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Abstract 

Background:  The COVID-19 pandemic poses serious threats to global health, and the emerging mutation in SARS-
CoV-2 genomes, e.g., the D614G substitution, is one of the major challenges of disease control. Characterizing the role 
of the mutation activities is of importance to understand how the evolution of pathogen shapes the epidemiological 
outcomes at population scale.

Methods:  We developed a statistical framework to reconstruct variant-specific reproduction numbers and estimate 
transmission advantage associated with the mutation activities marked by single substitution empirically. Using 
likelihood-based approach, the model is exemplified with the COVID-19 surveillance data from January 1 to June 30, 
2020 in California, USA. We explore the potential of this framework to generate early warning signals for detecting 
transmission advantage on a real-time basis.

Results:  The modelling framework in this study links together the mutation activity at molecular scale and COVID-
19 transmissibility at population scale. We find a significant transmission advantage of COVID-19 associated with 
the D614G substitution, which increases the infectivity by 54% (95%CI: 36, 72). For the early alarming potentials, the 
analytical framework is demonstrated to detect this transmission advantage, before the mutation reaches dominance, 
on a real-time basis.

Conclusions:  We reported an evidence of transmission advantage associated with D614G substitution, and high-
lighted the real-time estimating potentials of modelling framework.
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Introduction
The dynamics of the transmission of an infectious disease 
is largely determined by the pathogen’s infectiousness 
and the course of the transmission [1, 2]. The control of a 

contagious disease with high infectiousness requires the 
knowledge of the driven factors that may affect the trans-
mission process [3, 4]. Virus mutation is one of the major 
challenges for controlling epidemics [5, 6]. The profile of 
pathogen in terms of viral fitness and functionality may 
be altered by mutations [7, 8], and in consequence change 
its transmissibility. Referring to the previous literature on 
seasonal influenza [9], a few key amino acid (AA) sub-
stitutions may lead to remarkable changing dynamics of 
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antigenic property and epidemiological outcomes at pop-
ulation scale [10, 11]. Similar findings were also reported 
for other viral pathogens [12, 13].

The coronavirus disease 2019 (COVID-19), whose eti-
ological agent is the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) [14], swept the world in a 
short period of time [15], and the ongoing COVID-19 
pandemic poses serious threat to public health [16]. As of 
December 31, 2020, over 81 million COVID-19 cases are 
confirmed in the world with over 1.8 million associated 
deaths. In February 2020, genetic variants carrying the 
D614G substitution on the SARS-CoV-2 spike (S) protein 
began to spread first in Europe [17] and otherwhere glob-
ally, reaching fixation in many places rapidly. The D614G 
is potentially affecting viral transmission [5, 18]. Recent 
modelling analysis reported statistical evidence that 
SARS-CoV-2 strains with D614G substitution are likely 
to have an increased infectivity retrospectively [19]. In 
2021, although 614D still can be detected in some places, 
e.g., Australia with around 25% frequency, the variants 
carrying 614G is predominant globally.

Some of these variant genomes upon the different 
selection pressure increase their frequency in the popula-
tion. Recently, the SARS-CoV-2 Delta variants composed 
of several novel mutations on Spike protein increased 
their frequency [20]. This becomes one of the major 
challenges of COVID-19 control because these variants 
have more competitive pathological features such higher 
transmission or resistance to vaccines [21, 22]. Exploring 
the relationship between the mutation activities and the 
disease transmissibility is of importance to understand 
how the evolutionary patterns at molecular scale may 
shape the epidemiological outcomes at population scale. 
Quantifying the advantage of mutations that affects the 
transmission may inform the disease control strategic 
decision-making process [23].

Given the intensity and the risk scale of the ongoing 
COVID-19 pandemic, real-time surveillance and infer-
ence of the role of key mutations may be crucial for 
fighting against the pandemic. In this study, we adopted 
a statistical inference framework to estimate the trans-
mission advantage associated with a single mutation in 
pathogen genomes empirically, and exemplify by using 
the COVID-19 data in California, USA. We demonstrate 
the potentials of this analytical framework to produce an 
early warning signal for detecting transmission advantage 
on a real-time basis.

Methods
Reproduction number and transmission advantage: 
parameterization and likelihood framework
The time-varying reproduction number is commonly 
adopted to quantify the instantaneous transmissibility of 

infectious disease in an epidemic. Using the estimation 
framework in [24], the epidemic growth is modelled as 
a branching process, thus can be expressed as the ratio 
of C(t) over 

∫

∞

0 w(k)C(t − k)dk , which is commonly 
known as the renewable equation [25]. Here, the C(t) is 
the observed number of new COVID-19 cases on the t-
th day. The function w(∙) is the distribution of the gen-
eration time (GT) of the disease. The GT is defined as 
the time interval between the time of exposure, i.e., being 
infected, of a primary case and that of his associated sec-
ondary case in the consecutive transmission generation 
[26]. The distribution w(∙) is predefined in our model, 
which is commonly estimated from contract tracing sur-
veillance data [27–30].

The transmission advantage of the mutated variant 
against the original type is defined as the ratio, denoted 
by η, of the strain-specified reproduction numbers. We 
denote the reproduction number of cases infected by the 
original variant as Rt, and thus the reproduction number 
of cases infected by the mutated variant is η∙Rt. If η > 1, 
the mutated variant may be more infectious than the 
original genetic variant, and vice versa.

The observed proportion of original genetic variant is 
denoted by qt, and the observed proportion of mutated 
variant is denoted by pt. Since we consider the binary 
AA substituting process, we have pt + qt = 1 for all ts. By 
using the renewable equation backwardly, we model the 
expected number of cases on the t-th day in Eq. (1).

Here, the E[∙] denotes the expectation function. There-
fore, we construct the likelihood function L(c)t  of the daily 
number of cases using a Poisson-distributed framework 
with observation at Ct and rate parameter at E[Ct] as in 
Eq. (2).

Here, the superscript ‘(c)’ merely indicated the likeli-
hood function is for the number of cases, which does not 
indicate the power. In addition, the overall reproduction 
number is (qt + η∙pt)∙Rt.

For the observed sequencing data, we denote the 
numbers of original and mutated strains by mt and nt, 
respectively, for the t-th day. The expected chance (or 
probability) that a randomly selected strain at the t-th 
day carrying a specific mutation is given in Eq. (3).

(1)
E[Ct ] =Rt ·

[
∫

∞

0

w(k) · q(t − k) · C(t − k)dk

+η

∫

∞

0

w(k) · p(t − k) · C(t − k)dk

]

.

(2)L
(c)
t (Ct |E[Ct ]) =

E[Ct ]
Ct · e−E[Ct ]

Ct !
.
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Then, we have E[qt] = 1 − E[pt], which can be modelled 
with the same fashion. As such, by modelling the sam-
pling of the genetic variants as a Bernoulli process, we 
construct the likelihood function ( L(s)t  ) of the observed 
genotype using a Bernoulli-distributed framework with 
probability at E[pt] as in Eq. (4).

Here, the superscript ‘(s)’ merely indicated the likeli-
hood function is for genetic variants, which does not 
indicate the power.

With Eqs. (2) and (4), we reconstruct the Rt time series, 
denoted by {Rt} , and estimate η using the overall likeli-
hood function defined in Eq. (5).

Similar formulations were adopted in previous studies 
[19, 31, 32].

COVID‑19 surveillance data and SARS‑CoV‑2 sequencing 
data
To demonstrate the application of the framework, we 
adopted the data of COVID-19 in California, USA, and 
estimated the transmission advantage η of the D614G 
substitution. The surveillance data of daily number 
of COVID-19 cases are collected from the R package 
“nCov2019” [33], which is extracted from the COVID-19 
surveillance platform launched by the New York Times. 
Figure  1A shows the daily number of COVID-19 cases 
time series in California.

The SARS-CoV-2 strains are obtained via the Global 
initiative on sharing all influenza data (GISAID) with col-
lection dates ranging from January 1 to June 30, 2020 in 
California [34]. A total of 4268 full-length human SARS-
CoV-2 strains are retrieved on December 31, 2020. All 
SARS-CoV-2 strains used for analysis are provided in the 
appendix (Additional file 1). We consider the study period 
from January 1 to June 30, 2020 when other mutated line-
ages, e.g., B.1.1.7, P.1, or B.1.617.2, were not yet detected. 
Multiple sequence alignment is performed using Clustal 
Omega [35], and the SARS-CoV-2 strain ‘China/Wuhan-
Hu-1/2019|EPI_ISL_402125’ is considered as the refer-
ence sequence.

Likelihood‑based inference and real‑time estimation
To setup the model, we considered the w as a Gamma 
distribution having mean (± SD) values of 5.3 (± 2.1) 
days by averaging the GT estimates for COVID-19 from 

(3)E[pt ] =
ηRt

∫

∞

0 w(k) · p(t − k) · C(t − k)dk

E[Ct ]
.

(4)L
(s)
t (mt , nt |E[pt ]) = (1− E[pt ])

mt · E[pt ]
nt .

(5)L({Rt}, η|{Ct}, {mt}, {nt}) =
∏

t

[

L
(c)
t · L

(s)
t

]

.

the existing literatures [27–29, 36, 37]. Slight variation in 
the settings of the GT will not affect our main findings.

Using the likelihood framework defined in Eq.  (5), we 
calculate the maximum likelihood estimation (MLE) of 
η to determine transmission advantage of D614G substi-
tution. The 95% confidence intervals (95%CI) are calcu-
lated using the profile likelihood estimation framework 
with a Chi-square quantile as cutoff [38, 39], which is also 
adopted in [40–43].

For the real-time estimation, we repeat the statistical 
inference process of η using a part of dataset, instead of 
the full dataset, divided by the observing date. For exam-
ple, the real-time estimate of η on the τ-th day is calcu-
lated by using the dataset with reporting date from the 
first day (i.e., January 1, 2020) to the τ-th day. We com-
pare the consistency of the η estimates on a real-time 
basis in terms of their scales and 95%CIs. Moreover, we 
define the early warning signal as that a real-time esti-
mate of η larger than 1 and of statistical significance can 
be obtained before the mutated strains (i.e., those SARS-
CoV-2 strains with amino acid G) reach the dominance 
level in the population. For dominance level, it is consid-
ered as the proportion of the mutated strains (pt) over 
0.5, i.e., pt > 0.5, which can be observed empirically. An 
early warning signal indicates the real-time estimating 
potentials of our analytical framework in detecting the 
transmission advantage due to mutation.

Results
In California, the epidemic curve grew since February, 
see Fig. 1A, peaked in July with daily number of COVID-
19 case over 10,000, declined in August, and has main-
tained at a steady level since September (data not shown). 
We reconstruct the daily instantaneous reproduction 
numbers of the cases infected by SARS-CoV-2 strains 
with D614 or G614 type in Fig. 1B. We observe that the 
overall trends of reproduction numbers are relatively 
high in the early March, but gradually decreasing there-
after since the local ‘stay-at-home’ order was issued on 
March 19, 2020 in California [44]. During the first half of 
March, which is regarded as the early phase of the out-
break, the average reproduction number is 2.4, which is 
largely consistent with most of previous estimates [15, 16, 
45–47].

We report the estimated proportion of D614G substi-
tution E[pt] fits the observed sequencing data well, see 
Fig.  1C. We infer the transmission advantage η at 1.54 
(95%CI: 1.36, 1.72), which means the D614G substitution 
increases 54% of the transmissibility. Hence, in Fig.  1B, 
the reproduction number of the SARS-CoV-2 variant 
with 614G appears higher than that of the original gen-
otype. Although reproduction number Rt of the 614D 
are below 1 for most of the time after April 2020, the 
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reproduction number η∙Rt of type G fluctuated around 
1 during the same period, which led to a large-scale epi-
demic wave in California during summer  in 2020 (see 
Fig. 1A).

For the real-time estimating potentials, we find that 
the real-time estimates of η appear unstable in February 
and early March, when the D614G substitution emerge, 
and gradually converge and stabilize since March 12, see 
Fig.  1D. Specially, on March 12 (highlighted in Fig.  1C 
and Fig. 1D), when the proportion of D614G substitution 
(pt) reaches 35% (< 0.5), the η estimate is 2.12 (95%CI: 
1.24, 3.78), which is significantly larger than 1.

Discussion
Although the variants carrying D614G substitution 
might be introduced to California from aboard during 
the first few months of pandemic, the observed changes 
in SARS-CoV-2 mutations (pt) were likely due to the 
spread of virus locally after the implementation of strict 
travel-ban measurements. The significant increase in 
transmissibility associated with the D614G substitution 
is biologically reasonable according to similar findings 
reported in previous studies. Consistent evidences of the 
transmission advantage of D614G substitution were also 
reported in previous literature both statistically [19, 48] 
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Fig. 1  The daily number of COVID-19 cases (panel A), the reconstructed reproduction number (Rt, panel B), proportion of the G on the 614-th 
codon of the S protein (panel C), and estimated transmission advantage of G on the real-time basis (η, panel D). Panel A shows the daily number of 
COVID-19 time series in California state, USA. Panel B shows the estimated Rts of G (in orange) and D (in green). Panel C shows the observed (dots) 
and fitted (curve) proportion of the Glycine (G) on the 614-th codon of the S protein. Panel D shows the real-time estimates of the transmission 
advantage of G (η). In panels B and D, the dots are the estimates, and bars are the 95%CIs. In panel C, the curve indicates the mean fitting results, 
the shading area indicates the 95%CIs, and horizontal dashed grey line represents proportion level at 0.5. In panels C and D, the vertical bold purple 
line represents the date, March 12, 2020 when the η estimates yields an ‘early warning signal’, i.e., η > 0 significantly, detecting the transmission 
advantage of G (against D)
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and experimentally [49–53]. The D614G replacement 
leads to increased infectivity and stability of the virion 
and is shown to enhance viral replication in human lung 
epithelial cells [51, 52]. The interaction of the SARS-
CoV-2 S protein with multiple epithelium components, 
e.g., glycocalyx, and proteases, govern the cellular entry 
[54]. Thus, the mutations on S protein with more effec-
tive interaction with these epithelium components ena-
bles SARS-CoV-2 variants to infect with relatively lower 
virus titer. Previous analysis implied that the D614G 
substitution may alter the conformation of spike protein 
trimer that shifted toward an ACE2 binding-competent 
state [50], and thus may functionally improve receptor 
binding capacity from a theoretical perspective [17, 18, 
53]. The D614G substitution increases host cell entry via 
ACE2 and transmembrane protease serine 2 (TMPRSS2) 
[54]. Comparing to substitution, we learn from the influ-
enza virus that major antigenic changes can be caused by 
a single AA substitution related to the receptor binding 
domain (RBD) [55].

Although a significant transmission advantage of 
D614G is found, we notice that the proportion of 614G 
variant generally increased, while the reproduction 
number series decreased in March and then remained 
constant. The reasons may include that the increase in 
transmissibility associated with D614G was counteracted 
by the effects of local non-pharmaceutical interventions 
that reduced the overall transmission of COVID-19. For 
sensitivity checking, we repeat the estimating process of 
η with alternative mean GT using a shorter estimate of 
4.0 days [30] and a longer estimate of 7.5 days [15]. We 
find that the η estimates are consistently and signifi-
cantly larger than 1 in similar scales (data not shown), 
which validates our main results. The statistical infer-
ence framework is empirical, and thus can be extended 
to explore the transmission advantage attributed to single 
mutations for other infectious diseases.

Our analytical framework can yield an early warn-
ing signal in detecting the transmission advantage due 
to D614G substitution before the mutation reaching 
dominance on a real-time basis. Although some recent 
studies indicate that the D614G mutation is unlikely to 
undermine the neutralization from current SARS-CoV-2 
vaccine candidates [53, 56], there are also other studies 
suggest the concerns should be raised oppositely [57, 58]. 
Similar concerns of the changes in the protective effect 
from vaccine or prior infection are frequently raised 
regarding other recent SARS-CoV-2 varaints [22, 59–
62]. Under selection, viral quasispecies including closely 
related viral genomes might be generated by the accumu-
lation of mutations [63]. As such, the early warning signal 
provides an opportunity for improving disease control 
strategies and healthcare planning against the mutated 

strains, which might have different diagnostic conditions 
or clinical outcomes [19, 50, 53]. Hence, we highlight the 
importance of our analytical framework, such that the 
public health risks related to viral mutations may be con-
trollable with early preparedness.

For the limitations of this study, we have the follow-
ing remarks. First, the reconstruction of Rt relies on the 
setting of the generation time (GT). We model the GT 
distribution, i.e., w(∙), of COVID-19 as a fixed Gamma 
distribution, which follows previous studies [27–30, 36]. 
In the real-world situation, the time interval between 
transmission generations might be varying [45], which 
may affect the reconstruction of reproduction number. 
However, the overall trends of Rt estimates are unlikely 
changed due to slight variation in GT [45]. Thus, we 
consider the impact of this limitation on the infer-
ence of transmission advantage may be negligible, and 
our model can be extended to a more complex context 
with the time-varying GT data available. Second, theo-
retically, the GT distribution might be altered by the 
mutated strains. However, by screening the literature of 
COVID-19, we find no evidence that GT is varied asso-
ciated with the D614G substitution in SARS-CoV-2, and 
thus we presume w(∙) to be a fixed distribution. Third, 
for the Rt estimation parts, C(t) in the ‘methods’ sec-
tion should be the numbers of COVID-19 cases onset 
at time t. However, due to the surveillance data by onset 
date are unavailable, we adopted the current dataset by 
reporting data as a proxy for the COVID-19 incidence 
time series. If one considers a constant reporting lag, the 
Rt estimates will have exactly same trends but shifted 
for the reporting lag. Considering the similar report-
ing delay also occurred for the SARS-CoV-2 sequencing 
data, the effects of the two reporting lags may be coun-
teracted. We remark that this approximation in analysis 
is unlikely to affect the main conclusions in this study. 
Furthermore, with detailed reporting lag information 
of each individual case, adjustment for reporting delay 
can surely be carried out based on our current analyti-
cal framework. Fourth, this study focuses on explor-
ing the effects on changing the disease transmissibility 
associated with a single mutation, e.g., D614G, but the 
real-world biological mechanisms, which are usually 
more complex, remain uncovered. As an example, on 
one hand, the R384G substitution in influenza A/H3N2 
virus enhances ability of in-host immune-escape [64], 
which indicates an increase in infectivity [9], but this 
substitution appears detrimental. On the other hand, 
the co-mutations of R384G in nucleoprotein (NP) could 
improve and compensate the viral fitness or functional-
ity of [7, 8], such that the mutated strains reached fixa-
tion rapidly in 1993–1994 flu season. Future studies are 
needed for exploring the mechanisms of how D614G in 
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SARS-CoV-2 affects the transmissibility of COVID-19. 
Fifth, the transmission advantage can be contributed 
by multiple factors such as increase in infectiousness or 
viral viability, change in the infection risk to different 
group of hosts [65], change in the escape from antibod-
ies, shortening of generation interval, changes in clini-
cal conditions, population size dynamics, and selective 
pressures [66]. Our analytical framework cannot disen-
tangle the effects of each factor, which requires more 
complex methods, and detailed information [67]. Sixth, 
homogeneous mixing and equal contribution of all 
cases were assumed in our model. Thus, the reproduc-
tion numbers and transmission advantage estimates are 
interpreted as the average scales for the whole popula-
tion in California. Seventh, there are multiple mutations 
in the SARS-CoV-2 variants carrying 614G, and we 
remark that the independent effects of each mutation 
cannot be disentangled in this study, where the interac-
tions among these mutations are unassessed. Lastly, as 
a data-driven study, the estimated association should 
be interpreted with caution. With ecological setting, 
though our analysis provides statistical evidence about 
the likelihood of causality, the findings in this study can-
not guarantee the causality, which needs further bio-
medical experiments in more sophisticated contexts.

Conclusions
The modelling framework in this study links together 
the mutation activity at molecular scale and COVID-19 
transmissibility at population scale. We report statistical 
evidence of the transmission advantage associated with 
the D614G substitution in SARS-CoV-2. We highlight 
that an early warning signal in detecting this transmis-
sion advantage can be generated on a real-time basis. 
Future studies on exploring the mechanism between 
SARS-CoV-2 mutation and COVID-19 infectivity are 
needed.
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