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Abstract

Background: The association between the frequency of surgeries and the incidence of surgical site infections (SSIs)
has been reported for various surgeries. However, no previous study has explored this association among video-
assisted thoracic surgeries (VATS). Hence, we aimed to investigate the association between the frequency of
surgeries and SSI in video-assisted thoracic surgeries.

Methods: We analyzed the data of 26,878 thoracic surgeries, including 21,154 VATS, which were collected during a
national surveillance in Japan between 2014 and 2018. The frequency of surgeries per hospital department was
categorized into low (< 50/year), moderate (50–100/ year), and high (> 100/year). Chi-squared test or Fisher’s exact
test was used for discrete explanatory variables, whereas Wilcoxon’s rank-sum test or Kruskal-Wallis test was used
for continuous explanatory variables. Univariate analysis of the department groups was conducted to explore
confounding factors associated with both SSIs and the department groups. We used a multiple logistic regression
model focusing on VATS and stratified by the National Nosocomial Infections Surveillance System (NNIS) risk index.

Results: The rates of SSIs in the hospital groups with low, moderate, and high frequency of surgeries were 1.39,
1.05, and 1.28%, respectively. In the NNIS risk index 1 stratum, the incidence of SSIs was significantly lower in the
moderate-frequency of surgeries group than that in the other groups (odds ratio [OR]: vs. low-frequency of
surgeries: 2.48 [95% confidence interval [CI]: 1.20–5.13], P = 0.0143; vs. high-frequency of surgeries: 2.43 [95% CI:
1.44–4.11], P = 0.0009). In the stratum of NNIS risk indices 2 and 3, the incidence of SSI was significantly higher in
the low-frequency of surgeries group (OR: 4.83, 95% CI: 1.47–15.93; P = 0.0095).
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Conclusion: The result suggests that for departments with low-frequency of surgeries, an increase in the frequency
of surgeries to > 50 per department annually potentially leads to a decrease in the incidence of SSIs. This occurs
through an increase in the experience of the departmental surgeons and contributes to the improvement of VATS
outcomes in thoracic surgeries.

Keywords: Surgical site infection, Frequency of surgeries, Video-assisted thoracic surgery, National surveillance,
Epidemiology

Background
Thoracic surgery (THOR) is a standard modality for
early non-small cell lung cancer and recurrent pneumo-
thorax. Video-assisted thoracic surgery (VATS) has been
widely used to treat lung cancer and pneumothorax in
the past two decades because of its minimally invasive
technique [1]. In Japan, in 2018, the number of lung
cancer operations using VATS was 34,249 and
accounted for 75.7% of the total operations (n = 45,243),
whereas that of pneumothorax-related operations using
VATS was 14,379 and accounted for 97.6% of the total
operations (n = 14,731) [2].
Surgical site infections (SSIs) remain among the most

frequent healthcare-associated infections worldwide [3].
In the European point prevalence survey between 2016
and 2017, the incidence of SSIs was 18.3% [4], and the es-
timated number of related deaths per year was 16,049 in
the European Union [5]. The cost of healthcare-related in-
fections amounted to US $17,916 for colon surgeries and
US $34,741 for coronary artery bypass graft surgeries [6].
In this context, preventing SSI not only leads to good pa-
tient outcome, but also has economic benefits [7]. In thor-
acic surgery, SSIs are also associated with increased
morbidity, in-hospital mortality, prolonged hospitalization,
and increased costs [8]. There are various reports of risk
factors for SSI, for example, age, sex, smoking, body mass
index, duration, American Society of Anesthesiology
score, wound class, emergency operation, which depend
on the types of surgeries performed [9]. VATS has im-
proved the incidence of postoperative complications, and
thus, has been increasingly used in thoracic surgeries [10].
The association between the frequency of surgeries per

department and the incidence of SSI in various surgeries
is yet to be clarified because findings have been conflict-
ing. As an influencing factor of the incidence of SSI, a
previous study showed that surgeons with a higher fre-
quency of surgeries (i.e., surgeons with a large number
of surgeries conducted per period) tended to be associ-
ated with a lower incidence rate of SSIs than their col-
leagues with a lower frequency of surgeries [11, 12].
Further, departments with a higher frequency of surger-
ies were associated with better patient outcomes [13–
15]. In contrast, Furuya-Kanamori et al. reported that
groups with high-frequency of surgeries tended to have

a higher risk of encountering SSIs than groups with low-
frequency of surgeries in colorectal surgeries [16]. Spe-
cifically, there has been no study focusing on video-
assisted thoracoscopic surgery (VATS). The association
between the frequency of VATS and the incidence rate
of SSIs remains unknown.
To investigate the association between the frequency

of surgeries and SSIs in video-assisted thoracic surgeries,
we utilized a subset of the national SSI surveillance data
collected in Japan, where surveillance for SSIs has been
conducted since 2002 as the Japan Nosocomial Infec-
tions Surveillance (JANIS) [17, 18], which is one of the
largest SSI databases.

Methods
Study design and data source
This retrospective observational study extracted the sur-
veillance data of patients who underwent THOR be-
tween 2014 and 2018, from the JANIS database. Briefly,
the JANIS database includes data on 305,960 surgeries
from 802 institutions in 2018. The SSI surveillance in
JANIS is conducted using the definition of the US Na-
tional Nosocomial Infections Surveillance System
(NNIS), with some modifications. It is comparable to
other international SSI surveillances, such as the OP-
KISS of Germany [19] and the National Healthcare
Safety Network of the United States of America [20].
THOR data using only cardiac or cardiovascular surger-
ies were not included in the JANIS database. Patient in-
formation is de-identified by each hospital before
submission to the JANIS database. Hospitals are re-
cruited on a voluntary basis each year for the JANIS,
and the participating hospitals are required to report SSI
surveillance data for selected operative procedures elec-
tronically on a biannual basis [21].

Data collection
In total, 247 departments across 247 hospitals (each hos-
pital has one thoracic surgery department) participated
in the JANIS SSI surveillance for at least 1 year from
2014 to 2018. They submitted the data of 39,368 THOR
procedures during the period. The data of 26,878 cases
of THOR performed in 74 hospitals, which completed
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data submission during the 5 years (from 2014 to 2018),
were included in the present study.
The variables analyzed included NNIS risk index, age,

sex, multiple procedures, emergency operation, implant,
trauma surgery, general anesthesia, and video-assisted
surgery. The United States Center for Disease Control
defines the NNIS risk index as the sum of three binary
variables indicating whether 1) the American Society of
Anesthesiologist score is higher than two, 2) wound clas-
sification is contaminated or dirty, and 3) duration of
the procedure in minutes is longer than the 75th per-
centile. It is a convenient risk stratification system widely
used worldwide, including in the JANIS [22]. The de-
partments were classified into three department groups
according to the frequency of surgeries (i.e., the average
number of procedures per department per year) as low
(< 50/year), moderate (50–100/year), and high (> 100/
year) based on its distribution (Additional Fig. 1) accord-
ing to a previous study [23].

Statistical analysis
Potential risk factors for SSI were first explored using
univariate analysis. Chi-squared test or Fisher’s exact test
were used for discrete explanatory variables, whereas
Wilcoxon’s rank-sum test or Kruskal-Wallis test were
used for continuous explanatory variables. A univariate
group analysis of the department groups was conducted
to explore confounding factors associated with both SSIs
and the department groups. Multiple logistic regression
analysis was performed to estimate the odds ratios (ORs)
and 95% confidence intervals (CIs) of the risk factors
after adjusting for confounding factors. We fitted the
multiple logistic regression model stratified by the NNIS
risk index after grouping risk indices 2 and 3 into a
stratum for clear interpretation. The stratification was
conducted using the NNIS risk index rather than the
three binary variables comprising it because they were
highly correlated with each other: variable 2) was highly
significantly associated with variables 1) and 3) (p <
0.001), and there was a significant association between
variables 1) and 3) (p = 0.015). All statistical analyses
were performed using JMP Version 13.2.1 (SAS Institute,
Cary, NC, USA). A P value < 0.05 was considered statis-
tically significant.

Ethical considerations
Patient identifiers were de-identified by each hospital be-
fore data submission to JANIS. The anonymous data
stored in the JANIS database were exported and
analyzed.
The protocol of this study was approved by the Minis-

try of Health, Labor and Welfare (approval number
0417–1) according to Article 32 of the Statistics Act and
in accordance with the Helsinki Declaration. The

requirement for informed consent was waived by the
Ministry of Health, Labor and Welfare (approval number
0417–1).

Results
Total incidence of SSIs in the THOR procedures and their
characteristics
The total number and rate of SSIs in the THOR proce-
dures during the study period were 335 and 1.25%, re-
spectively (Table 1). A total of 21,154 VATS procedures
were performed, accounting for 78.7% of all THOR pro-
cedures. The number of VATS procedures was approxi-
mately four times greater than that of open thoracic
surgeries. There were 17,615 (65.5%) male patients. The
most dominant SSI was organ/space SSI (48.4%),
followed by superficial incisional infections (38.2%).
Causative pathogens were identified in 59.4% of all cases,
with the most common being methicillin-resistant
Staphylococcus aureus infection (64 isolates), followed by
methicillin-susceptible S. aureus infection (54 isolates).
The most common causative gram-negative bacterium
was Pseudomonas aeruginosa (14 isolates). Polymicrobial
infections were found in 30 cases.

Classification of departments by the frequency of
surgeries
A median of 47.8 (Inter Quartile Range: 11.4–110.4)
procedures (the frequency of surgeries per department)
were conducted per year. The distribution among the 74
departments is shown in Additional Fig. 1. In total, 38,
16, and 20 departments were classified as the centers of
low-, moderate-, and high-frequency of surgeries, re-
spectively. A total of 3086 (11.5%), 5718 (21.3%), and 18,
074 (67.2%) THOR procedures were conducted in these
departments annually, and the median numbers were
11.8, 68.6, and 145.2, respectively. A comparison of the
three department groups (Table 2) revealed statistically
significant differences in the number of beds (P < 0.0001,
Kruskal–Wallis test), teaching hospitals (P = 0.0012,
Fisher’s exact test), and tertiary hospitals (P = 0.0074,
chi-square test). All four teaching hospitals were in-
cluded in the group with a high-frequency of surgeries,
which accounted for 20% of the hospitals in this group.
Meanwhile, the tertiary hospitals accounted for 13.2,
37.5, and 50% of the hospitals in the groups with low-,
moderate-, and high-frequency of surgeries, respectively.

Univariate analysis of risk and confounding factors of SSI
As indicated above, VATS accounted for the majority
(78.7%) of THOR procedures. We also found a statisti-
cally significant difference in the proportion of proce-
dures using VATS among the three department groups
(72.7, 81.6, and 78.8%, P < 0.0001, chi-square test) and in
the rate of SSI between VATS and other procedures
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(1.11 and 1.75%, P = 0.0001, chi-square test). These re-
sults indicated that VATS was a confounding factor sig-
nificantly associated with both the department groups
and the rate of SSI. To control for its effect in examining
the association between them, we confined the proce-
dures using VATS in the following analyses.
Descriptive statistics calculated from the data of the

VATS procedures are shown in the middle and end of
Table 2. In total, 2245, 4667, and 14,242 VATS procedures
were performed in the groups with low-, moderate-, and
high-frequency of surgeries, respectively. Meanwhile, 33
(1.47%), 35 (0.75%), and 167 (1.17%) SSIs occurred in the

above groups, respectively. There were significant differ-
ences in age (P < 0.0001, Kruskal-Wallis test), number of
male patients (P < 0.0001, chi-square test), emergency op-
erations (P < 0.0001, chi-square test), and NNIS risk index
(P < 0.0001, chi-square test) among the groups (Table 2).
Regarding risk factors for SSIs, we found a significantly

higher risk in men (P < 0.0001, chi-square test, 1.33% in
men, vs. 0.69% in women) and in those with an NNIS
risk index of 2–3 (P < 0.0001, chi-square test; risk index
0, 0.71%; 1, 1.80%; and 2–3, 3.80%]). This indicated that
sex and the NNIS risk index, in addition to VATS, were
the confounding factors.

Table 1 Descriptive statistics of the procedures, patients, and SSI

Total no. of procedures (from 2014 to 2018) among the 74 departments 26,878

Video-assisted thoracic surgery 21,154

Open thoracic surgery 5724

Emergency surgery 1569

Mean age 62.1 (0–97)

Male sex (%) 17,615 (65.5)

Incidence of SSI, N (%) 335 (1.25)

Type of SSI, N (%)

Superficial incisional 128 (38.2)

Deep incisional 45 (13.4)

Organ/space 162 (48.4)

Type of specimen

Superficial/deep incisional site drainage 102

Organ/space drainage 97

Sputum 12

Blood 7

Respiratory specimen 6

Other drainage 2

Tissue 1

Other 3

Causative pathogens

MRSA 64

MSSA 54

Streptococcus spp. 17

Pseudomonas aeruginosa 14

Corynebacterium spp. 12

CNS 10

Staphylococcus epidermidis 7

Enterococcus faecalis 6

Escherichia coli 4

Klebciella pneumoniae 4

Others 26

Polymicrobial 30

CNS central nervous system, MRSA Methicillin-resistant Staphylococcus aureus, MSSA methicillin-susceptible Staphylococcus aureus, SSI surgical site infections
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Multiple logistic regression analysis stratified by the NNIS
risk index
We conducted multiple logistic regression analyses con-
trolling for confounding factors. Specifically, sex was
added as a covariate, and the data were stratified by the
NNIS risk index, enabling estimation of the OR for each
NNIS risk index. The results revealed a statistically sig-
nificant association between the department groups and
SSI in the strata of NNIS risk indices 1 and 2–3
(Table 3), but not in the stratum of NNIS risk index 0.
In the strata of NNIS risk indices 1 and 2–3, the risk of

SSI was always the lowest in the group with a moderate-
frequency of surgeries. When the group with a
moderate-frequency of surgeries was used as a reference,
both the groups with low- (OR: 2.48 [95% CI 1.20–5.13],
P = 0.0143) and high- (OR: 2.43 [95% CI 1.44–4.11], P =
0.0009) frequency of surgeries were significantly posi-
tively associated with SSI in the stratum of NNIS risk
index 1. A similar association was found between SSI
and male sex (OR: 2.13 [95% CI 1.31–3.48] P = 0.0024).
In the stratum of NNIS risk indices 2 and 3, only the
group with a low frequency of surgeries was significantly

Table 2 Classification of departments in terms of frequency of surgeries, and univariate analysis of risk and confounding factors of
SSI

Department groups in terms of average number of all
kinds of procedures/year

Univariate analysis against

Department group SSI

total < 50/year 50–100/year > 100/year p value p value

Department, N 74 38 16 20

Department characteristics

Mean of number of beds 409.5 315 449.4 557 < 0.0001

Number of teaching hospitals 4 0 0 4 0.0012

Number of tertiary hospitals 21 5 6 10 0.0074

Number of cancer centers 3 0 1 2 0.11

Thoracic surgery

Total number (from 2014 to 2018) 26,878 3086 5718 18,074

Number of surgical site infections 335 43 60 232

Rate of surgical site infections (%) 1.25 1.39 1.05 1.28

Median number of procedures / year 72.6 11.8 68.6 145.2

Open thoracic surgery

Procedures 5724 841 1051 3832

Number of surgical site infections 100 10 25 65

Rate of surgical site infections (%) 1.75 1.12 2.38 1.7

Video-assisted thoracic surgery (VATS) < 0.0001 0.0001

Procedures 21,154 2245 4667 14,242

Number of surgical site infections 235 33 35 167

Rate of surgical site infections (%) 1.11 1.47 0.75 1.17

Age (median, IQR) 68 (55–74) 63 (27–73) 68 (57–75) 68 (59–74) < 0.0001 0.06

Sex < 0.0001 < 0.0001

Female 7345 (34.7%) 582 (25.9%) 1575 (33.7%) 5188 (36.4%)

Male 13,809 (65.3%) 1663 (74.1%) 3092 (66.3%) 9054 (63.6%)

Emergency operation < 0.0001 0.605

Yes 1187 (5.6%) 264 (11.8%) 152 (3.3%) 771 (5.4%)

No 19,967 (94.4%) 1981 (88.2%) 4515 (96.7%) 13,471 (94.6%)

NNIS risk index < 0.0001 < 0.0001

0 14,160 (66.9%) 1601 (71.3%) 2415 (51.7%) 10,144 (71.2%)

1 6343 (30.0%) 565 (25.2%) 2001 (42.9%) 3777 (26.5%)

2,3 651 (3.1%) 78 (3.5%) 251 (5.4%) 321 (2.3%)

NNIS National Nosocomial Infections Surveillance System, SSI surgical site infections
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positively associated with SSI (OR: 4.83, 95% CI: 1.47–
15.93, P = 0.0095). (Table 3).

Discussion
The association between the frequency of surgeries and
the incidence of SSIs in VATS is yet to be clarified. Our
study revealed that low- and high-frequency of surgeries
were associated with significantly higher rates of SSIs
than moderate-frequency of surgeries in the cases with
NNIS risk index 1. Meanwhile, in the cases of NNIS risk
index 2 or 3, a low-frequency of surgeries was associated
with significantly higher rate of SSIs. To the best of our
knowledge, this is the first study to investigate the rela-
tionship between the frequency of surgeries and SSIs in
THOR procedures based on a large national surveillance
database. After focusing on VATS, which accounted for
most procedures and was found to be a confounding
factor, we found a significant association between the
stratum of NNIS risk index 1 and that of NNIS risk indi-
ces 2–3.
The frequency of surgeries was classified using the

total number of procedures, including VATS and open
thoracic surgery. Further, similar results were obtained if
only the annual number of VATS procedures was used,
with the multiple logistic regression analysis adjusted for
sex and stratified by NNIS risk index (Additional Table
1). A high-frequency of surgeries was significantly posi-
tively associated with SSIs in the stratum of NNIS risk
index 1 (OR: 1.94 [95% CI 1.20–3.15], P = 0.0066). In the
stratum of NNIS risk indices 2 and 3, only the low-
frequency of surgeries was significantly positively associ-
ated with SSI (OR: 3.76, 95% CI: 1.25–11.26, P = 0.0181).
Superficial and deep incisional infections accounted

for 51.6% of all SSIs, indicating that both VATS and
open thoracic surgeries influenced the incidence of SSI.

Okada et al. reported the effectiveness of hybrid video-
assisted thoracic surgery, a combination of VATS and
open thoracic surgery (5-year overall survival: 89.8%, 5-
year disease-free survival: 84.7%) [24], supporting the
importance of both VATS and thoracic surgery in gen-
eral. Therefore, we considered that the result using the
average number of all kinds of procedures annually as a
measure of the frequency of a department’s surgeries
would be more accurate than that confined to VATS.
In general, it is expected that a higher frequency of sur-

geries would be associated with a lower risk of SSI. This
has been consistently shown in several previous studies
that examined the association between frequency of sur-
geries and SSI rates in other types of surgeries [23, 25].
However, our study revealed that the group with the mod-
erate- frequency of surgeries had the lowest risk of SSIs in
the NNIS risk index 1 stratum. To our best knowledge,
this is the first study to report such a finding. This result
could be explained by the significantly higher proportion
of the teaching hospitals and tertiary hospitals in the high-
frequency of surgeries group than in the other groups.
Previously, Mu et al. analyzed the NHSN SSI surveillance
data, including thoracic surgeries, and reported that a bed
number greater than 500 was associated with a signifi-
cantly higher SSI risk after adjusting for other risk factors
[9]. The present study is consistent with these findings,
but further revealed that hospitals conducting a high fre-
quency of surgeries had a significantly higher number of
beds and were more likely to be teaching and tertiary hos-
pitals than others (Table 2). Teaching and tertiary hospi-
tals are responsible for training doctors, which could
inadvertently cause a higher incidence of SSI in the NNIS
risk index 1. Another possible explanation is the higher
proportion of complicated cases or organized infection
control teams that can report SSI without omissions, al-
though such data are not available.
This result is somewhat consistent with those reported

by Furuya-Kanamori et al., who showed that the groups
with a high-frequency of surgeries tended to have a
higher risk of SSI than the groups with a low-frequency
of surgeries in colorectal surgeries, although they did
not stratify and control for the risk index [16]. Mean-
while, in the stratum of NNIS risk indices 2–3, there
was no significant difference between the middle and
high-frequency of surgeries groups, perhaps because ex-
perienced instructors, rather than inexperienced ones,
could be responsible for the operations of complicated
cases in the group with the high-frequency of surgeries.
Umana-Pizano et al. reported a difference in outcomes
following acute type A dissection between surgeons with
low-frequency of surgeries and those with high-
frequency of surgeries in high-frequency of surgeries
centers [26]. To the best of our knowledge, all studies
that examined the relationship between surgery and the

Table 3 Multiple logistic regression analysis stratified by the
NNIS risk index

OR 95% CI p value

NNIS risk index 1 group

Male sex 2.13 1.31–3.48 0.0024

Age 1.02 1.01–1.03 0.0021

< 50/year 2.48 1.20–5.13 0.0143

50–100/year Reference Reference Reference

> 100/year 2.43 1.44–4.11 0.0009

NNIS risk indices 2–3 group

Male sex 0.063

Age 0.65

< 50/year 4.83 1.47–15.93 0.0095

50–100/year Reference Reference Reference

> 100/year 0.21

NNIS National Nosocomial Infections Surveillance System
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rate of SSIs were reported from high-income countries.
There was no SSI surveillance system in low- and
middle-income countries [18]. Anderson et al. reported
a relationship between the frequency of surgeries and
postoperative mortality rate in a single center and the
difficulty of collecting data in low-income countries [27].
The other risk factor of SSI in NNIS risk index 1 was

the male sex. Based on analyses using the German na-
tional nosocomial surveillance system (OP-KISS), Agh-
dassi et al. reported that the male sex was one of the risk
factors for SSIs in orthopedics, traumatology, and ab-
dominal surgeries. Meanwhile, the female sex was one of
the risk factors for SSIs in heart and vascular surgeries
[19]. Schroder et al. reported that the male sex was one
of the risk factors for SSIs in hip prosthesis (OR: 1.28,
95% CI: 1.11–1.49, P = 0.001) and colon surgeries (OR:
1.16, 95% CI: 1.04–1.29, P < 0.001) [28]. However, no
previous study has reported its positive association with
SSI in THOR procedures. This association could be be-
cause smoking is more frequent among men than among
women in Japan [29], and is a factor affecting SSI [30].
The surveillance data we analyzed did not include de-

tailed information concerning the comorbidities and clin-
ical background (e.g., Brinkman index) of each patient.
Despite this limitation, we utilized the large dataset of 26,
878 THOR procedures collected from 74 hospitals (depart-
ments) across Japan. This number was almost eight-fold
higher than that collected (3370 procedures) for 12 years
and analyzed in a similar study by Cvijanovic et al. [8] Al-
though they evaluated the risk factors for SSIs in THOR,
they did not consider the frequency of surgeries in the ana-
lysis. In their study, SSIs occurred in 6.08% of the 3370 pro-
cedures and 2.14% of 700 VATS procedures. The large
dataset enabled us to elucidate the effect of the frequency
of surgeries on SSI stratified by the NNIS risk index. Fur-
ther, our analysis of the SSI surveillance data focusing on
the THOR procedures quantified the effect of the frequency
of surgeries per department on SSIs after carefully adjusting
for confounding factors, including VATS.

Conclusion
In conclusion, in the stratum of NNIS risk index 1, SSI inci-
dence was the lowest in the departments with a moderate
frequency of surgeries. Meanwhile, in the stratum of NNIS
risk indices 2–3, SSI incidence was the lowest in the depart-
ments with moderate- and high-frequency of surgeries.
These results suggest that for departments with a low-
frequency of surgeries, an increase in the frequency of sur-
geries to > 50 per department per year potentially leads to a
decrease in the incidence of SSIs. This would occur through
an increase in the experience of surgeons in the depart-
ments and contribute to the improvement of VATS out-
comes in thoracic surgeries.
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