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Abstract 

Background:  Group A Streptococcus (GAS) is a major human pathogen and an important cause of maternal and 
neonatal sepsis. Asymptomatic bacterial colonization is considered a necessary step towards sepsis. Intra-partum 
azithromycin may reduce GAS carriage.

Methods:  A posthoc analysis of a double-blind, placebo-controlled randomized-trial was performed to determine 
the impact of 2 g oral dose of intra-partum azithromycin on maternal and neonatal GAS carriage and antibiotic resist-
ance. Following screening, 829 mothers were randomized who delivered 843 babies. GAS was determined by obtain-
ing samples from the maternal and newborn nasopharynx, maternal vaginal tract and breastmilk. Whole Genome 
Sequencing (WGS) of GAS isolates was performed using the Illumina Miseq platform.

Results:  GAS carriage was lower in the nasopharynx of both mothers and babies and breast milk among partici-
pants in the azithromycin arm. No differences in GAS carriage were found between groups in the vaginal tract. The 
occurrence of azithromycin-resistant GAS was similar in both arms, except for a higher prevalence in the vaginal 
tract among women in the azithromycin arm. WGS revealed all macrolide-resistant vaginal tract isolates from the 
azithromycin arm were Streptococcus dysgalactiae subspecies equisimilis expressing Lancefield group A carbohydrate 
(SDSE(A)) harbouring macrolide resistant genes msr(D) and mef(A). Ten of the 45 GAS isolates (22.2%) were SDSE(A).

Conclusions:  Oral intra-partum azithromycin reduced GAS carriage among Gambian mothers and neonates how-
ever carriage in the maternal vaginal tract was not affected by the intervention due to azithromycin resistant SDSE(A). 
SDSE(A) resistance must be closely monitored to fully assess the public health impact of intrapartum azithromycin on 
GAS.
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Introduction
Pregnant women and neonates are at high risk of 
developing sepsis. In both groups, the risk persists 
for several weeks post delivery, and is associated with 
significant mortality [1, 2]. Morbidity due to maternal 
and neonatal sepsis is particularly high in sub-Saharan 
Africa (SSA) [3].

Globally, Staphylococcus aureus and Group B Strep-
tococcus (GBS) are the main causes of maternal and 
neonatal sepsis [4–6]. However, Group A Streptococcus 
(GAS; Streptococcus pyogenes) is increasingly recog-
nized as an important Gram-positive pathogen associ-
ated with maternal and neonatal sepsis [7–9]. GAS can 
cause both early and late onset of neonatal sepsis [10, 
11], usually as a result of infection acquired through 
the birth canal [11]. GAS also causes non-invasive dis-
ease, including tonsillo-pharyngitis, skin infections and 
rheumatic fever that can result in rheumatic heart dis-
ease [12–14].

In high-income countries, it is estimated that the 
annual incidence of GAS-related maternal sepsis is 6 
per 100,000 live births, with a 3.5% case-fatality ratio 
for invasive disease [15], and the incidence of GAS neo-
natal sepsis is 1.5 per 100,000 person years [16]. There 
is limited data on the burden of GAS infections in SSA 
due to the lack of systematic surveillance [17]. In the 
Eastern Cape, South Africa, the mean annual inci-
dence rate of invasive GAS infection was 6 cases per 
100,000-person years in all age groups (58% of samples 
from 18 to 64 year olds) [12]. In Kenya, the incidence of 
neonatal GAS sepsis was 0.6 cases per 1000 live births 
[18].

GAS colonizes the posterior pharynx and or skin of 
asymptomatic individuals who, although can trans-
mit the bacterium, are less likely to transmit it than 
those with an acute GAS infection [19]. Understand-
ing antibiotic resistance of GAS colonization is an 
indirect measure of understanding resistance of GAS 
causing acute infection in the community. In addition, 
there have been reports of an increased risk of neona-
tal infections associated to maternal vaginal carriage 
of GAS in the early postpartum period often with poor 
outcomes for these infants [20].

Here we present a posthoc analysis of the PregnAnZI 
trial [21] to determine the effect of 2  g intra-partum 
azithromycin on prevalence and antibiotic resistance of 
GAS in mothers and their newborns during the 4 weeks 
following prophylactic treatment. Whole genome 

sequencing (WGS) was done to further characterise 
the GAS isolates and perform phylogenetic analysis to 
explore the differences in the effect of azithromycin 
between anatomical sites.

Methods
Study design/population
This study is a posthoc (not pre-specified) analysis of 
data from a double-blind, placebo-controlled rand-
omized trial in which women in labour were randomized 
to receive either a single dose of 2  g of oral azithromy-
cin or placebo (ratio 1:1) [22]. The trial was conducted at 
the then-Jammeh Foundation for Peace (JFP) hospital, a 
government-run health facility located in western Gam-
bia that manages approximately 4500 deliveries per year. 
The population in the catchment area is representative 
of The Gambia and covers its main ethnic groups [21]. 
Women who attended the JFP labour ward between April 
2013 and April 2014, aged 18–45 years with no acute or 
chronic conditions were recruited into the trial. Details 
of exclusion criteria have been reported elsewhere [22]. 
The women had provided written informed consent to 
participate in the trial during previous antenatal care vis-
its. Specifically, consent was obtained for the interven-
tion, follow up, the collection of biological samples and 
the use of these samples in future unspecified analyses. 
The intervention was administered during labour, when 
the women presented to the health facility prior to deliv-
ery. Women and their newborns were followed for up 
to 8 weeks postpartum and biological samples were col-
lected during the first 4 weeks [21, 22].

Study samples
A nasopharyngeal swab (NPS) and a low vaginal swab 
(VS) were collected from women before the intervention 
was administered and during labour. Post-intervention 
samples included: (i) newborn NPS within 6 h after birth; 
(ii) samples collected during home visits at days 3, 6, 14 
and 28 (NPS from mothers and newborns, and breast 
milk (BM) from mothers) and (iii) a VS collected in the 
health facility during the postnatal check at day 8–10 
post-delivery [21].

Sample collection
NPS were collected by passing the tip of a calcium algi-
nate (Expotech USA Inc) swab across the mucosa of the 
posterior wall of the nasopharynx. The swab was rotated 
and left in the nasopharynx for approximately 5  s. The 
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inoculated swab was placed immediately into a vial con-
taining skim milk-tryptone-glucose-glycerol (STGG) 
transport medium and then into a cold box before being 
taken to the Medical Research Council Unit The Gambia 
(MRC) at the London School of Hygiene and Tropical 
Medicine (LSHTM) laboratories within 8 h of collection 
[22].

VS were collected by inserting a sterile cotton swab 
(Sterilin Ltd, UK) 2–3  cm into the vagina and rotating 
the swab with a circular motion, leaving it in the vagina 
for approximately 5  s. The inoculated swabs were then 
placed immediately into the vials containing STGG and 
put in a cold box before being transferred to the MRC 
laboratories within 8 h [22].

Breast milk samples were collected by first disinfect-
ing the nipple and areola of the breast using sterile cot-
ton soaked with 0.02% chlorhexidine. Mothers were then 
asked to manually express their milk. The first 0.5  mL 
was discarded. The following 1–2 mL was collected in a 
sterile plastic bijoux bottle put in a cold box and trans-
ferred to the MRC laboratories within 8 h [22].

All samples were stored at − 70 °C for subsequent pro-
cessing in batches. The length of storage prior to process-
ing differed between batches.

Laboratory procedures
GAS culture from NPS, VS and breast milk samples
Samples were vortexed for 20 s prior to storage at − 70 °C 
for subsequent processing in batches. During process-
ing, samples were allowed to thaw on ice. Each vial was 
then vortexed briefly in order to homogenise the medium 
and 50  μl was dispensed onto crystal violet blood agar 
(CVBA) (CM0085 Oxoid, UK + 0.02% crystal violet) for 
selective isolation of beta-haemolytic streptococci [22].

After 20–24  h incubation, presumptive beta-haemo-
lytic colonies were streaked onto blood agar to obtain 
a pure growth. A catalase test was performed to differ-
entiate the presumptive streptococci from staphylo-
cocci. Beta-haemolytic and catalase-negative isolates 
were grouped using the Streptex grouping kit (Remel 
R30950501) and ultimately reported as group A, B, C, D, 
F or G [22].

Antimicrobial susceptibility testing
Pure morphologically similar colonies were made into 
a suspension equal to 0.5% MacFarland’s standard and 
streaked evenly over the surface of Muller Hinton Agar 
(MHA). Antimicrobial resistance was evaluated using 
the disk diffusion method (15 ug azithromycin disk) and 
all resistant isolates (zones of inhibition ≤ 13  mm) were 
confirmed using E-test (AZ 256, range 0.016–256 mg/L, 
Biomerieux) [22]. The CLSI 2016 guidelines were used to 
interpret azithromycin susceptibility results.

Whole genome sequencing
Extracted DNA from all GAS isolates (isolated at any 
timepoint) was used for WGS by Illumina Miseq. Paired 
end reads were quality checked (FastQC) and trimmed 
for adaptor contaminant and low Q-score bases (Trim-
momatic), this was followed by de novo assembly using 
k-mer settings of 21, 22, 55 and 77 (SPAdes) [23, 24]. 
Assembled genomes were checked for post-assembly 
quality (QUAST) [25]. Criteria for inclusion in further 
analysis were < 500 contigs, 1.6–2.0  Mb (S. pyogenes) 
or 2.0–2.4  Mb (Streptococcus dysgalactiae subspecies 
equisimilis; SDSE) assembly length, and > 90% reference 
genome coverage (S. pyogenes). Assembled genomes were 
annotated using Prokka and the core genome determined 
using Roary [23, 24]. Antimicrobial resistance genes were 
identified using ABRicate with the Resfinder database 
[25, 26]. Emm-typing was performed using the bioinfor-
matics method described at https://​github.​com/​BenJa​
mesMe​tcalf and the CDC emm-typing database (https://​
www2.​cdc.​gov/​vacci​nes/​biote​ch/​strep​blast.​asp). Core 
genome alignments were used to draw maximum likeli-
hood phylogenetic trees (RAxML) with 1000 bootstraps 
[26]. For comparative phylogenetic analysis of SDSE 
isolates, complete genomes were obtained from NCBI 
Genome resource (https://​ncbi.​nlm.​nih.​gov/​genome/​
genom​es/​823?) and from a previous study reporting 
SDSE expressing Lancefield group A (SDSE(A)) [27]. 
Phylogenetic trees were visualized using iTOL (https://​
itol.​embl.​de/). All sequence data are publicly available 
at the European Nucleotide Archive (Project Accession 
PRJEB36490).

Data management and statistical analysis
The data were double entered into Open Clinica and ana-
lysed using STATA 16. Only participants with complete 
data at all timepoints were included in the analysis. An 
individual was considered positive for GAS carriage if 
GAS was present at any time point after treatment (3, 
6, 14 or 28  days for NPS and breastmilk samples and 
8–10  days for VS). The proportion positive was com-
pared between arms using risk ratios (RR) and Fisher’s 
exact test was used to obtain a p-value for this compari-
son. P-values were not adjusted for multiple comparisons 
[28]. The proportion of resistant individuals was analysed 
similarly. In the determination of resistance, we consid-
ered an individual resistant at an anatomical site if any 
isolate from the site was resistant.

Results
Study population
A total of 829 women were recruited (414 women in the 
azithromycin and 415 in the placebo arms) and delivered 
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https://www2.cdc.gov/vaccines/biotech/strepblast.asp
https://ncbi.nlm.nih.gov/genome/genomes/823
https://ncbi.nlm.nih.gov/genome/genomes/823
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a total of 843 babies, including 13 stillbirths. Overall, 
715 mother-newborn pairs (86.2%) had all study samples 
collected and are part of this posthoc analysis (Fig.  1). 
Most women were 20–29 years old and the major ethnic 
group was Mandinka. Approximately 66.6% of deliveries 
occurred during the dry season (November to May), 5.0% 
of the newborns were low-birth weight and slightly more 
than half were males (Table 1).

GAS carriage
Overall, 30 women and 9 newborns had at least 1 sample 
positive for GAS; 7 women and one baby had 2 positive 
samples and one woman had 5 positive samples (total of 
51 GAS isolates).

Study mothers
Pre-intervention (day 0) GAS carriage was uncommon 
and similar in the two study arms, both in the naso-
pharynx and in the vaginal tract (Table 2, Fig. 2A). Post 
intervention azithromycin reduced GAS carriage in the 

nasopharynx (0.28% versus 1.93%, p = 0.069) and breast 
milk (0.28% versus 2.48%, p = 0.021) but not in the vagi-
nal tract (1.99% versus 1.93%, p = 1.000) (Table 2).

Study newborns
GAS carriage was also uncommon in the newborns. 
Although there were fewer cases of carriage in the 
azithromycin arm, the difference was not statistically sig-
nificant (0.57% versus 1.91%, p = 0.178) (Table 2, Fig. 2B).

Azithromycin resistance
Study mothers
The occurrence of azithromycin-resistant GAS was 
similar between study arms for all sample types except 
for vaginal samples where resistant isolates occurred 
more frequently in the intervention arm [1.99% vs. 
0.28%, p = 0.035] (Table 3).

Fig. 1  Trial Profile. 1All deaths were child deaths, there were no maternal deaths in the trial. 2All withdrawals involved a mother-pair (including 
twins). 3Mother/baby pair with ≥ 1 missing sample
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Table 1  Baseline demographic characteristics of study participants

a Ethnicity missing in n = 3, bBirth weight missing in n = 6, cApgar score missing in n = 2

Characteristics Placebo n (%) Azithromycin n (%)
Mothers n = 363 n = 352

Age

 18–19 years 32 (8.8) 20 (5.7)

 20–29 years 239 (65.8) 229 (65.1)

  ≥ 30 years 92 (25.3) 103 (29.3)

Ethnicitya

 Mandinka 160 (44.1) 140 (39.8)

 Wolof 42 (11.6) 42 (11.8)

 Jola 53 (14.6) 62 (17.6)

 Fula 57 (15.7) 62 (17.6)

 Other 51 (14.1) 43 (12.2)

Season of delivery

 Dry (Nov–May) 244 (67.2) 232 (65.9)

 Rainy (June–Oct) 119 (32.8) 120 (34.1)

Newborns n = 366 n = 352

Birth weightb

 Low birth weight (< 2.5 kg) 23 (6.3) 13 (3.7)

 Normal birth weight (> 2.5 kg) 338 (93.7) 338 (96.3)

Apgar scorec (at birth)

 0 0 0

 1–6 3 (0.8) 1 (0.3)

 7–10 362 (98.9) 350 (99.4)

Sex of child

 Male 195 (53.3) 180 (51.1)

 Female 171 (46.7) 172 (48.9)

Table 2  Prevalence of GAS carriage in the nasopharynx, breastmilk and vaginal samples of mothers and nasopharynx of babies

a Carriage before treatment (day 0)
b Carriage on one or more days after treatment (day 3, 6, 14 or 28)
c There are no pre-intervention samples for the breast milk
d Day10 (day 8–13)

Mothers

Placebo (%)
n = 363

Azithromycin (%)
n = 352

Risk ratio
(95% CI)

p value

Nasopharyngeal carriage

 Pre-interventiona 0 1 (0.28) – 0.492

 Post iInterventionb 7 (1.93) 1 (0.28) 0.15 (0.02, 1.19) 0.069

Breastmilk carriagec

 Post interventionb 9 (2.48) 1 (0.28) 0.11 (0.01, 0.90) 0.021

Vaginal carriage

 Pre-interventiona 1 (0.28) 2 (0.57) 2.06 (0.18, 22.64) 0.619

 Post iInterventiond 7 (1.93) 7 (1.99) 1.03 (0.37, 2.91) 1.000

Newborns

Placebo (%)
n = 366

Azithromycin (%)
n = 352

Risk ratio (95% CI) p value

Post interventionb 7 (1.91) 2 (0.57) 0.30 (0.06, 1.42) 0.178
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Study newborns
Only two resistant isolates were identified in newborns; 
one in each arm. (Table 3).

Whole Genome Sequencing
Of the 51 GAS isolates, one sample was not retrieved, 
and five samples (isolated from four mothers) had poor 
sequences and were excluded from the WGS analysis. 
Of the remaining 45 isolates  (Additional file  1), WGS 

confirmed that 35 were S. pyogenes (2 from the azithro-
mycin arm and 33 from the placebo arm of the trial), 
from which we detected 16 emm types. The most com-
mon were emm4 and emm44 (5 isolates each, 14.2%) and 
emm147 (4 isolates, 11.4%). The remaining 10 isolates 
were SDSE. All were phenotypically resistant to azithro-
mycin and 9 were from participants in the azithromycin 
arm. All 10 SDSE(A) isolates were retested with Strep-
tex grouping kit and were confirmed as Lancefield group 

Fig. 2  Maternal and neonatal carriage of GAS at different body sites and timepoints. A i. maternal nasopharyngeal carriage and ii. Breastmilk 
carriage of GAS at days 0, 3, 6, 14 and 28 post-delivery in the azithromycin and placebo arms. B Neonatal nasopharyngeal carriage of GAS at days 0, 
3, 6, 14 and 28 after birth in the azithromycin and placebo arms
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A beta-haemolytic streptococci. We observed that the 
most common resistance mechanism was by efflux with 
14 out of 16 azithromycin-resistant isolates (including 
all SDSE(A)) harbouring both mefA and msrD genes 
(mefA-msrD). In S. pyogenes, mefA and msrD genes were 
adjacent to each other and located five genes upstream 
of catQ on what appeared to be a phage-like mobile 
genetic element, integrated downstream of rlmD (23  s 
rRNA methyltransferase). In SDSE(A), mefA and msrD 
were also present on a mobile genetic element that 
showed some similarity to that found in the reference 
SDSE strain AC-2713 (HE858529.1) integrated between 
comEC and comEA but differed in gene content between 
the two lineages of SDSE(A). The complete sequences of 
the mobile elements for both S. pyogenes and SDSE(A) 
could not be determined due to contig breaks in the de 
novo assemblies. S. pyogenes isolates recovered from 
the same mother from different biological sites or study 
timepoints, as well as isolates from their new-borns, all 
clustered together and belonged to the same emm type 

(Fig. 3A). Similar phylogenetic and epidemiological con-
cordance was seen in the SDSE(A) isolates, including a 
neonatal NPS isolate closely linked to those recovered 
from the baby’s mother (Fig. 3B).

Discussion
One oral dose (2  g) of azithromycin given to women 
in labour reduced occurrence of GAS carriage among 
women and their babies in the nasopharynx and breast 
milk without an increase of azithromycin resistance in 
isolates in these sample sites. In contrast, the interven-
tion did not have any effect on the occurrence of GAS 
carriage in the vaginal tract but induced an increase 
in the carriage occurrence of azithromycin resistant 
SDSE(A).

Previous results from this study have shown that a 
single oral dose (2  g) of azithromycin given to women 
in labour reduced the prevalence of S. aureus, S. pneu-
moniae and GBS carriage in the mother (nasopharynx, 
breast milk and vaginal tract) and the baby (nasopharynx) 

Table 3  Carriage of resistant GAS in the nasopharynx, breastmilk and vaginal samples of mothers and nasopharynx of babies

a Carriage before treatment (day 0)
b Carriage on one or more days after treatment (day 3, 6, 14 or 28)
c  There are no pre-intervention samples for the breast milk
d Day 10(day 8–13)

Mothers

Placebo (%)
n = 363

Azithromycin (%)
n = 352

Risk ratio (95% CI) p value

Nasopharyngeal carriage

 Pre-interventiona 0 0 – –

 Post-interventionb 2 (0.55) 1 (0.28) 0.52 (0.05, 5.66) 1.000

Breastmilk carriagec

 Post-interventionb 0 1 (0.28) – 0.492

Vaginal carriage

 Pre-interventiona 0 1 (0.28) – –

 Post-interventiond 1 (0.28) 7 (1.99) 7.24 (0.87, 56.92) 0.035

Newborns

Placebo (%)
n = 366

Azithromycin (%)
n = 352

Risk ratio (95% CI) p value

Post-interventionb 1 (0.27) 1 (0.28) 1.04 (0.07, 16.56) 1.000

Fig. 3  Midpoint rooted maximum likelihood core-genome phylogenetic analysis using RAxML GTR​CAT​ model with 1000 bootstrap replicates. 
Circle symbols indicate > 99% bootstrap support. A Core-genome (1299 genes) phylogenetic analysis of 35 S. pyogenes isolates from the study 
cohort. B International contextualization (based on core genome of 1221 genes) of 10 S. dysgalactiae subspecies equisimilis isolates with individual 
core-genome (upper clade: 2106 genes, lower clade: 2078 genes) phylogenetic analysis of the two distinct clades in the study cohort. (Annotation 
key: country of origin; black = the Gambia, yellow = USA, dark green = UK, light green = Germany, pink = Japan, white = unknown, symbols; 
filled = present, unfilled = absent, no symbol = unknown; study participant ID (unique study identifier for mother/baby units); M = mother, 
B = newborn, NPS = nasopharyngeal swab, VS = vaginal swab, BM = breast milk, AMR = antimicrobial resistance)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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[21]. The current analysis shows that the intervention 
also reduced the prevalence of GAS carriage in the breast 
milk and nasopharynx of study women and, less clearly, 
in the nasopharynx of their newborns. Despite substan-
tial reduction of GAS carriage, we did not observe any 
short-term increase of azithromycin resistance in these 
two anatomical sites.

Conversely, the intervention did not have any effect on 
the prevalence of GAS carriage in the maternal vaginal 
tract but induced an increase in azithromycin resistance. 
WGS revealed that GAS vaginal carriage in the azithro-
mycin arm was primarily due to azithromycin-resistant 
SDSE(A), whereas in the placebo arm, GAS vaginal car-
riage was entirely due to azithromycin-susceptible S. 
pyogenes. In our previous analysis on S. aureus, lower 
reduction in carriage in the vaginal tract alongside a 
higher prevalence of resistance was also observed [21]. 
It is not clear why the effect of the intervention in the 
vaginal tract differs from other body sites. The concen-
tration of azithromycin in the vaginal tract may be lower 
and fall more rapidly than in other anatomical sites. 
We had previously shown a very high concentration of 
azithromycin in breast milk during the 4  weeks follow-
ing the intervention, with a peak during the first 6 days 
(concentration > 4000 µg/L) [29]. A different study using 
a single dose of azithromycin (1  g) showed the azithro-
mycin concentration in the vaginal tract was much lower 
than the breast milk concentration we observed [30]. In 
this study, the peak concentration occurred during the 
first 24–48 h following the intervention [30], long before 
the post-intervention VS were collected in our study. 
It is possible that removal of S. pyogenes from the vagi-
nal tract allows azithromycin-resistant SDSE to thrive, 
whereas in other anatomical sites higher concentrations 
of azithromycin can overcome the efflux-mediated resist-
ance mechanisms [31]. An alternative explanation is that 
even though SDSE can be found in different anatomical 
sites, it is better suited to survive in the vaginal tract [32]. 
One azithromycin resistant SDSE(A) was isolated in the 
vaginal tract from a woman included in the azithromy-
cin arm before the intervention was administered. A phy-
logenetically linked isolate was isolated from the same 
woman’s VS after the intervention (Additional file 1).

The public health and clinical implications of the selec-
tive expansion of SDSE(A) in the vaginal tract are diffi-
cult to anticipate. However, similarly to S. pyogenes, SDSE 
can cause invasive disease [33–35]. Lancefield group A 
SDSE has been described in previous studies from high 
income settings, including a collection of isolates causing 
invasive disease in the USA [27]. The SDSE(A) isolated 
from our study participants have distinct phylogeny to 
SDSE(A) previously isolated in USA and fall into two dis-
tinct clades. In our study, all SDSE(A) isolates harboured 

mefA-msrD genes, whereas both erm(B) and mefA-msrD 
genes were found in azithromycin-resistant S. pyogenes 
isolates. While the presence of mefA is associated with 
macrolide resistance, msrD has a more dominant role 
[36, 37]. The presence of both mefA and msrD may confer 
high level resistance [37].

The trial was designed to evaluate the effect of intra-
partum azithromycin on maternal and neonatal car-
riage of S. aureus, S. pneumoniae and GBS that are more 
prevalent than S. pyogenes and therefore the current 
analysis was underpowered as observed in the compari-
son of trial arms in the nasopharyngeal swabs, especially 
in newborns, as carriage of GAS is lower than for those 
other bacteria. This was an opportunistic study and oro-
pharyngeal rather than nasopharyngeal samples may 
have been more appropriate for detecting S. pyogenes 
carriage where it would be expected that carriage would 
have been slightly higher [38]. In any case, the objective 
of the analysis was to assess the impact of the azithromy-
cin on GAS carriage and there is no reason to believe this 
should be very different in the oropharynx when com-
pared to the nasopharynx. Overall, our study adds to the 
growing evidence that GAS may include SDSE as well as 
S. pyogenes.

Conclusions
In conclusion, this study demonstrates that a simple 
intervention (single dose of intra-partum oral azithro-
mycin), has the potential to reduce carriage of GAS, an 
important cause of maternal and neonatal sepsis. The 
effect of this prophylactic intervention on azithromy-
cin resistant SDSE(A) isolates and its effect on disease 
needs to be closely monitored when assessing the over-
all public health potential of prophylactic intra-partum 
azithromycin.
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