
Kamau et al. BMC Infect Dis          (2021) 21:937  
https://doi.org/10.1186/s12879-021-06626-2

RESEARCH

Epidemiological and clinical implications 
of asymptomatic malaria and schistosomiasis 
co‑infections in a rural community in western 
Kenya
Edwin Kamau3, Adam Yates3,4, Risper Maisiba1,5, Valentine Singoei1,2, Benjamin Opot1,5, Rose Adeny1,5, 
Cornel O. Arima1,5, Victor Otieno1,5, Catherine S. Sumbi1,5, Raphael O. Okoth1,5, Farid Abdi1,5, Maurine Mwalo1,5, 
Jew Ochola1,2, June Otieno1,5, Julie Ake3, Michelle Imbach3,4, Hannah A. Turley3,4, Dennis Juma1,5, 
Hoseah M. Akala1,5, John Owuoth1,2, Ben Andagalu1,5, Trevor A. Crowell3,4, Chiaka Nwoga3,4, Jessica Cowden1, 
Christina S. Polyak3,4* and for the RV393 Study Group 

Abstract 

Background:  Malaria and schistosomiasis present considerable disease burden in tropical and sub-tropical areas 
and severity is worsened by co-infections in areas where both diseases are endemic. Although pathogenesis of these 
infections separately is well studied, there is limited information on the pathogenic disease mechanisms and clinical 
disease outcomes in co-infections. In this study, we investigated the prevalence of malaria and schistosomiasis co-
infections, and the hematologic and blood chemistry abnormalities in asymptomatic adults in a rural fishing commu-
nity in western Kenya.

Methods:  This sub-study used samples and data collected at enrollment from a prospective observational cohort 
study (RV393) conducted in Kisumu County, Kenya. The presence of malaria parasites was determined using micros-
copy and real-time-PCR, and schistosomiasis infection by urine antigen analysis (CCA). Hematological analysis and 
blood chemistries were performed using standard methods. Statistical analyses were performed to compare demo-
graphic and infection data distribution, and hematologic and blood chemistry parameters based on different groups 
of infection categories. Clinically relevant hematologic conditions were analyzed using general linear and multivari-
able Poisson regression models.

Results:  From February 2017 to May 2018, we enrolled 671 participants. The prevalence of asymptomatic Plasmo-
dium falciparum was 28.2% (157/556) and schistosomiasis 41.2% (229/562), with 18.0% (100/556) of participants 
co-infected. When we analyzed hematological parameters using Wilcoxon rank sum test to evaluate median (IQR) 
distribution based on malarial parasites and/or schistosomiasis infection status, there were significant differences in 
platelet counts (p = 0.0002), percent neutrophils, monocytes, eosinophils, and basophils (p < 0.0001 each). Amongst 
clinically relevant hematological abnormalities, eosinophilia was the most prevalent at 20.6% (116/562), whereas 
thrombocytopenia was the least prevalent at 4.3% (24/562). In univariate model, Chi-Square test performed for 
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Background
Malaria and schistosomiasis are the two most prevalent 
parasitic infections in tropical and sub-tropical regions, 
accounting for a considerable proportion of global mor-
bidity and mortality. Over 90% of these infections occur 
in sub-Saharan Africa (sSA) with large geographical 
overlap, making co-infection common [1–4]. Social, eco-
nomic, and environmental factors are important deter-
minants in the patterns and prevalence of malaria and 
schistosomiasis including co-infections, with poor and 
rural communities highly impacted. Further, individuals 
who engage in certain activities and occupations such as 
anglers are at increased risked due to increased environ-
mental exposures [1, 4].

Plasmodium falciparum accounts for more than 99% of 
malaria cases in sSA [1]. These infections cause a spec-
trum of clinical illness ranging from asymptomatic to 
severe disease with immune status acting as a critical 
determinant of disease progression [5, 6], and they can 
be either microscopic or submicroscopic [7, 8]. Malaria 
infection can lead to hematologic abnormalities such as 
anemia, leucopenia, and thrombocytopenia, which are 
important in disease pathophysiology. After repeated 
exposure, premunition may lead to persistent, asymp-
tomatic infections [5, 9], which are characterized as 
subclinical due to lack of overt clinical symptoms [6, 8]. 
However, it is now evident that asymptomatic infections 
may cause harm to the individual [6, 10], and are reser-
voirs for transmission [8].

Schistosoma mansoni and S. haematobium are 
responsible for the majority of schistosomiasis infec-
tions in sSA [4]. These infections can lead to several 
acute and chronic illness profiles, which may result 
in growth stunting, cognitive impairment, and death 
[11]. Schistosomiasis leads to hematologic abnormali-
ties including eosinophilia and leukocytosis. In patients 

with hepatosplenic disease, anemia is common, and 
significant increases in monocytes, lymphocytes, and 
neutrophils have been reported [12], as have mild 
eosinophilia and neutropenia [13].

While the pathogenesis of P. falciparum and Schisto-
soma as separate infections are well studied, pathogenic 
disease mechanisms and clinical disease outcomes dur-
ing co-infections are not clear [14]. Some studies have 
shown increased odds of P. falciparum infections and/
or malaria-related complications associated with Schis-
tosoma co-infections [3, 15, 16] while others have shown 
no such association [17, 18] or lower incidence of P. fal-
ciparum infection among children with S. haematobium 
infection [19, 20]. A systematic review of 12 studies 
based on 9,337 children in eight sSA countries revealed 
co-infection with Schistosoma may increase vulnerabil-
ity of children to asymptomatic P. falciparum infection 
[14], suggesting chronic infection with Schistosoma may 
worsen clinical outcomes of asymptomatic P. falciparum 
infections.

Both malaria and schistosomiasis are holo-endemic 
in the fishing communities bordering Lake Victoria in 
rural western Kenya. In this region, the prevalence of P. 
falciparum infections in children is over 40% [21], and 
S. mansoni is the most prevalent schistosomiasis infec-
tion, with a recent study reporting prevalence > 90% in 
children using a point-of-care test for urinary circulat-
ing cathodic antigen (POC-CCA) [22]. Further, in a sero-
prevalence study, the majority of S. mansoni infections 
(94%) were present in communities < 1.5  km from the 
lake [23]. Malarial and schistosomiasis infection studies 
have mostly focused in children because they are more 
vulnerable and likely to be symptomatic. However, the 
adult population play an important role as reservoir in 
the transmission of both infections, and there may be 
important health implications of chronic infections.

independence between participant distribution in different malaria parasitemia/schistosomiasis infection categories 
within each clinical hematological condition revealed significant differences for thrombocytopenia and eosinophilia 
(p = 0.006 and p < 0.0001, respectively), which was confirmed in multivariable models. Analysis of the pairwise mean 
differences of liver enzyme (ALT) and kidney function (Creatinine Clearance) indicated the presence of significant dif-
ferences in ALT across the infection groups (parasite + /CCA + vs all other groups p < .003), but no differences in mean 
Creatinine Clearance across the infection groups.

Conclusions:  Our study demonstrates the high burden of asymptomatic malaria parasitemia and schistosomiasis 
infection in this rural population in Western Kenya. Asymptomatic infection with malaria or schistosomiasis was asso-
ciated with laboratory abnormalities including neutropenia, leukopenia and thrombocytopenia. These abnormalities 
could be erroneously attributed to other diseases processes during evaluation of diseases processes. Therefore, evalu-
ating for co-infections is key when assessing individuals with laboratory abnormalities. Additionally, asymptomatic 
infection needs to be considered in control and elimination programs given high prevalence documented here.

Keywords:  Plasmodium falciparum, Asymptomatic Malaria, Schistosomiasis, Hematological, Thrombocytopenia, 
Eosinophilia, Creatinine, Kenya
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In order to further an understanding of the pathogen-
esis of P. falciparum and schistosomiasis co-infections 
in adults, this study first characterizes the prevalence of 
co-infections in asymptomatic adult population in a fish-
ing community bordering Lake Victoria in rural western 
Kenya. We then examine the association of hematologic 
and blood chemistry parameters with co-infection status.

Methods
Study area and population
Samples and data used in this study were obtained from 
participants enrolled in a prospective observational 
cohort study to determine HIV incidence and assess 
the site’s suitability for future HIV-prevention trials in 
Kombewa, Kisumu County, Kenya (RV393). Briefly, to be 
eligible for the study, individuals had to be without HIV, 
aged 18–35 years, reported two or more sexual partners 
in the last three months, and willing to reside in Kisumu 
County for the entire 24-month duration of the study. 
Participants underwent medical history-taking, physical 
examination and tests for HIV, malaria, syphilis, schisto-
somiasis, and hepatitis B and C at enrollment. Samples 
and data used in this analysis included all study partici-
pants with malaria and schistosomiasis diagnostic testing 
results available from enrollment between February 2017 
and May 2018.

Laboratory testing
Venipuncture was performed for collection of whole 
blood and serum using Vacutainer® blood collection 
tubes (Beckton Dickinson, Plymouth, United Kingdom). 
Hematology parameters were determined from whole 
blood using a Coulter Ac•T™ 5diff CP analyzer (Beckman 
Coulter, France). The tests were performed within 24 h of 
sample collection per manufacturer’s instructions. To test 
for liver and kidney functions, blood chemistries were 
performed to test for alanine aminotransferase (ALT) and 
creatinine. Blood was collected and allowed to clot for a 
minimum of 30  min, centrifuged, and serum was ana-
lyzed on the same day of separation. ALT and creatinine 
tests were analyzed using the Cobas® c311 biochemistry 
analyzer (Roche, Germany) according to the manufactur-
er’s instructions.

Malaria microscopy (smear) was performed follow-
ing WHO standard method, and as previously described 
[24]. Briefly, giemsa-stained films were prepared and read 
by two independent expert microscopists. The findings 
of two (or three in case of discrepancies) independent 
expert microscopists were considered. For the detec-
tion of Plasmodium by molecular diagnosis, real-time 
PCR was performed as previously described [25]. Briefly, 
genomic DNA was extracted using the QIAamp DNA 
mini kit (Qiagen, CA, USA) as recommended by the 

manufacturer. PCR targeting Plasmodium genus- or spe-
cies-specific 18 s rRNA genes was performed. The appro-
priated controls were included in every run. Qualitative 
data was used for PCR result analysis where cycle thresh-
old (Ct) values < 40 was considered positive.

Urine samples collected at enrollment were tested 
using a commercially available POC-CCA test (Rapid 
Medical Diagnostics, Pretoria, South Africa) for detec-
tion of S. mansoni and S. haematobium antigens per 
manufacturer’s recommendation.

Statistical analyses
Data processing/variable formation
Self-identified biologic sex was recorded as ‘Male’ and 
‘Female’. Age was categorized as 18–24, 25–29, and 30+ . 
Marital status was dichotomized into “Married” (married 
monogamous, married polygamous, cohabitating (come 
we stay)) and “Not Married” (single, separated, divorced, 
widowed, other). Self-identified literacy category was 
recorded as “Yes” or “No” when respondents were asked 
“Can study participant read and write?”. Educational level 
was categories into three groups, “None or Some Pri-
mary”, “Primary or Some Secondary”, and “Secondary 
or above” and employment was dichotomized into “Yes” 
and “No”.

Body mass index (BMI) was calculated using the stand-
ard formula, Weight (kg)/height (m)2, and BMI was 
grouped based on international categorical definitions: 
underweight = BMI < 18.5, normal weight = 18.5 <  = BM
I <  = 24.9, overweight/obese: BMI >  = 25. We combined 
overweight/obese categories due to low N for each cat-
egory alone. Participants were considered as having ane-
mia if their hemoglobin (HGB) levels were below 11.0 g/
dL. Creatinine Clearance (CrCL) was calculated based on 
the Cockcroft-Gault formula, ([140-age] × weight in kg)/
(serum creatinine × 72) and was adjusted for women by 
0.85.

Comparison of malaria infection status by various assays
Three categories of malaria infection status (smear nega-
tive [−]/PCR negative [−]; smear negative [−]/PCR 
positive [ +]; smear positive [ +]/PCR positive [ +]) 
were created based on the results from the microscopy 
and PCR tests. Submicroscopic malaria parasitemia was 
defined as smear negative but PCR positive test. Hema-
tology and chemistry parameters were summarized as 
medians and interquartile ranges (IQR) and comparisons 
made using the Wilcoxon rank sum test.

Analysis of malaria parasitemia and schistosomiasis groups
A positive Plasmodium PCR result was considered 
indicative of malaria parasitemia (referred in the manu-
script as parasitemia or parasite) and a positive urine 
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POC-CCA test was considered indicative of schistoso-
miasis. Chi-squared Test of independence (for categori-
cal variables) and Wilcoxon rank sum (for continuous 
parameters) were conducted to examine the statisti-
cal association between various hematologic and blood 
chemistry metrics and infection category.

Analysis of association between hematological conditions 
and co‑infection category
Continuous parameters were recategorized into clini-
cally relevant hematologic conditions: thrombocy-
topenia (platelet count ≤ 150 × 103/µL), neutropenia 
(Neutrophil count < 1.5 × 103/µL), eosinophilia (Eosino-
phil count ≥ 0.5 × 103/µL), and leucopenia (white blood 
cell count ≤ 4.0 × 103/µL). Fisher’s Exact test was used to 
examine independence between co-infection groups and 
disease status within the four hematologic conditions.

We constructed a general linear model with the vari-
ous hematologic parameters as outcomes and infection 
status as the categorical predictor. Pairwise differences 
between infection groups  were also assessed using the 
Least-Squared-Means procedure with Tukey Adjust-
ments using the Dwass, Steel Critchlow-Flinger (DSCF) 
method to allow for comparison between 3 or more 
groups (Additional file 1).

Lastly, multivariable Poisson regression models with 
generalized estimating equations (GEE) and robust 
variance estimators were used to evaluate associations 
between infection status and each hematologic condi-
tion [26, 27]. Age and sex were included in all models as 
controls for potential confounding from differential live-
course effects. 

Results
Of the 671 participants enrolled in the study, data from 
562 individuals collected at enrollment that had complete 
parasitemia (smear and PCR), and POC-CCA (referred 
to as CCA) test results were used in the analyses. Table 1 
shows demographic and population characteristics for 
parasitemia infections based on smears and PCR data, 
grouped into three infection categories; 6 participants 
were excluded from these analyses as they were smear + /
PCR− and considered false positives, reducing the table 
n to 556. Overall, parasitemia prevalence was 11.9% 
(66/556) by smears and 28.2% (157/556) by PCR with 
16.4% (91/556) of the study participants having submi-
croscopic parasite infections. There were significant dif-
ferences in the infection rates based on gender, marriage, 
education and body mass index.

Table 1  Demographic and population characteristics based on smear and PCR results

Smear−/PCR−
n (%)

Smear−/PCR + 
n (%)

Smear + /PCR + 
n (%)

p-value

399 (73.0) 91 (16.7) 66 (11.9)

Gender  < 0.0001
Male 181 (61.6) 58 (19.7) 55 (18.7)

Female 218 (84.5) 33 (12.8) 11 (4.2)

Age (years) 0.76

18–24 217 (72.8) 45 (15.1) 28 (12.1)

25–29 109 (70.3) 30 (19.4) 16 (10.3)

30 +  73 (70.9) 16 (15.5) 14 (13.6)

Marital status 0.009
Not married 327 (74.8) 64 (14.6) 46 (10.5)

Married 72 (60.5) 27 (22.7) 20 (16.8)

Education 0.0005
None or primary school 47 (56.6) 19 (22.9) 17 (20.5)

Primary school/some secondary 149 (69.3) 34 (15.8) 32 (14.9)

Secondary school and above 203 (79.6) 38 (14.9) 14 (5.5)

Employed 0.46

No 11 (91.7) 1 (8.3) 0 (0.0)

Yes 388 (71.3) 90 (16.5) 66 (12.1)

Body mass index 0.0003
Underweight (< 18.5) 23 (69.7) 4 (12.1) 6 (18.2)

Normal (18.5–24.9) 251 (66.6) 72 (19.1) 54 (14.3)

Overweight/obese (≥ 25) 125 (85.6) 15 (10.3) 6 (4.1)
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We then analyzed hematologic parameters and the 
blood chemistry data by comparing differences in the 
median (IQR) based on parasitemia status, grouped into 
the three infection categories. Table  2 shows there was 
significant difference in platelet counts, percent mono-
cytes, eosinophils and basophil. Plasmodium infection 
was associated with lower platelet counts but higher 
percent monocytes and eosinophil. It is notable that for 
the hematologic parameters with significant difference 
among the three infection categories, individuals with 
submicroscopic parasitemia (smear−/PCR +) had val-
ues that were similar to those that were microscopic. 
Blood chemistry analysis revealed there were significant 
differences in ALT values across the three infection cat-
egories, with submicroscopic and microscopic infections 
presenting higher median values compared to uninfected 
(Table 2).

Of the 562 study participants with complete data, 229 
(41.2%) individuals had reactive schistosomiasis (CCA) 
test results. The proportion of individuals with CCA pos-
itive test results was higher in males (52.7% [157/298]) 
compared to females (27.3% [72/264]). Of the individu-
als with reactive CCA test results, 43.7% (100/229) were 
parasitemic (microscopic and submicroscopic), with co-
infection significantly higher in males (p < 0.0001) com-
pared to females. The point prevalence for Plasmodium/
schistosomiasis co-infection in the study population was 
18.0% (100/556).

For further analyses, data was organized into four 
infection categories based on parasitemia and CCA 
infection groups (parasitemia−/CCA−; parasitemia + /

CCA−; parasitemia−/CCA + ; and parasitemia + /
CCA +). Table  3 shows demographic and population 
characteristics based on these four infection categories. 
The prevalence of co-infections was significantly different 
based on gender, marriage, education, and BMI catego-
ries. Of note, there was no significant difference among 
the different infection group categories based on anemia, 
which was excluded from further analysis due to small 
counts.

We then analyzed hematological parameters by com-
paring categorical differences in the median (IQR) test 
results amongst the four infection group categories. 
There were significant differences in platelet counts, per-
cent neutrophils, monocytes, eosinophils, and basophils 
(Table 4). Compared to the malaria and schistosomiasis 
uninfected group, co-infections were associated with 
lower platelet counts and percent neutrophils, but higher 
percent monocytes, eosinophils, and basophils. Infection 
with Plasmodium only was associated with reduction 
in platelet count whereas infection with schistosomia-
sis only was associated with a large increase in platelet 
counts and percent eosinophils. Analyses of the blood 
chemistry revealed there was significant difference in 
ALT, with the co-infected group category having higher 
median values compared to uninfected group category. 
It is notable that infection with Plasmodium did not lead 
to significant change in ALT values compared to those 
uninfected.

We then performed pairwise comparisons for the con-
tinuous hematology variables by parasite/CCA combi-
nation using raw cell counts, focusing on hematological 

Table 2  Median and interquartile ranges for hematologic and chemistry parameters stratified by smear and PCR results

WBC  white blood count, MCV  mean corpuscular volume, ALT  alanine aminotransferase, SGPT  serum glutamate pyruvate transaminase, IQR  interquartile range

Smear−/PCR−
Median (IQR)

Smear-/PCR + 
Median (IQR)

Smear + /PCR + 
Median (IQR)

p-value

Hematologic parameters

n = 399 n = 91 n = 66

Hemoglobin (g/dL) 14.3 (13.2,16.5) 14.6 (13.3,16.0) 14.5 (13.7,15.6) 0.4

WBC count (103/µL) 5.5 (4.6,6.5) 5.5 (4.8,6.5) 5.2 (4.3,6.3) 0.16

MCV (fL) 83 (79,88) 82 (78,88) 83.5 (78,88) 0.8

Platelet count (103/µL) 258 (218,301) 238 (207,275) 232 (176,273) 0.0001
Neutrophil % 46.8 (40,53.7) 46.6 (37.9,52.7) 43.7 (37,50.1) 0.1

Lymphocyte % 43.5 (37.9,48.7) 40.9 (36.7,48.1) 43.0 (36.2,48.6) 0.6

Monocyte % 3.1 (2.5,4.1) 3.5 (2.6,4.8) 3.6 (2.7,5.6) 0.004
Eosinophil % 3.9 (2.0,7.2) 5.2 (2.1,8.9) 5.2 (2.9,9.6) 0.007
Basophil % 0.6 (0.5,0.7) 0.6 (0.5,0.7) 0.6 (0.5,0.8) 0.04
Chemistry parameters

n = 279 n = 67 n = 60

ALT/SGPT (U/L) 15.5  (12.4, 20.2) 19.6  (12.8,26.7) 18.5 (14.9,24.4) 0.002
Creatinine Clearance mL/min) 122.5 (106.6–139.2) 117.2 (100.1–134.7) 114.7 (104.2–135.7) 0.3
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parameters of clinical significance including platelet, neu-
trophil, eosinophil, and WBC counts. This analysis was 
performed in a non-parametric framework using the 
DSCF method, which showed parasitemia−/CCA− vs. 
parasitemia + /CCA + categories were significantly dif-
ferent from each other in platelet and eosinophil counts 
(p < 0.0001 for each), and parasitemia−/CCA + vs. para-
sitemia + /CCA + group categories in platelet counts 
(p = 0.05). Further, comparison of parasitemia−/CCA− 
vs. parasitemia−/CCA + ; parasitemia + /CCA− vs. 
parasitemia−/CCA + ; and parasitemia + /CCA− vs. par-
asitemia + /CCA + group categories in eosinophil counts 
revealed that they were significantly different (p < 0.0001 
for each). There were no significant differences when 
neutrophil or WBC median values were compared for 
any of the parasitemia/CCA combinations.

In order to assess the clinical significance of differences 
among hematology parameters in the four parasitemia/
CCA infection group categories continuous, platelet, 

neutrophil, eosinophil and WBC counts were dichoto-
mized into thrombocytopenia, neutropenia, eosino-
philia and leucopenia clinical hematological conditions 
based on established cut-off ranges as indicated in the 
methods section. Eosinophilia was the most prevalent 
(20.6%) condition, whereas thrombocytopenia was the 
least prevalent (4.3%); the prevalence of neutropenia and 
leucopenia were 8.7% and 11.7%, respectively. We then 
performed a chi-squared test for independence between 
participant distribution in parasitemia/CCA infection 
group categories within each clinical hematological con-
dition (Fig. 1). The univariate model revealed there were 
significant differences among the four parasitemia/CCA 
infection group categories for thrombocytopenia and 
eosinophilia (p = 0.006 and p < 0.0001, respectively), but 
not for neutropenia or leucopenia. The uninfected group 
category had the lowest proportion of individuals with 
thrombocytopenia and neutropenia followed by malaria 
parasitemia/schistosomiasis, and the highest proportion 

Table 3  Demographic and population characteristics based on infection group

*Asterisks indicates the use of Fisher’s exact test rather than Chi-Square due to small expected values

Parasite−/CCA− Parasite + /CCA− Parasite−/CCA +  Parasite + /CCA +  p-value
n (%) n (%) n (%) n (%)

Gender

Male 113 (38) 28 (9) 72 (24) 85 (29)  < 0.0001
Female 163 (62) 29 (11) 57 (22) 15 (6)

Age (years)

18–24 149 (50) 36 (12) 71 (24) 45 (15) 0.32

25–29 81 (51) 13 (8) 31 (20) 33 (21)

30 +  46 (45) 8 (8) 27 (26) 22 (21)

Marital status

Not married 247 (56) 49 (11) 84 (19) 61 (14)  < 0.0001
Married 29 (24) 8 (7) 45 (37) 39 (32)

Can read and write*

No 1 (20) 0 1 (20) 3 (60) 0.12

Yes 275 (49) 57 (10) 128 (23) 97 (17)

Education Category

None or some primary 23 (27) 6 (7) 25 (30) 30 (36)  < 0.0001
Primary or some secondary 97 (45) 21 (10) 53 (25) 45 (21)

Secondary and above 156 (60) 30 (11) 51 (19) 25 (10)

Employment status*

Not employed 6 (50) 0 5 (42) 1 (8) 0.39

Employed 270 (49) 57 (9) 124 (23) 99 (18)

Body mass index

Underweight (< 18.5) 20 (61) 5 (15) 3 (9) 5 (15)  < 0.0001
Normal (18.5–24.9) 167 (43) 36 (9) 92 (24) 90 (24)

Overweight/obese (≥ 25) 92 (63) 16 (11) 34 (23) 5 (3)

Anemia (Hb < 11.0 g/dL)*

No 265 (49) 56 (10) 124 (23) 95 (18) 0.85

Yes 11 (50) 1 (5) 5 (23) 5 (13)
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was among the co- infected group category. Schistosomi-
asis was associated with higher proportions of individu-
als with eosinophilia, whereas parasitemia was associated 
with modestly higher proportions of individuals with 
leucopenia.

To further interrogate the difference between the four 
infection group categories, we performed categorical 
pairwise comparison for the clinical hematological con-
ditions (Fig. 2). The generalized linear regression model 
for pairwise difference showed confidence level of mean 
difference only in thrombocytopenia and eosinophilia 
(Fig.  2A, C). For thrombocytopenia, positive mean dif-
ference was only evident when the co-infected group cat-
egory was compared to the uninfected. For eosinophilia, 
only groups with schistosomiasis infection (CCA +) 
showed a significant mean difference from other infec-
tion groups, suggesting that infection with schistosomia-
sis is associated with eosinophilia development, and that 
an association between Plasmodium infection and eosin-
ophilia may be spurious. We then performed categorical 
pairwise comparison for blood chemistry (ALT and cre-
atinine) among the four group categories; a significant 
mean difference between groups was evident only for 
ALT (Fig. 3). Pairwise comparisons between the infection 
groups for ALT level indicate that Plasmodium and schis-
tosomiasis positive co-infection yielded significantly dif-
ferent enzyme levels from all other infection groups.

We then performed multivariate analysis using Poisson 
model with robust/sandwich estimator with independ-
ent variables of the clinical hematological groups and 
parasitemia/CCA status, gender, and age as independent 

predictors (Table  5). Multivariable models revealed sta-
tistically significant differences between infection groups 
for thrombocytopenia and eosinophilia, after adjust-
ing for participant gender and age. For thrombocytope-
nia, parasitemia + /CCA + infection had a prevalence 
ratio of 4.04 compared to parasitemia−/CCA− group 
(p = 0.01), after adjusting for gender and age. An exami-
nation of eosinophilia indicated that prevalence of eosin-
ophilia was significantly higher in the parasitemia−/
CCA + and parasitemia + /CCA + groups than it was in 
the parasitemia−/CCA− infection group (PR 3.11 and 
2.81, p < 0.0001, respectively). Additionally, female par-
ticipants presented with lower prevalence of neutropenia 
(PR = 0.43, p = 0.01) and leucopenia (PR 0.31, p < 0.0001), 
compared to male participants after adjusting for age and 
infection status.

Discussion
This study reveals a large proportion of our participants 
were infected with malaria (28.2%) or schistosomiasis 
(41.2%), and 18% were co-infected. Infection with either 
parasites was associated with changes in hematological 
parameters, liver enzymes and kidney function. Being 
infected with either malaria or schistosomiasis, or co-
infection was not associated with anemia. Our uni-
variate analysis indicated that thrombocytopenia and 
eosinophilia were significantly higher in co-infected 
participants than non-coinfected participants, and an 
association was not observed for neutropenia or leuco-
penia. Thrombocytopenia was more prevalent among 
the malaria and schistosomiasis co-infection group than 

Table 4  Median and interquartile ranges for hematologic and chemistry parameters stratified by infection group

WBC  white blood count, MCV  mean corpuscular volume, ALT  alanine aminotransferase, SGPT  serum glutamate pyruvate transaminase, IQR  interquartile range

Parasite−/CCA−
Median (IQR)

Parasite + /CCA−
Median (IQR)

Parasite−/CCA + 
Median (IQR)

Parasite + /CCA + 
Median (IQR)

p-value

Hematologic parameters

n = 276(49.1) n = 57 (10.1) n = 129 (23.0) n = 100 (17.8)

Hemoglobin (g/dL) 14.1 (13.2,15.5) 14.3 (13.5,15.4) 14.8 (13.6,15.7) 14.9 (13.7,16.0) 0.06

WBC count (103/µL) 5.5 (4.6,6.4) 5.3 (4.6,6.5) 5.6 (4.6,6.9) 5.4 (4.6,6.4) 0.74

MCV (fL) 83 (79,87) 84 (79,88) 84 (79,88) 82 (77,87) 0.58

Platelet count (103/µL) 256 (220,303) 242 (212,278) 261 (207,293) 226.5 (199,273) 0.0002
Neutrophil % 48.2 (42,54) 47.9 (40.7,54.6) 42.8 (36.6,50.6) 44.1 (35.9, 50.8)  < 0.0001
Lymphocyte % 43.7 (38,49) 45.1 (37.6,50.4) 43.3 (38,48.2) 41.3 (35.6,47.7) 0.15

Monocyte % 3.1 (2.5,4) 3.2 (2.4,4.2) 3.4 (2.5,4.6) 4.0 (2.9,6.1)  < 0.0001
Eosinophil % 2.8 (1.7,5.5) 2.5 (1.7,5.1) 6.8 (3.9,11.4) 7.1 (4.1, 10.7)  < 0.0001
Basophil % 0.6 (0.5,0.7) 0.5 (0.5,0.7 0.6 (0.5,0.8) 0.7 (0.5,0.8)  < 0.0001
Chemistry parameters

n = 184 (45.7%) n = 35 (7.6%) n = 101 (25.3%) n = 92 (21.4%)

ALT/SGPT (U/L) 14.7 (11.7,19.8) 14.1 (11.3,18.1) 17.2 (13.6,21.8) 20.4 (16.2,26.8)  < 0.0001
Creatinine clearance (mL/min) 123.0 (107.7–143.5) 113.1 (97.7–133.0) 120.8 (106.6–134.2) 119.1 (106.2–136.0) 0.08
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other infection groups, and statistically different from 
those uninfected with either disease. The increased 
prevalence of thrombocytopenia was further corrobo-
rated through multivariate analysis, which suggested that 
even after controlling for age and gender, the prevalence 
of thrombocytopenia was significantly higher among the 
co-infected compared to the non-infected. Notably, mul-
tivariate analysis revealed the prevalence of neutropenia 

and leucopenia (independently) was significantly higher 
in men compared to women, which was not apparent 
when categorized based on infection status.

Our data underscore the importance of evaluating for 
co-infections in high endemic settings. For instance, ini-
tial analysis of malarial infection groups indicated sig-
nificant differences in platelet count, percent monocytes, 
and eosinophils. Further, ALT values were significantly 

Fig. 1  Prevalence of hematological clinical conditions based on infection group. Figure depicts the prevalence of selected hematologic conditions 
by the 4 infection groups. Across groups positivity was: Eosinophilia n = 116, Leucopenia n = 66, Neutropenia n = 49, and Leucopenia n = 24. P 
values reflect statistical independence between the hematologic condition and infection group categories
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Fig. 2  Categorical pairwise comparison for hematological clinical conditions based on infection group. Figure shows data generated using the 
generalized linear regression model for pairwise difference for A Thrombocytopenia, B Neutropenia, C Eosinophilia, and D Leucopenia. Pairwise 
differences in means which do not contain zero (shown in red) are significant

Fig. 3  Categorical pairwise comparison for liver enzyme and kidney function based on infection group. Figure showing data generated using the 
generalized linear regression model for pairwise difference for A Liver enzyme, and B Creatinine clearance. Pairwise differences in means which do 
not contain zero (shown in red) are significant
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elevated (Table  2). However, when we separated data 
in the malarial parasite infected individuals from those 
infected with schistosomiasis and performed categori-
cal analysis, malaria infection was only associated with 
significant group differences in platelet count (and not 
monocytes, eosinophils or ALT; Table 4 where we com-
pared the first two columns [parasite−/CCA− vs para-
site + /CCA−]), corroborating previous findings [10]. 
Co-infection was associated with dose-dependent hema-
tologic responses that were significant for platelet count 
and percent neutrophils; platelets counts lowered to 
clinical thrombocytopenic levels but neutrophil levels did 
not reach clinical neutropenia.

Neutrophils play an important role in pathogen clear-
ance by phagocytosis, and the activation and regulation 
of immune response [31, 32]. In children and immune-
competent adults, neutrophil counts have been shown 
to increase in naturally-infected individuals during acute 
uncomplicated malaria, with the amount of neutrophil 
produced positively associated with parasitemia and dis-
ease severity [33, 34]. In non-immune travelers, neutro-
phil counts have been shown to increase with infection 
but do not vary with disease severity [33]. However, in 
asymptomatic P. falciparum infection, neutrophil num-
bers have been shown not to change [35] or decrease in P. 
falciparum infected pregnant women [36]. In our study, 
schistosomiasis infections (or co-infection with malaria) 
were not associated with neutropenia and leucopenia, 
corroborating previous studies [12, 37]. Many factors 
which may explain a gendered association with neutrope-
nia/leucopenia were not included in the study as they are 
broadly out of scope.

Anemia and thrombocytopenia are the two hallmark 
hematological abnormalities associated with malarial 

disease. In our study of adult participants, there were no 
indications of an association between anemia and asymp-
tomatic malaria infection or schistosomiasis parasites; 
there was an observed association with lower platelet 
count in malaria infected groups, but only reached clini-
cal significance with schistosomiasis infection (Table 4). 
When we evaluated hematological parameters based 
on infection with malarial parasite only, platelet count 
reduced based on submicroscopic vs microscopic para-
sites. These findings demonstrate malaria infection in 
asymptomatic adults leads to reduction in platelet count.

Our results suggest this adult population may act as an 
important reservoir for P. falciparum and Schistosoma 
infections given the prevalence of asymptomatic infec-
tion. In recent years, considerable efforts and resources 
have been allocated in the control and elimination agenda 
of these two infections using various tools [1, 4]. Distri-
bution of insecticide treated bednets and delivery of mass 
drug administration to high risk areas and populations 
are some of the strategies used in control and elimination 
efforts, but has mostly focused on children since they 
are the most vulnerable and are likely to develop overt 
symptoms [7, 22]. However, our study demonstrates that 
asymptomatic parasitic infections impact the health of 
adults, who may further act as reservoirs for transmis-
sion. Treatment of the asymptomatic adult population 
may serve an important role in reducing transmission, a 
crucial strategy towards control and elimination agenda 
for either of these diseases in endemic regions.

This study had several limitations. First, diagnosis for 
the presence of P. falciparum was based on molecular 
(nucleic acid detection) method whereas schistosomiasis 
was based on antigenic (protein/peptide) testing. Nucleic 
acid testing detects the presence of live parasites whereas 

Table 5  Multivariate analysis using Poisson model with robust/sandwich estimator

PR  prevalence ratio

Thrombocytopenia
PR (95% CI)

Neutrophilia
PR (95% CI)

Eosinophilia
PR (95% CI)

Leucopenia
PR (95% CI)

Intercept 0.03 (0.01, 0.07) 0.10 (0.06, 0.18) 0.13 (0.09, 0.19) 0.18 (0.12, 0.27)

Parasite/CAA​

 Parasite−/CCA− Reference Reference Reference Reference

 Parasite + /CCA− 1.81 (0.37, 8.81) 1.57 (0.62, 3.93) 0.91 (0.40, 2.09) 1.36 (0.67, 2.76)

 Parasite−/CCA +  2.66 (0.89, 7.94) 1.57 (0.80, 3.07) 3.11 (2.08, 4.65) 0.76 (0.40, 1.42)

 Parasite + /CCA +  4.04 (1.37, 11.88) 1.48 (0.70, 3.11) 2.81 (1.78, 4.44) 1.02 (0.56, 1.86)

Gender

 Male Reference Reference Reference Reference

 Female 0.43 (0.16, 1.19) 0.43 (0.21, 0.84) 0.86 (0.60, 1.23) 0.31 (0.17, 0.56)

Age (years)

 18–25 Reference Reference Reference Reference

 26 +  0.96 (0.41, 2.25) 0.72 (0.39, 1.34) 0.82 (0.59, 1.15) 0.91 (0.54, 1.51)
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antigenic testing may detect live or past infections, which 
may have led to overestimation of co-infections. The 
Schistosomiasis POC-CCA test has been shown to have 
high sensitivity for S. mansoni infections but low sensitiv-
ity for S. haematobium [48]. This may have led to under-
estimation of the schistosomiasis prevalence, which may 
have impacted the statistical analysis. However, in our 
region, S. mansoni is the most prevalent schistosomiasis 
and because of its expediency, POC-CCA test has con-
tinued to be used with satisfactory results even for the 
detection of S. haematobium (22, 49). Further, we did 
not quantify parasite infections by PCR, we only differ-
entiated parasite density based whether parasites were 
microscopic (smear) vs submicroscopic (PCR). We also 
did not test the study participant for other infections 
including bacterial or other parasitic infections, which 
may skew the data. However, assuming that such undi-
agnosed infections would be equally distributed in the 
study groups, we believe our analysis provided reliable 
findings.

Conclusion
Our data suggest that co-infection with P. falciparum 
and schistosomiasis may be associated with abnormal 
changes of hematological and blood chemistry param-
eters in adults living in high endemic regions of west-
ern Kenya, even when they present as asymptomatic 
infections. The observed hematologic effects appeared 
cumulative in those co-infected, which may indicate a 
not-inconsequential burden of disease in the population 
even in asymptomatic individuals, rather than existing as 
benign or trivial.
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