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Machine learning‑based CT radiomics model 
distinguishes COVID‑19 from non‑COVID‑19 
pneumonia
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Abstract 

Background:  To develop a machine learning-based CT radiomics model is critical for the accurate diagnosis of the 
rapid spreading coronavirus disease 2019 (COVID-19).

Methods:  In this retrospective study, a total of 326 chest CT exams from 134 patients (63 confirmed COVID-19 
patients and 71 non-COVID-19 patients) were collected from January 20 to February 8, 2020. A semi-automatic 
segmentation procedure was used to delineate the volume of interest (VOI), and radiomic features were extracted. 
The Support Vector Machine (SVM) model was built on the combination of 4 groups of features, including radiomic 
features, traditional radiological features, quantifying features, and clinical features. By repeating cross-validation 
procedure, the performance on the time-independent testing cohort was evaluated by the area under the receiver 
operating characteristic curve (AUC), accuracy, sensitivity, and specificity.

Results:  For the SVM model built on the combination of 4 groups of features (integrated model), the per-exam AUC 
was 0.925 (95% CI 0.856 to 0.994) for differentiating COVID-19 on the testing cohort, and the sensitivity and specific-
ity were 0.816 (95% CI 0.651 to 0.917) and 0.923 (95% CI 0.621 to 0.996), respectively. As for the SVM models built on 
radiomic features, radiological features, quantifying features, and clinical features, individually, the AUC on the testing 
cohort reached 0.765, 0.818, 0.607, and 0.739, respectively, significantly lower than the integrated model, except for 
the radiomic model.

Conclusion:  The machine learning-based CT radiomics models may accurately classify COVID-19, helping clinicians 
and radiologists to identify COVID-19 positive cases.
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Background
Coronavirus disease 2019 (COVID-19) has spread 
throughout the world widely and rapidly since late 
December 2019 [1, 2]. The newly emerging disease is 
highly contagious and may cause severe acute respiratory 
distress or multiple organ failure in severe cases [3–6]. 

The World Health Organization (WHO) declared the 
outbreak of COVID-19 as a “public health emergency of 
international concern” (PHEIC) on January 30, 2020.

At present, the gold standard for the diagnosis of 
COVID-19 is reverse-transcription polymerase chain 
reaction (RT-PCR). However, the high false-negative rate 
[7] and the shortage of RT-PCR assay in the early stage 
of the outbreak limited the early detection and treatment 
of the presumptive patients [8, 9]. This speeded up the 
spread of COVID-19. Therefore, fast diagnosis is impor-
tant for controlling the spread of COVID-19. Recent 
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studies have demonstrated that computed tomography 
(CT), as a non-invasive imaging approach, is of great 
value in detecting lung lesions in patients with COVID-
19 infection [2, 10]. Besides, CT had much higher sensi-
tivity than initial RT-PCR in diagnosing COVID-19 [8, 9]. 
Consequently, CT could be used as an effective tool for 
early detection and diagnosis of COVID-19. We should 
not neglect the fact that COVID-19 may have certain 
similar CT imaging features with other types of pneumo-
nia, thus making it hard to differentiate. Although meas-
ures are taken to control the spread of the disease, there 
have been 176,531,710 confirmed cases of COVID-19 
globally, including 3,826,181 deaths, till 11:32 am CEST, 
17 June 2021. Concerning the pandemic, accurate and 
fast diagnosis of COVID-19 is vital to isolate infected 
patients and slow down the spread of this disease.

Current studies have demonstrated that artificial intel-
ligence could distinguish COVID-19 from other pneu-
monia [11, 12], improving radiologists’ performance in 
distinguishing COVID-19 from non-COVID-19 pneu-
monia on chest CT and providing clinical prognosis with 
good accuracy that can assist clinicians to adjust their 
clinical management timely and allocate resources appro-
priately [13–19]. However, CT manifestations of COVID-
19 resemble other types of viral pneumonia such as 
severe acute respiratory syndrome coronavirus and Mid-
dle East respiratory syndrome coronavirus. Additionally, 
the non-COVID-19 diseases included as a comparison 
group are long before the COVID-19 outbreak [20]. Since 
the CT manifestations of common pneumonia resem-
ble those of COVID-19 pneumonia, the most difficult 
situation in clinical diagnosis and treatment is to identify 
other types of pneumonia that occur in the same period 
as the outbreak of COVID-19.

In recent years, much attention has been paid to radi-
omics in diagnosing diseases and evaluating treatment 
outcomes [21, 22]. Specifically, radiomics is of great value 
in medical imaging because of its ability to extract high 
throughput quantitative descriptors from routine com-
puted tomography (CT) studies [22]. Radiomics has 
been applied to many areas of cancer research, such as 
tumor detection, preoperative prediction of lymph node 
metastasis, and therapeutic response assessment [21, 
23, 24]. Recently, radiomics has been proved to be help-
ful in COVID-19 screening, diagnosis, prediction the 
length of hospital stay, and assessment of the imaging 
characteristics and risk factors associated with adverse 
composite endpoints in patients with COVID-19 pneu-
monia [25–28]. Radiomics is also useful in the identifica-
tion of COVID-19 [29, 30], differentiating clinical types 
of COVID‑19 [31], and the prediction of poor prognos-
tic outcomes in COVID-19 [32]. Recently, CT radiomics 
was found to perform better in the accurate diagnosis of 

COVID-19 pneumonia compared with the COVID-19 
reporting and data system [33]. However, these stud-
ies were limited in a small sample size. In the study of 
Qi et al., a total of 31 patients were included in the study 
[26]. Some did not extract high-throughput imaging fea-
tures [28]. Besides, few studies have been done including 
holistic analysis of different radiomics features regard-
ing COVID-19. The purpose of this study was to develop 
and test machine learning-based CT radiomics models 
including different radiomics features for the classifica-
tion of COVID-19.

Methods
Study population
This retrospective study was waived by the ethics com-
mittees of the Hainan General hospital. In total, 74 
patients confirmed with COVID-19 infection from Janu-
ary 20 to February 8, 2020, and 82 patients with other 
types of pneumonia in the corresponding period were 
collected. In the COVID-19 dataset, 63 patients who met 
the following inclusion criteria were finally included: (i) 
RT-PCR confirmed COVID-19; (ii) non-contrast CT 
at diagnosis time; (iii) positive CT findings. 71 patients 
with non-COVID-19 pneumonia who met the following 
inclusion criteria were included: (i) RT-PCR excluded 
COVID-19; (ii) non-contrast CT at diagnosis time; (iii) 
pneumonia highly suspected with COVID-19 by CT. The 
exclusion criteria were as follows: (1) contrast CT exams; 
(2) exams without slice thickness of 1  mm; (3) nega-
tive CT findings. Finally, 326 chest CT exams from 134 
patients were included in this study (Fig.  1). The aver-
age age was 47.0 ± 15.4  years. Specifically, we included 

Excluded: 
COVID-19 patients: unavailable 1mm of 
CT scans (6 patients); negative CT findings 
(2 patients)
Other types of pneumonia: unavailable 
1mm of CT scans (2 patients)

Chest CT exams of COVID-19:244
Chest CT exams of other pneumonia:82

Included COVID-19 patients(n=63)
Other types of pneumonia patients(n=71)

74 patients confirmed with COVID-19 infection 
January 20 to February 8,2020

73 patients with non-COVID-19 pneumonia
January 23 to March 16,2020

Follow-up

Fig. 1  Flowchart of this study
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244 (75%) exams for COVID-19 and 82 (25%) for non-
COVID-19 pneumonia in the study.

All the patients with COVID-19 were confirmed as 
positive by RT PCR and were acquired from January 21, 
2020, to Feb 8, 2020. The most common symptoms were 
fever (82%) and cough (77%). Each patient had one or 
multiple CT scans during the progression of the disease. 
The follow-up study was continued until February 19, 
2020.

Other types of pneumonia patients over the corre-
sponding period between January 23 to March 16, 2020 
were selected from the same hospital. For 82 patients 
with negative RT-PCR results, pneumonia was diagnosed 
according to the Infectious Diseases Society of America/
American Thoracic Society (IDSA/ATS) guidelines [34]. 
Patients with at least one of the following clinical symp-
toms: cough, sputum, fever, dyspnea, and pleuritic chest 
pain, plus at least one finding of coarse crackles on aus-
cultation or elevated inflammatory biomarkers, in addi-
tion to a new pulmonary infiltration on chest CT, would 
be diagnosed to be infected with pneumonia. The admis-
sion distribution of the patients with other types of pneu-
monia was: outpatient (86%, 61 of 71), inpatient (14%, 10 
of 71). None received laboratory confirmation of the eti-
ology because of limited medical resources.

CT examinations were performed on the NeuViz 
128 CT (Neusoft, China) with automatic tube current 
(300 mA–496 mA), tube voltage = 120 kV. The pitch was 
set at 1.5 and breath-hold at full inspiration. The slice-
thickness of each CT scan was 1 mm. The reconstruction 
matrix was 512 × 512 pixels. The image enhancement 
factor was 1.0. The window width was 1000, and the win-
dow level was −700.

All subjects’ demographic characteristics and clinical 
data were retrospectively reviewed and collected, includ-
ing age, gender, exposure history, diabetes, hypertension, 
chronic obstructive pulmonary disease(COPD), chronic 
liver disease, chronic kidney disease, cancer, cardiovascu-
lar disease, fever, cough, myalgia, fatigue, headache, nau-
sea, diarrhea, bellyache, dyspnea, other symptoms, white 
blood cell count, number of neutrophils, lymphocyte 
count, hemoglobin and platelet count. The demographic 
statistics of patients were summarized in Table 1. In the 
training cohort, COVID-19 patients had significantly 
older age, more exposure history, more  cough, myalgia, 
fatigue, headache, neusea, diarrhea  symptoms, lower 
lymphocyte count and platelet count  than patients with 
other types of pneumonia. In both the training and test-
ing  cohort, COVID-19 patients had significantly lower 
white blood cell count and neutrophils than patients with 
other types of pneumonia. 

The flow chart of data collection, ROI and features 
annotation, radiomics, and quantity feature extraction, 
model building and evaluation were shown in Fig. 2.

Lesion segmentation and radiological evaluation
All the CT scans were split into a training and a testing 
cohort with a ratio of 85:15 at the patient level according 
to the visiting time of the hospital. Feature selection and 
model building were performed on the training cohort, 
and the testing cohort was not used for the training 
procedure.

The pneumonia lesions were segmented semi-auto-
matically. Firstly, the anonymized thin-slice DICOM for-
mat non-enhanced CT images were imported into an AI 
pneumonia assessment system, on which the pneumo-
nia lesions were automatically detected and delineated. 
On the assessment platform, an MVP-Net (Multi-View 
FPN with Position-aware attention) which was trained 
on the NIH DeepLesion dataset and had achieved state-
of-the-art performance [35], was used to detect abnor-
mal patterns and classify them into consolidation and 
ground-glass opacity. Then a 3D U-Net model trained 
with a local dataset of over 10,000 lung CT scans was 
used to segment detected consolidation and ground-
glass opacity lesions. Besides, pulmonary lobes were 
segmented by a pre-trained lobe segmentation model 
[36, 37]. Subsequently, fifteen radiologists with more 
than 5 years of experience in chest imaging, blind to the 
knowledge of the pathological report and other clinical 
information, refined the segmentation results (Volume of 
Interest, VOI) and evaluated the radiological characteris-
tics. Each series was refined and evaluated by one of the 
fifteen radiologists. The segmentations and radiological 
characteristics were confirmed by two radiologists (F. C 
and Y.C) with 16 and more than 30 years of experience, 
respectively.

The 7 radiological characteristics included ground-
glass opacity, crazy paving pattern, halo sign, reversed 
halo sign, vascular perforating in the lesion, subpleural 
line, and lesion locations (Fig. 3). For each series, the fre-
quency of the radiological characteristics occurring was 
used for modeling.

Quantifying CT characteristics and radiomics features
The segmentation results were used to extract quantify-
ing CT characteristics and radiomics features.

There was a total of 33 quantitative characteristics. 
Apart from the segmentation results, the AI pneumonia 
assessment system also provided the number of lesions 
that suffered bulla, emphysema, pleural thickening, 
reticular, and stripe, which were included as quantita-
tive characteristics. Similar to the previous study [38], the 
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mean and standard deviation of the CT values of the con-
solidation lesions, ground-glass lesions, and both types of 
lesions were calculated from the segmentation. In addi-
tion, the volumes of the consolidation lesions, ground-
glass lesions, their sum, and moreover, their ratios were 
calculated, including the volumes of the consolidation 
lesions versus the volumes of the entire pulmonary and 
the five pulmonary lobes respectively, the ground-glass 
lesions versus the volumes of the entire pulmonary and 
the five pulmonary lobes respectively, and the volumes of 
both types of lesions versus the volumes of the entire pul-
monary and the five pulmonary lobes, respectively.

Before radiomics features were extracted, the 
intensities were discretized by a fixed bin width of 
25, the pixel spacing of images was resampled to 
1.0 mm × 1.0 mm × 1.0 mm per pixel by the BSpline algo-
rithm. Apart from the original images, the wavelet filters 
or Laplacian of Gaussian filters were performed to gen-
erate several filtered images. A total of 1218 radiomics 
features were extracted from the manual confirmed 3D 
VOIs of the original images and the filtered images by 
PyRadiomics V2.1.0 [39], including (1) 252 First-order 
features; (2) 14 Shape-based features; (3) 308 Gray Level 
Co-occurrence Matrix (GLCM) Features; (4) 224 Gray 

Table 1  Characteristics of Patients in the training and testing Cohorts

pa chi-square test, pb Student’s t test. pc Kruskal–Wallis H test

Characteristic Training cohort Testing cohort

COVID-19 Other types 
of-pneumonia

P value COVID-19 Other types of 
pneumonia

p value

Patients 52 60 – 11 11 –

Exams 206 69 – 38 13 –

Age 52.7 ± 12.6 41.5 ± 15.5  < 0.001b 47.5 ± 16.1 46.9 ± 18.4 0.942b

Gender, Male (%) 31 (60%) 33 (55%) 0.623a 5 (45%) 8 (73%) 0.387a

Exposure history 0.006a 0.375a

 Close contact with infected patients 52 (100%) 52(87%) 8 (73%) 6 (55%)

 Unknown cause 0 (0%)3 8(13%) 3 (27%) 5 (45%)

Comorbidities, No. (%)

 Cardiovasular disease 1 (2%) 1(2%) 1.000a 2 (18%) 1 (9%) 0.534a

 Diabetes 4 (8%) 0(0%) 0.029a 0 (0%) 0 (0%) –

 Hypertension, No. (%) 9 (17%) 4(7%) 0.080a 0 (0%) 1 (9%) 0.317a

 COPD 3 (6%) 2(3%) 0.535a 0 (0%) 0 (0%) –

 Chronic liver disease 2 (4%) 1(2%) 0.478a 0 (0%) 0 (0%) –

 Chronic kidney disease 0 (0%) 0(0%) – 0 (0%) 1 (9%) 0.317a

 Cancer, No. (%) 0 (0%) 1(2%) 0.352a 1 (9%) 2 (18%) 0.544a

Symptoms

 Fever, No. (%) 46 (88%) 46 (77%) 0.104a 6 (55%) 7 (64%) 0.672a

 Cough, No. (%) 43 (83%) 26 (43%)  < 0.001a 6 (55%) 3 (27%) 0.387a

 Myalgia, No. (%) 10 (19%) 2 (3%) 0.007a 2 (18%) 0 (0%) 0.476a

 Fatigue, No. (%) 18 (35%) 2 (3%)  < 0.001a 0 (0%) 0 (0%) –

 Headache, No. (%) 9 (17%) 1 (2%) 0.01a 2 (18%) 0 (0%) 0.476a

 Nausea, No. (%) 5 (10%) 0 (0%) 0.046a 2 (18%) 0 (0%) 0.476a

 Diarrhea, No. (%) 7 (13%) 1 (2%) 0.04a 1 (9%) 0 (0%) 1.000a

 Bellyache, No. (%) 0 (0%) 0 (0%) – 1 (9%) 0 (0%) 1.000a

 Dyspnea, No. (%) 1 (2%) 0 (0%) 0.464a 0 (0%) 0 (0%) –

 Other symptoms, No. (%) 19 (37%) 14 (23%) 0.126a 4 (36%) 2 (18%) 0.635a

Laboratory results

 White blood cell count 4.8 ± 2.0 8.2 ± 3.5  < 0.001b 5.1 ± 1.8 9.4 ± 3.4 0.001b

 Number of neutrophils, × 109/L 3.2 ± 1.9 5.8 ± 3.2  < 0.001b 3.2 ± 1.5 6.8 ± 3.3 0.003b

 Lymphocyte count, × 109/L 1.2 ± 0.8 1.6 ± 1.1 0.032b 1.4 ± 0.5 1.7 ± 1.0 0.473b

 Hemoglobin 134.1 ± 25.2 138.7 ± 17.6 0.267b 128.3 ± 19.8 139.7 ± 21.3 0.206b

 Platelet count, × 109/L 175.8 ± 60.3 225.6 ± 62.0  < 0.001b 215.6 ± 70.7 230.1 ± 89.0 0.678b
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Level Size Zone Matrix (GLSZM) Features; (5) 224 Gray 
Level Run Length Matrix (GLRLM) Features; (6) 196 
Gray Level Dependence Matrix (GLD-ZM) Features. The 
pre-processing methods and radiomic feature descrip-
tions are detailed in Additional file  1: Information 1.1. 
and 1.2).

Development of predictive models
4 groups of features were included in the model building: 
radiomics features, radiological features, quantity fea-
tures, and clinical features. The Support Vector Machine 
(SVM) models with the radial basis function kernel were 
built on the 4 groups of features individually and on the 
combination of them.

Before model building, all numerical features were 
normalized by the z-score method, and the categori-
cal features were encoded by the one-hot encoder. To 
avoid overfitting, feature selection methods were used 
to reduce the number of features. The optimal parame-
ters of the combination of the feature selection methods 
and the model were found by grid searching with a ten-
run fivefold cross-validation procedure on the training 
cohort. After they were determined, the model was built 
using the entire training cohort and the performance on 
the testing cohort was evaluated. After the cross-valida-
tion procedure, the threshold that maximized the Youden 
Index on the validation cohort was used to cut off the 
discriminative score to differentiate the COVID-19 from 
other pneumonia.

Fig. 2  The workflow of our study, consisting of data collection, semi-automatic VOI segmentation and radiological features annotation, radiomic 
and quantifying features extraction, model building and evaluation
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Features were selected by a two-step method. (1)The 
Mann–Whitney U test was used and p values were cor-
rected by the Benjamini–Hochberg method. The fea-
tures that were significantly different (p < 0.05) between 
the COVID-19 cohort and non-COVID-19 cohort were 
preserved. (2) the minimum-redundancy maximum-
relevancy(mRMR) method was used and the number of 
selected features was determined by the cross-validation 
procedure. Especially, for the radiological features, the 
mRMR procedure was removed because there were only 
7 radiological features.

The discrimination performance of the model was 
evaluated by the area under the receiver operator char-
acteristic curve (AUC), accuracy (ACC), sensitivity, and 
specificity. The AUCs of the SVM model that built on the 
combined features and those on each individual feature 
group were compared by the Delong test. Because the 
SVM model with radial basis function kernel is nonlin-
ear, the feature importance cannot be derived directly. 

The permutation importance [40] was used to evaluate 
the feature importance and the AUC was used to meas-
ure the difference between the baseline and the model 
that was built with the permutated feature. The consist-
ency of the traditional radiological features was evaluated 
by the Kappa coefficient, and the dice coefficient between 
the corrected segmentation and AI segmentation results 
were used to evaluate the reproducibility of the radiomic 
features. These statistical analyses were performed on R 
software (version 3.6.0; https://​www.r-​proje​ct.​org/) envi-
ronments. Feature selection and model building proce-
dures were performed by the scikit-learn package [41].

Results
Clinical data
Table  1 demonstrated the study population characteris-
tics for the training and testing cohorts. Data related to 
age, exposure history, cough, myalgia, fatigue, headache, 

Fig. 3  Typical radiological characteristics of CT manifestations. a–i demonstrated the typical radiological characteristics of ground grass opacity, 
crazy paving pattern, halo sign, reversed halo sign, vascular perforating in the lesion, subpleural line, subpleural distribution, broncho vascular 
bundle distribution, and pulmonary band distribution, respectively

https://www.r-project.org/


Page 7 of 13Chen et al. BMC Infect Dis          (2021) 21:931 	

and diarrhea were significantly different between 
COVID-19 and other types of pneumonia in the train-
ing cohort (p < 0.05). Regarding the laboratory results, 
the white blood cell count and the number of neutrophils 
were significantly lower in the COVID-19 group than 
those in the negative group (p < 0.05) for both the train-
ing cohort and the testing cohort. In addition, the lym-
phocyte and plate count were significantly lower in the 
COVID-19 group than those in the other types of pneu-
monia group (p < 0.05).

Evaluation of the model performance
A total of 1128 radiomic features were extracted from 
each patient, the correlation cluster map was shown in 
Fig. 4. It can be found in the cluster map that most of the 
radiomic features were correlated and redundant. The 
dice coefficient between the corrected segmentation and 
the AI segmentation result reached 0.82 ± 0.14, indicat-
ing the satisfactory performance of the AI segmentation 
performance and the robustness of the radiomic feature 
extraction. For the ground-glass opacity, crazy paving 

Fig. 4  Clustered heatmap. Feature correlation matrix of radiomic features was represented as a hierarchically clustered heatmap
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pattern, halo sign, reversed halo sign, vascular perforat-
ing in the lesion, subpleural line, and lesion locations, the 
Kappa values were 0.728, 0.733, 0.728, 0.701, 0.841, 0.866, 
0.818, respectively.

For the SVM model that built on the combination of 4 
groups of features, it reached an AUC of 0.984 (0.971 to 
0.997), 0.893 (0.841 to 0.946), and 0.925 (0.856 to 0.994) 
on the training, cross-validation, and testing cohort. 
For the sensitivity and specificity, it reached 0.816 and 
0.923 on the test cohort. For the SVM models that built 
on radiomic features, radiological features, quantify-
ing features, and clinical features individually, the AUC 
on the testing cohort reached 0.765 (95% CI 0.585 to 
0.946), 0.818 (95% CI 0.698 to 0.938), 0.607 (95% CI 
0.414 to 0.8) and 0.739 (95% CI 0.58 to 0.898) respec-
tively, significantly lower than the integrated model, 
except for the radiomic model. The details of the per-
formance are shown in Table  2 and the ROC curve of 
the 4 SVM models on the time-independent test cohort 
was shown in Fig. 5.

There were 30 features involved in the integrated 
SVM model building, including 14 radiomic features, 9 
clinical features, 4 quantifying features, and 3 radiolog-
ical features. The feature importance of these features 
was shown in Fig. 6.

Figure 7 showed the decision function value distribu-
tion of the non-COVID-19 pneumonia and COVID-19 
in the test cohort. The function values were propor-
tional to the distance of the patient to the separating 
hyperplane, thus indicating the integrated model’s con-
fidence in the result of classification. The separating 
hyperplane was adjusted to maximize the Youden index 

on the cross-validation cohort. From the CT images, 
we could see that when the lesions of COVID-19 were 
at the absorption stage, they became small, and thus it 
was difficult to differentiate from non-COVID-19 pneu-
monia. On the contrary, when the lesions of COVID-19 
were relatively big, it was easy to differentiate it from 
non-COVID-19 pneumonia with typical lesion loca-
tions and CT manifestation.

Table 2  The performance of CT radiomics models in training, cross-validation and testing cohorts

a DeLong test showed significant different (p < 0.05) between the model with integrated model on the testing cohort. CI confidence interval

Models Dataset AUC (95% CI) ACC (95% CI) Specificity (95% CI) Sensitivity (95% CI)

Clinical model Training 0.942 (0.916 to 0.969) 0.844 (0.794 to 0.883) 0.87 (0.762 to 0.935) 0.835 (0.776 to 0.882)

Validation 0.881 (0.835 to 0.927) 0.793 (0.739 to 0.838) 0.826 (0.712 to 0.903) 0.782 (0.718 to 0.835)

Testing 0.739 (0.58 to 0.898)a 0.647 (0.5 to 0.772) 0.769 (0.46 to 0.938) 0.605 (0.435 to 0.755)

Radiological model Training 0.922 (0.89 to 0.955) 0.804 (0.751 to 0.848) 0.957 (0.87 to 0.989) 0.752 (0.687 to 0.809)

Validation 0.869 (0.82 to 0.918) 0.775 (0.72 to 0.822) 0.899 (0.796 to 0.955) 0.733 (0.666 to 0.791)

Testing 0.818 (0.698 to 0.938)a 0.588 (0.442 to 0.721) 1 (0.717 to 1) 0.447 (0.29 to 0.615)

Radiomic model Training 0.962 (0.939 to 0.986) 0.909 (0.867 to 0.939) 0.884 (0.779 to 0.945) 0.917 (0.869 to 0.95)

Validation 0.828 (0.767 to 0.889) 0.825 (0.774 to 0.867) 0.797 (0.68 to 0.881) 0.835 (0.776 to 0.882)

Testing 0.765 (0.585 to 0.946) 0.667 (0.52 to 0.789) 0.692 (0.389 to 0.896) 0.658 (0.486 to 0.799)

Quantifying model Training 0.899 (0.863 to 0.935) 0.815 (0.762 to 0.858) 0.812 (0.696 to 0.892) 0.816 (0.754 to 0.865)

Validation 0.803 (0.742 to 0.863) 0.778 (0.724 to 0.825) 0.725 (0.602 to 0.822) 0.796 (0.733 to 0.848)

Testing 0.607 (0.414 to 0.8)a 0.608 (0.461 to 0.738) 0.615 (0.323 to 0.849) 0.605 (0.435 to 0.755)

Integrated model Training 0.984 (0.971 to 0.997) 0.956 (0.923 to 0.976) 0.899 (0.796 to 0.955) 0.976 (0.941 to 0.991)

Validation 0.893 (0.841 to 0.946) 0.88 (0.834 to 0.915) 0.754 (0.633 to 0.846) 0.922 (0.875 to 0.954)

Testing 0.925 (0.856 to 0.994) 0.843 (0.709 to 0.925) 0.923 (0.621 to 0.996) 0.816 (0.651 to 0.917)

Fig. 5  The ROC of the integrated model, clinical model, quantifying 
model, radiological model, and radiomic model on the testing cohort



Page 9 of 13Chen et al. BMC Infect Dis          (2021) 21:931 	

Discussion
In this study, we developed and tested a machine learn-
ing-based CT radiomics model for classifying COVID-19 
from non-COVID-19 pneumonia on chest CT images. 
CT radiomics features of lesions were extracted, and the 
model showed good performance on the training cohort, 
cross-validation result, and testing cohort. On the testing 

dataset, our result revealed that this model achieved a 
high sensitivity of 0.816 (95% CI 0.651 to 0.917) and a 
high specificity of 0.923 (95% CI 0.621 to 0.996) in diag-
nosing COVID-19. As far as we are concerned, this is 
the first study that uses comprehensive information by 
including both imaging and clinical data in the classifica-
tion of COVID-19.

Fig. 6  The permutation feature importance of the integrated model

Fig. 7  The decision function value distribution of the patients with non-COVID-19 pneumonia and COVID-19 in the test cohort was shown. Each 
point indicated a patient in the test cohort, the non-COVID-19 point below the adjusted separating hyperplane line and the COVID-19 point above 
the line were separated correctly. The images of the 4 typical patients were shown. a A patient with non-COVID-19 that misclassified as COVID-19. b 
A patient with non-COVID-19 that were correctly identified. c A patient with COVID-19 that were correctly identified. d A patient with COVID-19 that 
misclassified as non-COVID-19
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Since the outbreak of COVID-19, clinical characteris-
tics have been regarded as important clues for diagnosing 
COVID-19. However, the value of clinical characteristics 
in the diagnosis of COVID has not yet been fully evalu-
ated. Our present study revealed that clinical features 
were valuable, but not the only strong clue for diagnos-
ing COVID-19. This result is of great significance since 
COVID-19 confirmed cases is still rising all over the 
world. We have included both COVID-19 patients with-
out a history of exposure and non-COVID-19 patients 
with a history of exposure in the current study. Expo-
sure history has been regarded as an important indicator 
in diagnosing COVID. Besides, our study demonstrated 
that when compared with non-COVID-19 patients, 
COVID-19 patients had significantly lower leukocyte, 
neutrophils, lymphocyte, and platelet counts. It could 
be explained that because COVID-19 belongs to viral 
infection, whereas non-COVID-19 patients were likely 
to be diagnosed as bacterial infection with high leuko-
cyte count. This is consistent with the previous study that 
normal or abnormally low leukocyte and lymphocyte was 
found to be significant indicators for diagnosing COVID-
19 [42].

CT manifestations of COVID-19 have been deemed 
as an indispensable role for the clinical diagnosis of 
COVID-19 [38]. However, few studies have elucidated 
the role of CT features in diagnosing COVID-19. There-
fore, we have assessed the diagnostic value of radiological 
characteristics including ground-glass opacity, crazy pav-
ing pattern, halo sign, reversed halo sign, vascular perfo-
rating in the lesion, subpleural line, and lesion locations 
in our study. Among these features, those located at the 
periphery seemed to be the most important for the classi-
fication. This was in line with the previous study in which 
the lesions of COVID-19 were distributed mainly in the 
subpleural area [43]. We found that when only the radio-
logical features were included, the model revealed a good 
performance of AUCs for training, validation, and testing 
cohort, 92.2%, 86.9% and 81.8%, respectively. This result 
was in accord with the previous study [38], in which the 
model was built on the basis of the clinical data, labora-
tory results, and CT features. Our study indicated that 
CT is valuable for diagnosing COVID-19.

The encouraging diagnostic performance of the 
machine learning-based CT radiomics model indicates 
that radiomics might be particularly helpful for the 
detection of COVID-19 as the AUCs of other models in 
the testing dataset were significantly lower than that of 
the integrated model, except for the radiomics model. 
Radiomics features in our model included first-order 
features, shape-based features, and the distribution, cor-
relation, and variance in gray level intensities. These radi-
omics features described the relationship between voxels 

and contained quantitative information on the spatial 
heterogeneity of pneumonia lesions. Importantly, when 
only including radiomics features, the model revealed the 
good performance of AUCs for training, validation, and 
testing cohort, 96.2%, 82.8% and 76.5%, respectively. Sim-
ilarly, Fang et al. found that the radiomics model has out-
performed the clinical model in the prediction/diagnosis 
of COVID-19 pneumonia [30]. By using deep learning 
classifier multi-layer perceptron (DL-MLP), Zhang et al. 
found that DL-MLP achieved optimal performance with 
AUC of 0.922 (95% CI 0.856–0.988) and 0.959 (95% CI 
0.910–1.000), the same sensitivity of 0.879, and specificity 
of 0.900 and 0.887 on internal and external testing data-
sets, indicating that DL-MLP may be helpful in efficiently 
screening COVID-19 patients [29]. Besides, Tan et  al. 
demonstrated that automatic machine learning based on 
radiomics of non‑focus area in the first chest CT could be 
used to distinguish different clinical types of COVID‑19 
[31]. To summarize, radiomics was useful in controlling 
the spread of COVID-19. Importantly, by combining 
the radiological features, quantifying features, and clini-
cal characteristics, the performance of the model was 
significantly improved. Its AUCs on training, validation, 
and testing cohorts were all over 89%, indicating that the 
models have the potential to be applied in a general situa-
tion. By using deep learning techniques, a previous study 
was able to distinguish COVID-19 from community-
acquired pneumonia [11]. We were able to collect several 
patients with other types of pneumonia diagnosis on CT 
of the corresponding period. More importantly, these 
types of pneumonia were highly suspected of COVID-19 
in consideration of the epidemic, CT findings, and labo-
ratory results.

A majority of the countries all over the world have been 
affected by COVID-19. Early diagnosis is of importance 
for preventing the spread of the disease. Though RT-PCR 
is considered as the gold standard for the diagnosis of 
COVID-19, CT is used as an effective supplementary tool 
for the diagnosis of COVID-19 [8, 9]. Our study revealed 
that the machine learning-based CT radiomics model 
by combining radiomics, subjective characteristics, 
quantitative characteristics, and clinical characteristics 
achieved good performance for the diagnosis of COVID-
19 and differentiating it from non-COVID-19 pneumo-
nia. This is in line with the idea that adding additional 
clinical information could significantly improve the per-
formance of radiomics [44, 45]. Shiri et al. revealed that 
the combination of radiomic features, clinical and radio-
logical data could effectively predict survival in COVID-
19 patients [44]. Similarly, Chao et al. demonstrated that 
the integration of both imaging and non-imaging data 
significantly improved the performance of prediction 
to need for ICU admission in patients with COVID-19 
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pneumonia [45]. All in all, holistic information is effec-
tive in the diagnosis of COVID-19.

The study has several limitations. First, the sample size 
was relatively small. A larger prospective multicenter 
cohort is needed to test the effectiveness of machine 
learning-based CT radiomics models. Second, patients 
with non-COVID-19 pneumonia did not receive labora-
tory confirmation of the etiology because of limited med-
ical resources during the COVID-19 outbreak. Thirdly, 
we did not use quantitative characteristics to evaluate 
the evolution of the disease. Future work should include 
quantitative information regarding disease progres-
sion. Regarding the field of radiomics, it remains unclear 
which algorithm, classifiers, and feature selector would 
achieve optimal results for investigation [46–48]. In the 
present study, we integrated different biological and clini-
cal information together with radiomics, and better diag-
nostic performance was achieved. This was in line with 
the study of Parmar et al. [49], who found that a compar-
ative investigation could be helpful in the identification 
of the optimal and reliable machine learning methods 
for radiomics-based prognostic analyses. Future studies 
should integrate different biological and clinical informa-
tion together with radiomics.

Conclusions
In conclusion, a machine learning-based CT radiomics 
model is valuable for accurately classifying COVID-19, 
which would be helpful for clinicians and radiologists to 
identify COVID-19 patients.
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