and methods
Patients and clinical specimens
Patients with and without suspected non-invasive and 
IFD were prospectively enrolled over a 2-year period 
(2016–18) from the Calgary Zone, Alberta Health Ser-
vices (AHS) based on combined concern of the consult-
ing Infectious Diseases physician for IFD, and the results 
of microbiological analyses of clinical specimens. Cases 
were categorized as having proven probable or possi-
ble IFD or no fungal disease based on consensus defini-
tions recently published by the European Organization 
for Research and Treatment of Cancer and the Mycoses 
Study Group Education and Research Consortium 
(EORTC/MSGERC) following clinical review by medical 
microbiologists (MG and JC) and an infectious diseases 
specialist (DLC) [4].

Sterile fluid and tissue specimens were enrolled by the 
microbiology laboratory (Clinical Section of Microbiol-
ogy, Calgary Laboratory Services (CLS; now Alberta Pre-
cision Laboratories) after quality approval by a medical 
microbiologist (DLC/TG/MG). Study specimens were 
stored at − 80 to − 86 °C before analyses. Stored clinical 
specimens and contrived bronchoalveolar lavages (BALs) 
were used for pre-clinical validation of the molecular 
assay. Contrived BAL specimens were prepared to simu-
late a heavily infected sample (up to 35 ng DNA). DNA 
was extracted from spent fungal-negative BAL specimens 
inoculated with known pathogens (n = 33) obtained from 
our reference mycology laboratory [Provincial Laboratory 
Northern Alberta (PLNA), Edmonton, AB] including: 
Aspergillus lentulus (n = 1), A. terreus (n = 3), A. flavus 
(n = 3); Absidia corymbifera (n = 3); Fonsecaea pedrosoi 
(n = 2); Fusarium solani (n = 2), F. proliferatum (n = 1); 
Cladosporium carrionii (n = 2) and Cladosporium spp. 
(n = 1); Cunninghamella bertholletiae (n = 2) and one 
undetermined Cunninghamella spp.; Rhizopus aarhizus 

similarly, regardless of whether CS stain/microscopy showed yeast/fungal elements. FBR-PCR/S assays results were 
reported in ~ 8 h compared to fungal cultures that took between 4 and 6 weeks.

Conclusions: Rapid molecular testing compared to standard methods have equivalent diagnostic efficiency but 
improves clinical utility by reporting a rapid species-level identification the same dayshift (~ 8 h).

Keywords: Fungal infection, Broad-range fungal PCR, Sequencing, Molecular diagnosis
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(n = 1), R. microsporus (n = 1), R. stolonifera (n = 1), and 
three undetermined Rhizomucor spp.; Trichosponon asa-
hii (n = 1) and one undetermined Trichosporon spp.; and 
Malassezia furfur (n = 2), M. pachydermatis (n = 1).

Microbiological analyses
Clinical specimens were analyzed by standard micro-
scopic examination and fungal culture methods. Yeast 
isolates were identified by microscopic examination, 
and matrix-assisted laser desorption/ionization-time-of-
flight mass spectrometry (MALDI-TOF MS) (Vitek MS, 
bioMérieux, Laval, Quebec). Molds were identified using 
colony morphology, microscopic examination and con-
ventional PCR using the internal transcribed spacer or 
ITS gene regions (including universal ITS1 and ITS2) as 
previously described by White and colleagues [31]. Iden-
tification of fungal isolates provided by the PLNA refer-
ence laboratory was confirmed using the MicroSEQ™ D2 
rDNA Fungal PCR and Sequencing Kit (Applied Biosys-
tems, Thermo Fisher Scientific).

Molecular methods

a. Controls

A clinical isolate of Saccharomyces cerevisiae positive 
for both ITS2 and LSU targets was used as the positive 
control for all molecular procedures (See Fig. 1—Positive 
Extraction control or PEC). The negative extraction con-
trol (i.e., extraction reagents only; NEC) was processed 
and extracted alongside all clinical and contrived speci-
mens throughout all FBR-PCR/S assay procedures (See 
Fig. 1—NEC).

b. DNA Extraction

Fungal isolates obtained from the reference labora-
tory were extracted in TE buffer using glass bead beat-
ing. Nucleic acid DNA concentration was determined by 
a Nanodrop spectrophotometer (Thermo-Fisher Scien-
tific, Mississauga, ON). A total of 500 ng DNA was eluted 
into 100 µL of TE buffer giving a final template concen-
tration of 5  ng/µL to give reliable detection. Contrived 
specimens (n = 33) consisted of 500 ng reference isolate 
DNA added to 400 µL of spent culture-negative BAL 
fluid from spent clinical specimens whose clinical anal-
yses were complete. Clinical and contrived specimens 
were extracted using the QIAmp UCP Pathogen Mini Kit 
(Canada-QIAGEN, Toronto, CA) according to the manu-
facturer’s protocol. Tissues had an extended Proteinase 
K incubation time, otherwise both tissue and fluid pro-
tocols were the same. Tissue specimens (2–4  mm3) were 
finely minced with a sterile scalpel, transferred to a sterile 

1.5  mL microcentrifuge tube, re-suspended in 400 µL 
Buffer ATL and 40 µL Proteinase K, vortexed, and incu-
bated at 56 °C in a 1000 rpm Eppendorf thermomixer for 
1 h until digested. Sterile fluid specimens (at least 400 µL) 
were placed into a sterile 1.5  mL microcentrifuge tube, 
centrifuged, supernatant discarded, cell pellet re-sus-
pended in Buffer ATL, Proteinase K, vortexed, and incu-
bated at 56 °C in a 1000 rpm Eppendorf thermomixer for 
a minimum of 10 min. Purified, eluted DNA was stored 
at − 20 °C until use.

c. FBR-PCR/S Assay

DPO primers (26, 27) targeted towards the Internal 
Transcribed Spacer (ITS) regions and the Large Subunit 
(LSU) of the nuclear ribosomal RNA (rRNA) gene com-
plex were designed by the investigators (BC and DLC) 
after multisequence alignment of several hundred Gen-
Bank sequences of multiple genera to identify candidate 
conserved regions. DPO primers were purchased from 
Exiqon (Woburn, MA). All other primers were purchased 
from Integrated DNA Technologies (IDT, Coralville, 
Iowa). FBR-PCR used a forward primer [ITS3DPO_F3: 
5′ CAT CGA TGA AGA RCG YA-I-I-I-I-I-I-TGCGA 3′ 
(I = deoxyinosine; R = A/G, Y = C/T)], and two reverse 
primers, for ITS detection [ITS4DPO_R5: 5′ TAT TGA 
TAT GCK TAA-I-I-I-I-I-G CGG GT 3′ (K = G/T), and 
LSU detection [LSUDPO3_R: 5′ GAC TCC TTG GTC 
CGT-III-II-AAG AC 3′. PCR for human-β-globin gene 
was performed in parallel as a control using β-glob-F 
[GAA GAG CCA AGG ACA GGT AC] and β-glob-PC04R 
[CAA CTT CAT CCA CGT TCA CC] in a final concentra-
tion of 0.3 µM.

Fast-PCR was set up with the Molyzm 16S basic 
(Molzym, Bremen, Germany) kit reagents. The 30 µL 
reaction contained 7 µL of template DNA and final con-
centration of 0.3  µM ITS3DPO_F3 forward primer and 
0.2  µM each of ITS4DPO_R5 and LSUDPO3_R reverse 
primer. FBR-PCR was performed on a Veriti thermo-
cycler (Life Technologies, Carlsbad, CA) under the fol-
lowing cycling conditions: 5  min. initial denaturation at 
95  °C, followed by 35 cycles of 94  °C for 10 s, 54  °C for 
15 s and 72 °C for 25 s, with a final extension of 72 °C for 
5 min. PCR product was electrophoresed on a 1.5% aga-
rose gel containing SYBRsafe (Life Technologies). During 
the PCR reaction, the ITS3DPO_F3/ITS4DPO-R5 F/R 
primer pair amplify a ~ 350  bp ITS amplicon, whereas 
the ITS3DPO_F3/LSUDPO_3R F/R primer pair amplify 
the ITS region (~ 350 bp) plus ~ 500–600 bp of the LSU 
region. The ~ 900  bp amplicon therefore represented a 
combined ITS/LSU fragment. Agarose gel electropho-
resis confirmed the amplification of fungal DNA: PCR 
products displaying a band in the expected ~ 350  bp 
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region for ITS, and ~ 900  bp region for ITS/LSU were 
then purified by Exo-SAP-it (Affymetrix, Santa Clara, 
CA) (Fig. 1).

Assay level of detection (LoD) was determined using 
two well characterized isolates; Aspergillus brasilien-
sis (ATCC 16404) and Candida albicans (ATCC 10231). 
Briefly, DNA was extracted in a 1.5  mL microfuge con-
taining ~ 0.2 g of zirconium beads (BioSpec) and 10 mM 
Tris-1 mM EDTA pH 8.0 buffer and subsequently boiled 
at 100  °C for 10  min. to inactivate the organisms. Bead 

beating at 5 m/s for 120 s occurred in a Beadmill 4 instru-
ment (Fisher Scientific) before centrifugation to pellet the 
debris and transfer of the supernatant to a fresh tube. A 
Nanodrop spectrophotometer (ThermoFisher) was used 
to measure the DNA concentration before subsequent 
1/100 dilution with nuclease-free water to make a work-
ing solution. Copy number equivalents for each organism 
were calculated by using the genome size information 
by ATCC. LoD was then determined by a twofold serial 
dilution series of contrived negative BAL prepared with 

100 bp 
Ladder

PCR/S PEC NEC

1000 bp

500 bp

500 bp

b.  Human β-Globin PCR: ~300 bp band

~300 bp

a. FBR-PCR/S Assay (Lane #2): ~900 bp 
band and ~350 bp band

Fig. 1 Electrophoresis Gel Image of FBR-PCR/S  Assaya. aFBR-PCR/S assay gel image: Lane 1: 100 bp ladder; Lane 2: Clinical sample; Lane 3: Positive 
Extraction Control (PEC) (S. cerevisiae); Lane 4: Negative Extraction Control (NEC). a Top Panel: Fungal Broad-range (FBR) Panfungal PCR targeting ITS 
and LSU gene regions. FBR PCR shows two bands, ~ 350 bp ITS band and ~ 900 bp band corresponding to combined amplification of ITS (~ 350 bp) 
and LSU (~ 600 bp) targets. b Lower Panel: human β-globin PCR. Human clinical sample shows a strong ~ 300 bp band, indicating successful DNA 
extraction
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inoculation of either known amounts of ATCC 10231 
or ATCC 16404 as follows: (1) “4  N” (4 × 10^5 copies/
mL), (2) “2 N” (2 ×  105 copies/mL), (3) “D2” (5 ×  104 cop-
ies/mL), and 4) “D8” (1.25 ×  104 copies/mL). DNA was 
extracted from 400 μL of each contrived BAL specimen 
in the dilution series with the UV-irradiated Qiagen DNA 
mini kit (Qiagen) performed in triplicate. FBR-PCR was 
performed on each contrived BAL specimen as outlined 
above. Agarose gel electrophoresis confirmed the amplifi-
cation of fungal DNA: PCR products displaying a band in 
the expected ~ 350 bp region for ITS, and ~ 900 bp region 
for ITS/LSU were then purified by Exo-SAP-it (Affyme-
trix, Santa Clara, CA). The dilution series established the 
LoD for the FBR-PCR assay for both C. albicans and A. 
brasiliensis as < 360 to > 175 copies/mL.

Molecular identification of the ITS and LSU rDNA 
product(s) was done by Sanger sequencing of the ITS 
and/or LSU rDNA product using BigDye Termina-
tor v1.1 Cycle Sequencing Kit (Life Technologies) on an 
ABI Prism 3500XL sequencer (Life Technologies). The 
ITS3DPO_F3/ITS4DPO-R5 F/R primer pair was used 
to sequence the ITS region and the LSU-Fseq [AGT 
ARC GGC GAG TGAAG]/ LSUDPO3_R F/R primer pair 
were used to sequence the LSU region. A BLAST search 
against the IDNS Fungal database (SmartGene IDNS, 
Lausanne, Switzerland) provided a definitive identifica-
tion of the organism to the genus- or species-level using 
the identify scores outlined by the Clinical Laboratory 
Standards Institute, Approved Guidelines MM-18 [32].

Data analysis
Data were entered into a Microsoft Excel spreadsheet 
(MS Office 2016) and analyzed according to standard 
descriptive statistics. A 2 X 2 contingency table was used 
to calculate the sensitivity, specificity, positive and nega-
tive predictive values were calculated against internation-
ally recognized diagnostic criteria for the presence of 
IFD [4]. FBR-PCR/S performance was calculated against 
standard methods (i.e., fungal culture on all samples fol-
lowed by identification of yeasts by morphology/MALDI-
TOF MS and molds by morphology/conventional PCR 
targeted to the ITS1 and ITS 2 gene regions. Invalid 
FBR-PCR/S results were defined as a weakly positive 
electrophoresis band in either of the ITS/LSU fungal tar-
gets with no quality sequence subsequently obtained. In 
patients with confirmed, probable or possible IFD the fol-
lowing performance criteria were assigned for the FBR-
PCR/S assay: (1) a true positive result agreed with that of 
standard methods, (2) a false-negative or false-positive 
result was considered discordant with standard methods, 
and in patients with no evidence of IFD, a true negative 
result agreed with standard methods. Resolution of dis-
cordant results occurred by repeat FBR-PCR/S testing, 

repeat PCR testing using conventional PCR targeted to 
the ITS1 and ITS 2 gene regions, and clinical review.

Results
Patient characteristics and specimens
A total of 107 enrolled patients were predominantly male 
(67, 62.6%), had a mean age of 59 years (range = 0–85 
years) with no significant age difference according to gen-
der. Comorbidities in five patients were unknown due to 
missing data. Most patients (74/107, 69.2%) had at least 
one underlying comorbidity that predisposed them to 
IFD including diabetes mellitus (18/74, 24.3%), solid-
organ malignancy/tumour (18/74, 24.3%), immunosup-
pressive therapy for non-malignant conditions (13/74, 
17.6%), hematologic malignancy (12/74, 16.2%), hemat-
opoietic stem cell transplant (HSCT) (5/74, 6.7%), HIV/
AIDs (4/74, 5.4%), and end-stage renal disease (2/74, 
2.7%). A total of 54/74 (73%) had clinical evidence for 
IFD including 19 patients (17.8%) with confirmed IFD, 12 
(11.2%) with probable IFD, and 27 (%) with possible IFD. 
True positive molecular tests were found in a third of 
patients (15/54, 27.8%) with confirmed or probable IFD.

A total of 114 clinical specimens were tested from these 
patients including 39 (34.2%) BALs and 75 (65.8%) other 
types of sterile fluids and tissues; 7 patients had ≥ 2 speci-
mens tested (Table 1). BALs and other pulmonary speci-
mens (lung/bronchial/pleural aspirates or fluids) (n = 51, 
44.7%) were the most tested sterile fluids. A wide range 
of different tissue types were tested representing the dis-
seminated nature of IFD. A total of 55 (48.2%) specimens 
had yeast/fungi recovered by standard methods. Twenty 
(17.5%) specimens only had bacterial cultures done 
because yeast/fungal culture was not initially ordered—
most of these specimens (n = 16, 80%) had negative 
Gram and CW stains and bacterial cultures, but 1 BAL 
and 2 abdominal fluid specimens grew Candida albicans 
(despite negative CW), 1 abdominal fluid showed yeast in 
the Gram stain and grew C. albicans, and 1 sinus aspirate 
grew Aspergillus fumigatus.

Fungi identified from contrived and clinical specimens
The FBR-PCR/S assay accurately identified 32/33 (97%) 
of the yeast/fungi inoculated into the contrived BAL 
specimens except for one specimen containing A. terreus 
(See Methods). Another sixty-six fungal isolates were 
recovered from fifty-five clinical specimens. Candida 
spp. (n = 36, 54.5%) [C. albicans (n = 18), C. dublinen-
sis (n = 4), C. glabrata (n = 5), C. kefyr (n = 3), C. krusei 
(n = 2), C. parapsilosis (n = 1) and C. tropicalis (n = 2)] 
and Aspergillus spp. (n = 14, 16.7%) [A. flavus (n = 2), A, 
fumigatus (n = 7), A. terreus (n = 1), A. niger (n = 1), and 
3 other Aspergillus spp.] was the most identified spe-
cies. Other fungal species identified included Alternaria 
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spp. (n = 1), Coccidioides immitis (n = 2), Cryptococcus 
neoformans (n = 1), Exophilia dermatiditis (n = 1), Fon-
secaea spp. (n = 1), Fusarium merismoides (n = 1), His-
toplasma capsulatum (n = 1), Penicillium spp. (n = 2), 
Pseudallescheria boydii complex (n = 2), Trichophyton 
rubrum (n = 1) and Rhizopus oryzae (n = 3). One BAL 
sample was also PCR positive for Pneumocystis jirovecii 
using specific PCR primers.

Resolution of discrepant results
Discordant results were initially observed in 30 clini-
cal specimens including 16 BALs and 14 other types 
of clinical specimens. Tables  2, 3 details the resolu-
tion of discrepant results. Of the 30 discordant results, 
19 (63.3%) specimens [BALs (n = 10) and other clini-
cal specimens (n = 9)] were resolved in favour of the 
molecular assay results (Table 2), while 11(36.7%) speci-
mens [BALs (n = 6) and other clinical specimens (n = 5)] 
were resolved in favour of standard methods (Table  3). 
BALs were prone to contamination from patient’s air-
way colonization with Candida spp. and/or Aspergillus 
spp., which gave initial discrepant results, but most were 
resolved in favour of the FBR-PCR/S result after repeat 
testing and clinical review (Table 2).

FBR-PCR/S analysis made a critical difference to 
patient management and clinical outcome in 4 unusual 
cases where fungal cultures were negative (Table 2).

Molecular assay performance
The performance of the molecular assay compared to 
standard methods is shown in Table  4 for BALs, and 
Table  5 for other clinical non-BAL specimens. The 
molecular assay and standard methods had similar diag-
nostic efficiency for both BAL (90.2%) and non-BAL 
specimens although both approaches had lower diagnos-
tic efficacy (81.3%) for non-BALs.

Both diagnostic approaches also had similar perfor-
mance in clinical specimens that showed fungal elements 
on microscopic examination after CW staining (Table 6). 

Although a negative CW stain and microscopic examina-
tion has excellent specificity and NPV, it has poor sensi-
tivity and PPV for fungal infection. Microscopy negative 
BALs and other clinical specimens were negative by 
standard methods and FBR-PCR/S. Clinical specimens 
positive by microscopy (n = 10, 8.8%) demonstrated vari-
able culture and/or PCR positivity; 6 specimens were 
positive by both methods, 2 were only positive by cul-
ture, and 2 were only positive by PCR. Another fifty-six 
(49.1%) specimens were microscopy negative but grew a 
variety of yeast/fungi and demonstrated variable culture 
and/or PCR positivity; 37 were positive by both methods, 
14 were only positive by culture and 5 were only positive 
by PCR.

Implementation of the molecular assay
Figure  2 shows an algorithm for the FBR-PCR/S pro-
cedure workflow and the time required for each assay 
step to report results in ~ 8  h or within the technolo-
gist’s dayshift; divided between specimen processing/
extraction and fast PCR amplification/gel interpretation 
(~ 4.5  h) and fast cycle sequencing and interpretation 
(~ 3.5 h) (Fig. 2). Due to the longer sequence length pro-
vided by the LSU primers (> 550  bp) this would be the 
preferred single target for initial detection followed by 
ITS (~ 350 bp). To ensure an optimal pre-test probability 
and the quality and quantity of specimen available, FBR-
PCR/S tests are ordered by the Infectious Diseases ser-
vice in consultation with a medical microbiologist.

Discussion
Our study is the first to evaluate the diagnostic perfor-
mance of a novel broad-range panfungal PCR/sequenc-
ing assay using DPO primers and fast protocols in 
a non-selected patient population with and without 
confirmed, probable of possible IFD in a large Cana-
dian health region. This approach allows equivalent or 
improved diagnostic performance compared to previous 
reports from other studies that evaluated panfungal PCR 

Table 1 Clinical specimens tested in validation of broad range fungal PCR/sequencing assay

a Specimens where fungal culture was not ordered but bacterial cultures grew yeast/fungi were counted as positive
b No fungal culture was done on a CSF that tested negative for Cryptococcal antigen. Includes peritoneal/dialysates (n = 6), synovial/spine disc (n = 5), abdominal 
(n = 5), sinus/nose aspirate (n = 4), liver abscess (n = 3), brain/subdural (n = 1) and periorbital (n = 1)
c Includes heart (n = 6), brain (2), shoulder/hip membrane (n = 4), spine/vertebra (n = 2), bone foot/mandible (n = 2), mediastinal lymph node (n = 2), skin biopsy 
(n = 2), neck (n = 1), cheek (n = 1), parotid gland (n = 1)

Fungal  culturea Bronchoalveolar 
lavages (BALs)

Lung/Bronchial/
Pleural

Cerebrospinal fluids 
(CSFs)

Other sterile  fluidsb Other sterile 
 tissuesc

Total

Positive 34 3 2 9 7 55

Negative 5 6 3 9 16 39

Not Ordered 0 3 9 7 1 20

Total 39 (34.2%) 12 (10.5%) 14 (12.3%) 25 (22%) 24 (21%) 114
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assays in both selected and non-selected patient popula-
tions and clinical specimens [19–28]. Our FBR-PCR/S 
assay has increased specificity compared other panfungal 
PCR assays and provides a rapid same day diagnosis of 
IFD. Our molecular assay had an excellent performance 
compared to culture in microscopy positive specimens, 
and an equivalent performance in microscopy negative 
specimens. IFD were diagnosed by FBR-PCR/S analysis 
of microscopy negative specimens indicating a role for 
this diagnostic approach for non-selected patients with-
out overt immunosuppression. Rampini and colleagues 
(2016/Switzerland) [20] have also demonstrated similar 
efficacy of their fungal ITS PCR compared to conven-
tional methods for diagnosing fungal infections in non-
immunocompromised patients. They evaluated 251 
clinical specimens using both the fungal ITS PCR com-
pared to fungal culture and demonstrated a high con-
cordance of 89.6% and equivalent analytical performance 
with a sensitivity, specificity, PPV and NPV of 87.7%, 
90.3%, 76% and 95.5% respectively [20].

Previous reports of FBR-PCR/S evaluations in non-
selected clinical cases have been limited, and primarily 
reported from large laboratories in Europe of the United 
States [19, 22, 24, 33]. Lass-Florl and colleagues (2013/
Austria) [19] evaluated an ITS fungal PCR in 206 tissues 
and sterile fluid samples (n = 190 patients) with nega-
tive microscopy and found a sensitivity, specificity, PPV 
and NPV of 57.1%, 97%, 80% and 91.7%. Valero and col-
leagues (2016/Spain) [24] developed a fungal PCR using 
two ITS primers and 4 probes targeted to specific fungal 
pathogen groups, which showed comparable sensitiv-
ity (83.3%) and specificity (100%) to our assay. Zeller and 
colleagues (2017/Austria) [21] evaluated an ITS fungal 
PCR in 105 tissues and sterile fluids (n = 98 patients) and 
found a sensitivity, specificity, PPV and NPV of 87.7%, 
90.3%, 76% and 95.5% respectively. Gomez and col-
leagues (2017/USA) [23] used a dual target (i.e., ITS 2 
and D2 region of 28S) to evaluate 117 tissues and sterile 
fluids from 117 patients with confirmed IFD compared 
to 116 clinical samples from 108 patients with suspected 
IFD. Performance of their fungal PCR assay was better 
in the targeted IFD group [sensitivity (96.6%) and speci-
ficity (98.25%)] than in patients suspected of IFD [sensi-
tivity (62.8%) and specificity (71.3%)] [22]. Ala-Houhala 
and colleagues (2017/Finland) [22] used a dual target ITS 
fungal PCR to test 37 tissue and sterile fluid specimens 
from 279 patients and found a sensitivity, specificity, PPV 
and NPV of 60.5%, 91.7%, 54.2% and 93.4% respectively. 
Stempak and colleagues (2019/USA) [33] also showed 
that fungal PCR testing had equivalent performance on 
analyses of 65 sterile fluid and tissue samples selected 
based on having all reference methods done (i.e., stains, 
DNA probes, culture, histopathology). However, several 
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studies discourage the routine use of panfungal PCR test-
ing, particularly on BALs, because no IFD cases were 
found that were not diagnoses by the reference methods, 
and due to environmental contamination the results may 
be difficult to interpret [25, 28, 33, 34].

Our molecular assay workflow allows same day report-
ing of panfungal PCR results allowing for rapid diagnosis 
and prompt implementation of appropriate management. 
Use of our panfungal assay improved clinical manage-
ment and outcomes for several critically ill patients 
whose prior work-up by standard methods had been 
repeatedly negative or was delayed due to the extended 

incubation required of fungal culture isolate recov-
ery. Clinical laboratories may also provide a similarly 
rapid 16S broad-range PCT/sequencing result (~ 8 h) by 
implementing molecular assays based on DPO primers 
for both bacteria and fungal pathogens with our recom-
mended integrated workflow.

Our study had several limitations including the small 
number of specimens across the various types and 
sources enrolled. Because Candida spp. and Aspergillus 
spp. are the most commonly isolated fungi from BAL 
and non-BAL specimens in clinical microbiology labo-
ratories worldwide, we used contrived BAL specimens 

Table 4 Performance of molecular assay and standard methods for bronchoalveolar lavage specimens (Clinical and Contrived)a

a Includes 39 clinical specimens and 33 contrived specimens inoculated with a variety of fungal isolates identified by the reference lab. The molecular assay detected 
and accurately identified all fungal isolates in contrived BALs. PPV positive predictive value, NPV negative predictive value
b Standard methods: All isolates were recovered from fungal culture. Yeasts were identified by morphology and Vitek MS while molds were identified by morphology 
and conventional PCR targeted to the ITS1 and ITS2 gene regions

Standard  methodsb

Positive Negative Total

FBR-PCR/S  Assayc Positive 54 0 54

Negative 7 11 18

Total 61 11 72
cSensitivity (88.5%, 54/61), specificity (100%, 11/11), PPV (100%, 54/54), NPV (61.1%, 11/18) and efficiency 90.2% (65/72)

FBR-PCR/S Assay

Positive Negative Total

Standard  methodsd Positive 54 7 61

Negative 0 11 11

Total 54 18 72
dSensitivity (100%, 54/54), specificity (61.1%, 11/18), PPV (88.5%, 54/61), NPV (100%, 11/11) and efficiency 90.2% (65/72)

Table 5 Performance of molecular assay and standard methods for other types of clinical specimens (non-BALs)a

a Includes all non-BAL clinical specimens tested. Molecular assay results were resolved by clinical review and repeat testing. 7 specimens that were FBR-PCR/S (+)/
fungal culture (−) were resolved after clinical review to be true positive molecular tests and false negative cultures. See Tables 2 and 3
b Standard methods: All isolates were recovered from fungal culture. Yeasts were identified by morphology and Vitek MS while molds were identified by morphology 
and conventional PCR targeted to the ITS1 and ITS2 gene regions

Standard  Methodsb

Positive Negative Total

FBR-PCR/S  Assayc Positive 14 7 21

Negative 7 47 54

TOTAL 21 54 75

FBR-PCR/S Assay

Positive Negative TOTAL

Fungal  culturec Positive 14 7 21

Negative 7a 47 54

Total 21 54 75
cBoth methods had sensitivity (66.7%, 14/21), specificity (87.0%, 47/54), PPV (66.7%, 14/21), NPV (87.0%, 47/54) and efficiency 81.3% (61/75)
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to broaden the evaluation of the FBR-PCR/S assay. Due 
to the inherently high rate of contamination by fungal 
commensals present in clinical samples, interpreta-
tion of both standard methods compared to panfungal 
PCR results may be challenging without clinical review 
as shown by the initial rate of discordant results in this 
study. BALs or other pulmonary samples were most 
contaminated by commensal fungi in the patient’s air-
way, particularly Candida spp., Penicillium spp. and 
Aspergillus spp., which occurs during collection. But 
as previously reported [25, 28, 34], this problem is not 
unique to our study. Panfungal PCR alone may also not 
be optimal for diagnosing polymicrobial fungal infec-
tions because mixed sequencing results may not be 
interpretable. A more detailed clinical assessment by 
chart review would have allowed a more accurate clini-
cal assessment for the presence of IFD.

Conclusions
Rapid panfungal FBR-PCR/S testing has equivalent 
diagnostic efficiency compared to standard methods 
with improved specificity, but our novel assay improves 
clinical utility by reporting a rapid species-level identi-
fication the same dayshift (~ 8 h).

Table 6 Performance of molecular assay and standard methods 
compared to microscopy for clinical specimens including 
contrived  BALsa

a Includes the results of all BALs and clinical specimens enrolled in the study
c Standard methods: All isolates were recovered from fungal culture. Yeasts 
were identified by morphology and Vitek MS while molds were identified by 
morphology and conventional PCR targeted to ITS1 and ITS2 gene regions

CW Stain/Microscopy

Positive Negative Total

FBR-PCR/S  Assayb Positive 8 42 50

Negative 2 62 64

Total 10 104 114
bSensitivity (80%, 8/10), specificity (59.6%, 62/104), PPV(16%, 8/50), NPV 
(96.9%, 62/64) and efficiency 61.4% (70/114)

CW Stain/Microscopy

Positive Negative Total

Standard  methodsc Positive 8 51 59

Negative 2 53 55

Total 10 104 114
cSensitivity (80%, 8/10), specificity (59.6%, 62/104), PPV (13.6%, 8/59), 
NPV (93.4%, 53/55) and efficiency 53.5% (61/114)

Process Specimen + 
Extract Fungal 

DNA
(~1.5 h)

Fast PCR  + 
Detection ITS/LSU 

Target Bands
(~3.0 h)

Strong LSU+, 
ITS+ or  LSU+ 

only

Fast sequence 
LSU and/or ITS 

and Interpret 
(~3.5 h) 

Good LSU ID

Report POS
Time to Result = ~8 h

Weak LSU+
Poor LSU ID

Plus ITS+ or 
ITS+/LSU-

Good ITS ID

Report POS
Time to Result = ~ 8h

PCR Screen NEG

Report NEG

Fig. 2 Algorithm for FBR-PCS/S Assay with Timing for Key Steps
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