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Abstract 

Background: Lateral flow devices (LFDs) are viral antigen tests for the detection of SARS‑CoV‑2 that produce a rapid 
result, are inexpensive and easy to operate. They have been advocated for use by the World Health Organisation to 
help control outbreaks and break the chain of transmission of COVID‑19 infections. There are now several studies 
assessing their accuracy but as yet no systematic review. Our aims were to assess the sensitivity and specificity of LFDs 
in a systematic review and summarise the sensitivity and specificity of these tests.

Methods: A targeted search of Pubmed and Medxriv, using PRISMA principles, was conducted identifying clinical 
studies assessing the sensitivity and specificity of LFDs as their primary outcome compared to reverse transcriptase 
polymerase chain reaction (RT‑PCR) for the detection of SARS‑CoV‑2. Based on extracted data sensitivity and specific‑
ity was calculated for each study. Data was pooled based on manufacturer of LFD and split based on operator (self‑
swab or by trained professional) and sensitivity and specificity data were calculated.

Results: Twenty‑four papers were identified involving over 26,000 test results. Sensitivity from individual studies 
ranged from 37.7% (95% CI 30.6–45.5) to 99.2% (95% CI 95.5–99.9) and specificity from 92.4% (95% CI 87.5–95.5) to 
100.0% (95% CI 99.7–100.0). Operation of the test by a trained professional or by the test subject with self‑swabbing 
produced comparable results.

Conclusions: This systematic review identified that the performance of lateral flow devices is heterogeneous and 
dependent on the manufacturer. Some perform with high specificity but a great range of sensitivities were shown 
(38.32–99.19%). Test performance does not appear dependent on the operator. Potentially, LFDs could support the 
scaling up of mass testing to aid track and trace methodology and break the chain of transmission of COVID‑19 with 
the additional benefit of providing individuals with the results in a much shorter time frame.
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antigen detection, Reverse transcriptase polymerase chain reaction, Mass testing, Population testing
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Background
Lateral flow device (LFD) immunoassays are common, 
inexpensive, readily available testing devices that are 
used in the detection of a number of different medical 

conditions [1–4]. They work by binding of conjugated 
antibodies to a specific antigen in a sample. This anti-
body-antigen complex moves via capillary flow to a test 
area which then identifies a positive test by the presence 
of a coloured line [2, 3].

There has been an increasing number of papers 
reporting on the use of LFDs in the detection of the 
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(SARS-CoV-2), which has caused the Coronavirus dis-
ease 2019 (COVID-19) pandemic [5]. Currently, the gold 
standard for detection of SARS-CoV-2 is reverse tran-
scriptase polymerase chain reaction (RT-PCR) [6, 7]. 
For both of these tests, nasopharyngeal swabs are used 
to isolate the antigen. However, RT-PCR requires swabs 
to be sent off to a laboratory with specialist equipment 
and analysed by trained laboratory staff. This usually has 

a turnaround time that is variable but of at least 24 h [1, 
7]. Furthermore, many countries possess a limited capac-
ity to perform RT-PCR tests, hindering their ability to 
engage in mass-testing with RT-PCR alone; as an exam-
ple, the United Kingdom’s current RT-PCR capacity for 
the detection of SARS-CoV-2 is approximately 500,000 
tests per day [8].

Fig. 1 PRISMA flowchart showing systematic processing of articles
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Where there are national or local outbreaks, it is 
important to be able to expand testing in a short time 
frame (surge-testing) to enable effective identification of 
individuals infected with the virus for contact tracing and 
mass population testing in an endeavour to stop the chain 
of transmission of the virus [5, 9]. Lateral flow devices 
(LFDs) offer a potential solution as they can quickly turn 
around a result in less than 30 min without the need for 
specialist staff or laboratory capacity [2, 3]. Many coun-
tries have pioneered the use of LFDs for surge-testing in 
the healthcare, community and educational setting [10, 
11].

To date, there has yet to be a systematic review to assess 
the sensitivity and specificity of LFDs in the detection of 
SARS-CoV-2 without which a thorough evaluation of the 
efficacy of these tests cannot be undertaken.

The primary objective was to identify the sensitivities 
and specificities of lateral flow devices in the detection of 
SARS-CoV-2 compared to reverse transcriptase polymer-
ase chain reaction in patients with symptoms of COVID-
19 or those screened as part of mass testing programmes. 
This study also set out to identify if there were any dif-
ferences in sensitivity and specificity between different 
manufacturers of LFDs and between different operators 
of the LFD test.

Methods
Study design
This was a systematic review of clinical studies in peer 
reviewed journal articles.

Search strategy
Two independent reviewers conducted an electronic 
search strategy of two online databases, PubMed and 
Medxriv, in 1st December 2020 to 15th January 2021. 
Search terms used included but not exclusively a com-
bination of “COVID-19”, “SARS-CoV-2”, “CORONAVI-
RUS”, “ANTIGEN DETECTION”, “ANTIGEN TEST”, 

“LATERAL FLOW”. The two reviewers then reviewed 
each paper generated from the search and excluded arti-
cles based firstly on title then abstract and then review-
ing the full text. References of the filtered papers were 
searched for additional studies. Any disagreements 
between the reviewers were resolved by consulting a 
separate adjudicator and a discussion between all three 
parties.

Eligibility and exclusion criteria
Eligible studies had to meet the following criteria: (1) 
involved the detection of SARS-CoV-2, (2) the interven-
tion was a LFD detecting the antigen to this virus, (3) the 
LFD was performed at the point of care on samples taken 
for this purpose, (4) the control used as the “gold stand-
ard” must be RT-PCR, (5) outcomes for the paper must 
include the sensitivity and specificity of the lateral flow 
device, (6) population must be adults (≥ 18  years) who 
displayed symptoms of COVID-19 or swabbed as part of 
screening or mass testing, (7) the full text must be pub-
lished in peer reviewed journals or a preprint pending 
review at the time of the search.

Exclusion criteria included any study that did not meet 
all the conditions for eligibility and: (1) was detecting 
anything other than SARS-CoV-2, (2) retrospectively 
tested samples which had been frozen, (3) tested exclu-
sively healthy volunteers with no indication for swabbing, 
(4) did not provide appropriate sensitivity and specificity 
data.

Data extraction
Once all papers from the search had been identified the 
two independent reviewers reviewed the full text of all 
identified papers. Descriptive data for each article were 
identified including author, month and year, location, 
sample size and manufacturer of LFD used. The review-
ers then extracted test result data including the number 
of participants in which SARS-CoV-2 was detected by 
RT-PCR and LFD and the number of false positive and 
negative results detected by LFDs. Sensitivity and speci-
ficity data were collected for each study including 95% 
confidence intervals; in all studies, this was calculated to 
confirm the sensitivity and specificity data. The data was 
subsequently split and pooled based on the manufacturer 
of LFD used which enabled calculation of sensitivity and 
specificity for each manufacturer of LFD compared to 
RT-PCR. Studies were split again if the sample was taken 
by a trained professional or if it was taken by the patient 
with self-swabbing, regardless of who operated the LFD 
test. Sensitivity and specificity data were calculated com-
paring these two groups. Again, any disagreements dur-
ing data extraction were settled by consulting the third 
party.

Fig. 2 The different test setting between the studies—includes a 
variety of test centres and primary care centres
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Outcomes
The pre-defined primary outcome was to assess the sen-
sitivity and specificity of LFD tests in the detection of 
SARS-CoV-2 compared to RT-PCR (“gold standard”) 

testing in patients with symptoms consistent with 
COVID-19 or in individuals swabbed as part of mass 
population testing/contact tracing. The secondary out-
come was to calculate the sensitivity and specificity of 

Fig. 3 SARS‑CoV‑2 infection status shown across each individual paper in the heat map chart (A) (blue = included; grey = non included) then 
combined totals below in the bar chart (B). A In the “other” group in Abdelrazik et al. refers to exposed healthcare professionals (close contacts 
were a separate group in this trial too). For Cerutti et al., this refers to patients who were tested from “high risk” travel areas as deemed by the local 
government
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each LFD test by manufacturer in this same population 
in comparison to RT-PCR and based upon whether the 
sample collection was performed by a trained profes-
sional or by the patient (“self-swabbing”).

Data analysis
Data analysis was conducted using IBM SPSS Ver-
sion 27.0.0. For the primary outcome in the majority 
of studies, no data analysis was required as all results 
were extracted from articles directly. For the secondary 
outcome, results of individual manufacturers of LFDs 
were pooled together and a sensitivity/specificity analy-
sis conducted. A total sensitivity and specificity were 
reported for each manufacturer with 95% confidence 
intervals. Data visualisation was performed in R version 
4.0.3. Heatmaps and Forest plots were generated using 
the pheatmap() function of the ‘pheatmap’ (v1.0.12) and 
forestplot() function of the ‘forestplot’ (v1.10.1) R pack-
ages, respectively. Bar plots, horizontal dot plots and pie 
charts were generated using the geom_bar(), geom_line(), 
geom_point() and coord_polar() functions of the ‘ggplot2’ 
(v3.3.2) R package, respectively.

Results
The search strategy yielded 1345 papers and further 
titles were identified by checking the references of these 
articles. This was narrowed down to 24 full text articles 
as demonstrated by the PRISMA flow diagram from 
in Fig. 1. In total 26,903 tests were included in these 24 
articles, which are summarised in Table  1, including 
sample sizes, population and LFD type used. There was 

an almost equal gender split and a range of different test 
centres such as COVID-19 test centres and primary care 
centres (Fig. 2 and Additional file 1: Appendix 1).

The indication for testing for SARS-CoV-2 of the partici-
pants [e.g., screening or (a)symptomatic testing, close con-
tacts] are included in Fig. 3, demonstrating that the systemic 
review contains a diverse population sample that would be 
representative of those being tested for COVID-19.

Manufacturer of lateral flow device
Eight different manufacturers of LFDs were used across 
24 studies. Panbio Abbot had the highest number of pub-
lications and was used across 12 different studies with a 
combined total of 13,000 tests. This is demonstrated in 
Fig. 4 and Additional file 1: Appendix 2.

Sensitivity and specificity data
Individual study sensitivity and specificity data is demon-
strated by Table 2. This shows a range of sensitivity from 
37.7% (95% CI 30.6–45.5) from Blairon et al. [16] (which 
used the CORIS LFD) to Moeren et al. [29] with a sen-
sitivity of 99.2% (95% CI 95.5–99.9) using the BD Veri-
tor LFD test, as demonstrated by Fig. 5A. For specificity, 
all studies demonstrated a specificity over 92%. Eleven 
studies had a specificity of 100%. This is demonstrated in 
Fig. 5B.

Pooled data based on manufacturer of LFD
After combining studies based on manufacturer of LFD, 
BD Veritor had the best sensitivity of 99.19% (95% CI 
95.54–99.86%), though the sample size was small and it 

Fig. 4 Heat map chart showing manufacturer of LFD test used in each individual paper. Blue = included; grey = not included
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Fig. 5 LFD sensitivity by study with 95% confidence intervals displayed in A. LFD specificity data by study with 95% confidence intervals displayed 
in B. Kruger et al. (2020) [25] tested three different types of LFDs hence three different results
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was only tested from a single centre study. The CORIS 
and BIOSENSOR were the lowest sensitivity LFDs dem-
onstrating sensitivities of less than 45%. Panbio Abbott 
has been most thoroughly evaluated and noted a sensi-
tivity of 78.41% (95% CI 76.78–79.96%) across over 2500 
individual tests. All manufacturers demonstrated a speci-
ficity of over 93% and three (BD Veritor, BIOCREDIT, 
COVID-VIRO) had specificities of 100%. This is shown in 
Table 3 and Fig. 6.

Sample collection comparison
Studies were split by sample collector as displayed in 
Table  1. In fourteen studies the sample was collected 

by trained professionals; only the Peto et  al. [31] study 
involved samples collected by the patient as part of self-
swabbing, though with the test performed by a trained 
professional. Nine studies did not specify who the opera-
tor was. Trained professionals carried out 10,656 tests 
and 6954 were by self-swabbing as demonstrated in 
Fig. 7A. Sensitivity for trained professionals was 81.47% 
(95% CI 79.7–83.1) and for self-swabbing was 78.68% 
(95% CI 72.4–83.8) (see Fig. 7B, C). Both showed a speci-
ficity of over 99% as shown in Fig. 7C [trained profession-
als = 99.4% (95% CI 99.2–99.5); self-swabbing = 99.7% 
(95% CI 99.5–99.8)].

Fig. 6 Pooled LFD sensitivity data based on manufacturer with 95% confidence intervals displayed in A. Pooled LFD specificity data based on 
manufacturer with 95% confidence intervals displayed in B 



Page 12 of 14Mistry et al. BMC Infect Dis          (2021) 21:828 

Discussion
This systematic review has identified, across 24 stud-
ies and over 26,000 LFD tests, that a number of indi-
vidual manufacturers of LFDs recorded a sensitivity 
of over 78% compared to the gold standard test of RT-
PCR, with one individual manufacturer reaching up to 
99.19% sensitivity in one single centred trial (BD Veri-
tor). Specificity was more consistent, with over 92% in 
all individual studies and from the pooled data. The 
large variation between brands of LFDs could be due to 
several factors including individual study design, opera-
tor competencies but also quality of the LFD itself. 
This highlights the impressive performance of the Pan-
bio Abbot and Innova brands both with sensitivities 
of over 78% but with a sample size of 13,221 and 6954 
respectively.

This study is the first to summarise the existing body of 
studies to help create a broader understanding for LFD 
testing for SARS-CoV-2 and is the first systematic review 
of its kind. While RT-PCR is and is likely to remain the 

gold standard of testing, this study highlights the poten-
tial utility of rapid antigen testing to support RT-PCR in 
the scaling up of a country’s testing program to include 
mass testing, contact tracing programs and potentially 
surge-testing [9, 36]. Potential use of LFDs might be to 
provide short term additional capacity, or as an adjunct 
to PCR testing [1, 7, 8]. The lower sensitivity demon-
strated by certain brands of LFDs compared to RT-PCR 
can be overcome to an extent in high prevalence areas 
with appropriate frequency of testing. LFDs may come 
into their own when used in areas with big spikes in 
cases. We note that there is an increasing body of mod-
elling data highlighting that the best surveillance testing 
methods are tests that can be scaled up and reported 
quickly, [36] requirements which LFDs may have suitable 
characteristics. These models also highlight the need for 
recurrent testing. This again is a requirement LFDs can 
fulfil given their minimal expense. High frequency test-
ing in high prevalence areas may negate some concerns 
around sensitivity [36]. In contrast, low incidence areas 

 

A

B

C

Fig. 7 The proportions of LFD tests by sample collector is displayed in A. The sensitivity of LFD tests by sample collector with 95% confidence 
intervals is displayed as a Forest Plot in B. The specificity of LFD tests by sample collector with 95% confidence intervals is displayed as a Forest Plot 
in C 
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would expose the inferior sensitivities demonstrated by 
LFDs in this study, and RT-PCR would be the most suit-
able, especially if there is a reduction in demand for mass 
population and high frequency testing in these areas. This 
point highlights that whilst LFDs have some benefits, 
when compared directly to RT-PCR, their performance 
when detecting SARS-CoV-2 was inferior and as such 
they should be utilised when RT-PCR is overwhelmed.

Our study design is not without its limitations. There 
are possible confounding variables including the marked 
heterogeneity in terms of study designs whereby some 
targeted asymptomatic or symptomatic groups, and oth-
ers targeted contacts of symptomatic patients. However, 
as there was a variety of settings and scenarios to repli-
cate the conditions of real-life testing, this data can still 
provide valuable insight into the performance of LFDs.

Furthermore, this systematic review takes the assump-
tion that for the diagnosis of COVID-19, RT-PCR testing 
is the most appropriate measure for comparison. There is 
a debate whether RT-PCR testing is the most appropriate 
method in a high-incidence setting [37]. In such a setting 
RT-PCR might actually report an overall greater number 
of positive cases than those which should be considered 
active infections, because of the presence of residual 
RNA which can be present for several months after an 
initial infection with SARS-CoV-2 [37–39]. Other meas-
ures of assessing the infectivity of individuals, such as 
viral culture, might provide better measurements but suf-
fer from other logistical implementation issues.

On a final note, caution should be exerted particularly 
in view of new emergent strains. The sensitivity of any 
COVID-19 tests to new strains, not least LFDs must be 
confirmed. Several such evaluations have been completed 
by Public Health authorities in the United Kingdom and 
have given reassurance in this regards [40].

Conclusions
In summary, this systematic review has shown that 
lateral flow devices can produce varying sensitivity 
and specificity results compared to the other forms 
of SARS-CoV-2 diagnostics. We have shown that a 
number of manufacturers of LFDs can produce high 
specificity but there is significant heterogeneity in 
sensitivity (38.32–99.19%), which may suit LFD use to 
high prevalence areas in an attempt to rapidly increase 
testing in areas with raised transmission. Our evidence 
gives support to the practice of self-swabbing for sam-
ple collection compared to the test being performed 
by a trained healthcare professional. LFDs potentially 
offer a new form of COVID-19 testing that might 
ease the pressure on the RT-PCR testing program. 
Enhanced capacity for mass testing, contact tracing 

and surge-testing, may in turn help stop the chain of 
transmission of COVID-19.
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