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Abstract

investigation.

Background: Family with sequence similarity 26, member F (FAM26F) is an important innate immunity modulator
playing a significant role in diverse immune responses, however, the association of FAM26F expression with HBV
infection is not yet known. Thus, the current study aims to explore the differential expression of FAM26F in vitro in
HepAD38 and HepG2 cell lines upon HBV infection, and in vivo in HBV infected individuals. The effects of
antioxidant and calcium inhibitors on the regulation of FAM26F expression were also evaluated. The expression of
FAM26F was simultaneously determined with well-established HBV infection markers: IRF3, and IFN-f3.

Methods: The expression of FAM26F and marker genes was analyzed through Real-time gPCR and western blot.

Results: Our results indicate that the differential expression of FAM26F followed the same trend as that of IRF3 and
IFN-B. The in vitro study revealed that, in both HBV infected cell lines, FAM26F expression was significantly down-
regulated as compared to uninfected control cells. Treatment of cells with N-acetyl-L-cysteine (NAC), EGTA-AM,
BAPTA-AM, and Ru360 significantly upregulated the expression of FAM26F in both the cell lines. Moreover, in

in vivo study, FAM26F expression was significantly downregulated in all HBV infected groups as compared to
controls (p =0.0007). The expression was higher in the HBV recovered cases, probably due to the decrease in
infection and increase in the immunity of these individuals.

Conclusion: Our study is the first to show the association of FAM26F with HBV infection. It is proposed that
FAM26F expression could be an early predictive marker for HBV infection, and thus is worthy of further

Keywords: Family with sequence similarity 26 member F (FAM26F), Hepatitis B virus (HBV), Reactive oxygen species
(ROS), Calcium deregulation, Calcium chelators, NAC, Predictive marker

Background

Hepatitis B virus (HBV) infection is a major health burden
worldwide. Globally, there are approximately 257 million
people living with HBV infection [1]. HBV infection is
characterized by alteration of mitochondrial dynamics,
which causes damage to the organelle by depolarizing its
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membrane, producing reactive oxygen species (ROS), and
disturbing calcium homeostasis [2, 3]. Mitochondrial
damage and oxidative stress are the main events leading
to chronic liver disease [4—6], progressing from hepatitis,
to fibrosis, cirrhosis, and finally to hepatocellular carcin-
oma (HCC) [7]. Globally, HCC is the sixth prevalent can-
cer and considered the second leading cause of cancer
deaths [8, 9].

Family with sequence similarity 26, member F
(FAM26F) was initially identified about a decade ago.
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Since then it has been reported to be a significant player
in various regulative functions of the immune system.
Various whole transcriptome analyses have demon-
strated FAM26F to be differentially expressed in several
viral (Simian Immunodeficiency Virus and Hepatitis C
Virus (HCV)) [10, 11], bacterial (Septicemic melioidosis,
Staphylococcal ~ Superantigens, and  Staphylococcal
Enterotoxin B), [12-14], and parasitic infections like
Gastrointestinal Nematode infection [15], in liver trans-
plantation, and in several cancers (breast, mammary
gland, cervix, and uterus) [16]. With respect to viral
infections, FAM26F has only been studied in SIV [17]
and HCV [11]. In SIV-infected Rhesus macaques, pre-
infection levels of FAM26F were found to correlate with
the overall viral load during the acute phase of infection,
recognizing FAM26F as one of the earliest prognostic
markers which can give information related to the pace
and strength of antiviral immune response [17]. In HCV
patients, FAM26F was identified as one out of 91 differen-
tially expressed genes associated with HCV clearance [11].
Due to the versatile nature of a Ca®* signal, one of
the mechanisms for viruses to create a permissive cel-
lular environment is the modulation of intracellular
Ca®* signaling, which is in turn associated with ROS
regulation. HBV expression has been shown to be
linked with numerous physiological variations, includ-
ing up-regulation of ROS levels, and disturbance in
calcium homeostasis [18]. Interestingly, FAM26F pos-
sesses a conserved Calcium homeostasis modulator
(Ca_hom-mod) domain, hence also named as Calcium
homeostasis modulator protein 6 (CALHMS6) [19].
Recently, FAM26F was found to be functionally re-
lated to calcium-binding proteins, and it was pro-
posed that the FAM26F expression is regulated by
cytosolic  calcium  disturbances [20]. Moreover,
FAM26F was identified as one of the top classifiers
among 371 differentially expressed genes that were
functionally linked with oxidative stress and inflam-
mation [21]. FAM26F was also significantly up-
regulated along with several chemokines, MHC class
I, and MHC class II molecules, in the placental tran-
scriptome of Villitis of unknown etiology (VUE),
where its expression increased as a function of the
severity of the inflammatory process [22]. All these
studies suggest that targeting the ROS and Ca®* path-
ways can greatly assist us in understanding the
unknown association between FAM26F and HBV.
Several inhibitors and chelators of ROS and calcium
respectively have been reported in various studies. For
example, it has been reported that antioxidant N-acetyl-
L-cysteine (NAC) counteracts the oxygen free radical
effects [23, 24]. Likewise, calcium signals can be blocked
by using calcium chelators and calcium inhibitors. Intra-
cellular [Ca*'] chelation is obtained by using BAPTA-
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AM (1,2-Bis (2-aminophenoxy) ethane-N,N,N’,N’-tetra-
acetic acid tetrakisacetoxymethyl ester) or EGTA-AM
(Ethylene-bis (oxyethylenenitrilo) tetraacetic acid Glycol
ether diamine tetraacetic acid-acetoxymethyl ester),
whereas mitochondrial calcium uptake can be inhibited
by using oxygen bridged dinuclear ruthenium amine
complex (Ru360). A reversal in ROS production and
Ca®" deregulation by using antioxidant and calcium
modulators can have a positive effect on HBV clearance
or containment, most likely by modulating the expres-
sion of FAM26F.

Here, we propose the FAM26F expression to be asso-
ciated with HBV as it can be hypothesized that the in-
flammation induced by HBV has some implications on
the production of FAM26F. Moreover, FAM26F is also
considered as an important regulator and activator of
the innate immune response involved in important im-
mune signaling cascades. Thus, the current research in-
vestigated the changes that occurred in the FAM26F
expression in vitro and in vivo upon HBV infection.
Additionally, the study probed the effects of ROS and cal-
cium inhibitors on the regulation of FAM26F expression.
As the role of IRF3 and IEN-B is significant in mediating
antiviral response, and they have also been found to regu-
late and enhance the FAM26F expression [25, 26]; there-
fore, IRF3 and IFN- were also investigated simultaneously
with FAM26F, as standards, for the regulation of their
expression. The current study will thus be a step forward in
highlighting the unseen association of FAM26F with HBV.

Methods

Cells lines and plasmids

The HepG2 human hepatoma cells were procured from
the American Type Culture Collection (ATCC) and were
retained in high-glucose Dulbecco’s Modified Eagle’s
Medium (DMEM) (Gibco, CA, USA), supplemented
with 10% fetal bovine serum (FBS) (Hyclone, CA, USA),
1% penicillin/streptomycin (Gibco, CA, USA), and 1%
MEM non-essential amino acid (Gibco, CA, USA) at
37°C under 5% CO, conditions. The pHBV1.3 mer
DNA encoding wild-type HBV genome was generously
contributed by Dr. Jing-hsiung James Ou (University of
Southern California). HepAD38 cells were a generous
contribution by Dr. Christoph Seeger (Philadelphia, PA)
[27]. HepAD38 cells, having tetracycline-responsible
promoter that harbored the whole HBV genome, were
sustained in Roswell Park Memorial Institute media
(RPMI 1640) (Gibco, CA, USA), supplemented with 20%
FBS, 1% penicillin/streptomycin (Gibco, CA, USA), and
1% MEM non-essential amino acid (Gibco, CA, USA).
They were grown in the presence of 0.5 mg/mlG418
(Invitrogen, CA, USA), and 1 mg/ml tetracycline at 37 °C
under 5% CO, conditions [27]. HepG2 cells were grown
in 6 well plates and transiently transfected with the
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plasmid (300 ng) encodingl.3mer HBV genome using
TransIT°-LT1 transfection reagent (Mirus; Madison, W1,
USA) according to manufacturer’s protocol. Both HepG2
and HepAD38 cells were grown prior to and after treat-
ment with NAC (Millipore Sigma, MO, USA), EGTA-
AM (Calbiochem, CA, USA), BAPTA-AM (Abcam:
Cambridge, MA, USA), and, Ru360 (EMD Millipore
corp; Billerica, MA, USA).

Antibodies

For western blot, anti-FAM26F C-terminal (ab194946;
Abcam, Cambridge, MA, USA) rabbit polyclonal anti-
body (1:1000 dilution), IRF3 (D83B9; Cell signaling,
Danvers, MA, USA) rabbit monoclonal antibody (1:1000
dilution), HBcAg (Santa Cruz Biotechnology, Dallas, TX,
USA), GAPDH (FL-335; Santa Cruz Biotechnology,
Dallas, TX, USA) rabbit polyclonal antibody (1:1000
dilution), and mouse-anti rabbit IgG HRP-conjugated
(Sc-2357; Santa Cruz Biotechnology, Dallas, TX, USA)(1:
10000 dilution) were used. The images were quantified
by Image] software.

Immunoblotting

For immunoblotting, proteins were extracted from the
lysates of both HepAD38 and HepG2/pHBV1.3 cells
after 3 and 5 days post HBV induction respectively. Pro-
tein Assay kit (Bio-Rad, CA, USA) was used (according
to the manufacturer’s instructions) to measure protein
concentration. Fifty micrograms of protein was then
subjected to SDS-PAGE and transferred thereafter to the
nitrocellulose membrane (Thermo Scientific, CA, USA).
After successful transfer, the blot was blocked with 5%
Bovine serum albumin (BSA) for 1h. at room
temperature followed by three washes with 1XTBS-T
buffer (0.05% Tween 20). Further, the blots were incu-
bated with appropriate primary antibodies (1:1000) over-
night at 4°C. The next day, after being washed three
times with 1XTBS-T buffer, the blot was incubated with
particular horseradish peroxidase (HRP) labeled second-
ary antibodies (1:10000) at room temperature for 2h.,
and then again washed thrice with 1XTBS-T buffer. The
membranes were finally incubated with chemilumines-
cent HRP substrate for 1min at room temperature.
Kodak image station (Digital science, 440) was used to
visualize the positive bands by following the manufac-
turer’s instructions. Quantification of the images was
done by Image] software.

Study subjects

Sixty individuals were included in the study who were
then divided into 4 groups: controls (n =27), inactive
carriers (n =4), recovered cases (n=10), and chronic
hepatitis B patients (n = 19). Blood samples for the con-
trol group were collected from healthy blood donors,
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whereas those for the inactive carriers, recovered cases,
and chronic hepatitis B subjects were taken from the
Holy Family Hospital Rawalpindi, Pakistan. The charac-
teristics of each patient like age, sex etc. are given in
Table 1.

The selected individuals fulfilled the inclusion criterion
of their respective groups. The criteria were as follows:
for HBV inactive carriers: 1) a history of HBsAg being
positive for >4years, 2) anti-HBe antibody positive,
HBeAg negative, 3) no clinically proven symptoms of
liver disease, and 4) less than 10° copies/ml of serum
HBV DNA; for Chronic Hepatitis B subjects: 1) HBsAg
positive for > 6 months or more, 2) Serum HBV DNA >
20,000 IU/mL (in HBeAg-positive patients), and 3)
serum HBV DNA between 2000 and 20,000 I[U/mL (in
HBeAg-negative patients); for Recovered cases: 1)
HBsAg negative, 2) hepatitis B core antibody (antiHBc)
positive, and 3) anti-HBs positive. Patients who did not
meet the above-mentioned criteria were excluded from
the study. For control subjects, the criterion was: 1)
HBsAg, anti-HBs, HBcAg, anti-HBc or anti-HBc nega-
tive, 2) undetectable serum HBV DNA levels, and 3)
normal ALT levels.

RNA extraction

For in vitro experiments, Qiagen RNeasy® mini kit was
used for RNA extraction from cell lines as per the man-
ufacturer’s instructions. For in vivo experiments, RNA
was extracted from Peripheral Blood Mononuclear Cells
(PBMCs) using the Trizol method [28].

cDNA synthesis

For in vitro study, complementary DNAs were synthe-
sized using Superscript™ III First-Strand Synthesis Super-
Mix (Invitrogen, CA, USA). For in vivo study, Moloney
Murine Leukemia Virus Reverse Transcriptase (M-MLV
RT) (Invitrogen, Cat No: 28025013) was used for cDNA
synthesis. Both experiments were performed following
the respective manufacturer’s instructions. Finally, the
¢DNA was diluted in the ratio 1:10 for further down-
stream experiments.

Real-time qRT-PCR

The RNA level of each gene was quantified through
real-time qRT-PCR using DyNAmo HS SYBR Green
qPCR kit (#F-410L; Thermo Scientific, CA, USA).
Primer pairs for the target genes were designed using pri-
mer3 software [29], which were then optimized by gradi-
ent PCR to determine their optimal annealing
temperature. The primer pairs used for qRT-PCR were as
follows: FAM26F forward primer: 60-TGTTGGGCTG
GATCTTGATAG; FAM26F reverse primer: 60-CTGCTG
CTTCCTGTTCCAA; IFNBI1 forward primer: 60-ATGA
CCAACAAGTGTCTCCTCC; IENBI reverse primer: 60-
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Table 1 Characteristic details of HBV patients in various groups

No. Patient group FAM26F expression (fold change) Viral Load (copies/ml) Age Sex ALT levels
1 Inactive Carriers 0.1339717 128,000 42-52 M 39
2 0.03847326 23,824 M 50
3 0.004487103 23,746 M 46
4 0.000911165 346,899 M 28
5 Recovered cases 04061262 7000 22-45 M 29
[§ 04352753 6150 M 28
7 0.2176376 4404 F 25
8 0.000011564 460,000 M 35
9 0.000113896 19,000 F 30
10 0.00158643 38 M 33
1 0.002093308 126610 M 42
12 0.000455583 2345 F 40
13 0.000523327 46 F 44
14 0.000011564 10 M 27
15 Chronic HBV patients 0.2332582 238,482 11-60 M 80
16 0.03589682 195,000 M 76
17 0.002243551 6,342,857 M 88
18 0.000227791 891,382 F 70
19 0.00837323 3,100,000 M 72
20 0.0078125 4,600,000 M 197
21 0.000345267 4,100,000 M 67
22 0.009618316 389,333 F 13
23 0.02209709 25,821,200 M 28
24 0.1015316 19,764,790 M 38
25 0.000016354 106,629 M 30
26 0.015625 19,000 F 53
27 0.000976563 19,764,790 F 132
28 0.004809158 32,895 M 17
29 0.01269144 3387 F 74
30 0.5358867 1.71E+07 M 28
31 0.006345722 223,865 F 132
32 0.03589682 19,000 M 102
33 0.001700294 1,189,725 M 57

GCTCATGGAAAGAGCTGTAGTG, GAPDH forward
primer: 60-CCTGCACCACCAACTGCTTA; and GAPD
H reverse primer: 60-CATGAGTCCTTCCACGAT
ACCA. ABI PRISM 7000 Sequence Detection System
(Applied Biosystems) was used to conduct the Real-time
qPCR.

Statistical analysis

All the data are representative of three independent sets
of experiments. For statistical analysis of the data, the
Student’s t-test and one-way analysis of variance

(ANOVA) were performed using Graph-Pad Prism 5.01
software.

Results

In the in vitro experiments, the expression of FAM26F
was determined by both its mRNA as well as protein
levels, whereas IRF3 and IFN-B were analyzed only for
their protein and mRNA expression respectively. For the
in vivo experiments, only FAM26F protein expression
was assessed during the study.
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In vitro experiments

Positive HBV infection in HepAD38 and HepG2 cell lines
The first step prior to successive experiments was to
confirm the presence of HBV infection in both
HepAD38 and HepG2 cell lines. This was achieved by
determining the level of HBV core protein (HBc) in in-
fected cells as compared to the uninfected cells (Fig. 1).
The results clearly show positive HBV infection in both
the cell lines (detailed image in Additional file 1).

Reduction in IRF3, FAM26F, and IFN-f3 expressions post HBV
infection

The results revealed that in both HepAD38 and HepG2
cell lines, the respective expressions of IRF3 (p = 0.0007,
0.03), IEN-B (0.003, 0.001), and FAM26F (0.007, 0.02;
0.002, 0.001) were significantly down-regulated as com-
pared to uninfected control cells as depicted in Fig. 2.

Effect of antioxidant (NAC) treatment on the IRF3, FAM26F,

and IFN-B expressions

The effect of NAC on the expressions of IRF3, FAM26F,
and IFN-B in HepAD38 and HepG2/pHBV1.3 cell lines
were checked prior to and after the treatment of cells
with NAC. It was observed that treatment with NAC
significantly up-regulated the IRF3 (p=0.02, 0.01),
FAM26F (p = 0.01, 0.03; p = 0.01, 0.003), and IFN-$ (p =
0.02, 0.005) expressions in both HepAD38 and HepG2/
pHBV1.3 cell lines, as shown in Fig. 3.

Effect of calcium inhibitors on the IRF3, FAM26F, and IFN-

expressions

Altered Ca®' signaling and elevated Ca®* have been
observed in HBV replicating cells [2, 3]. A reversal in
this balance is likely to restore Ca>* homeostasis, leading
to upregulation of FAM26F production, and ultimately
to cell survival. Hence, the next experiments were car-
ried out to check whether or not all the three Ca**
inhibitors used in the study can restore the expression of
FAM26F, IRF3, and IFNp in HBV expressing cells, which
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was formerly downregulated due to impaired Ca**
regulation.

Treatment with EGTA-AM significantly increased the
expression of FAM26F (p =0.02, 0.01; p = 0.01, 0.01) and
IEN-B (p =0.01, 0.03) in both the cell lines respectively,
however, the increase in expression of IRF3 was not
found significant (p=0.12, 0.17). Treatment with
BAPTA-AM significantly increased the FAM26F protein
(p=0.02, 0.005) as well as FAM26F mRNA (p = 0.003,
0.01) expression in both the cell lines respectively. A
trend in the up-regulation of IRF3 (p =0.12, 0.19) and
IFN-B (p=0.08, 0.16) expression was also observed in
both HepAD38 and HepG2 cells after BAPTA-AM
treatment as compared to non-treated cells, however,
this increase was not statistically significant. Similar
non-significant trend was observed in the protein
expression of IRF3 (p=0.11, 0.23) and FAM26F (p=
0.23, 0.21) after Ru360 treatment as depicted in Fig. 5.
However, treatment with Ru360 significantly increased
the expression of FAM26F (p =0.04, 0.001) and IFN-
mRNA (p=0.003, 0.01) in both the cell lines
respectively.

Figures 4, 5 and 6 clearly demonstrate a trend in the
up-regulation of IRF3, FAM26F, and IFN-} expressions
in treated HBV expressing cells as compared to the un-
treated HBV expressing cells. HBV+(+EGTA) panel in
Fig. 3, HBV+(+BAPTA) panel in Fig. 4, and HBV+
(+Ru360) panel in Fig. 5 shows an increase in the IRF3,
FAM26F, and IFN-B expressions compared to HBV+
(-EGTA), HBV+(-BAPTA), and HBV+(~Ru360)
respectively.

In vivo experiments

Differential expression and correlation of FAM26F with viral
load in various patient groups and uninfected controls

The expression of FAM26F was also quantified in vivo
and compared among various HBV infected patient
groups as categorized by their disease progression state.
The FAM26F expression was highest in controls and in
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Fig. 1 Immunoblot analysis of HBV core protein (HBc) from extracts of HepAD38 and HepG2 cells expressing whole HBV genome and the HBV
1.3mer plasmid respectively. Both cell lines showed successful HBV infection. GAPDH was used as internal control
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(See figure on previous page.)

Fig. 2 Down-regulation of IRF3, FAM26F, and IFN-3 expression post HBV infection. The mRNA and proteins were extracted from HepAD38 and
HepG2/pHBV1.3 (300 ng) cells 3 and 5 days post HBV induction respectively. GADPH was used as an internal control. IRF3, FAM26F, and IFN-3
expressions were significantly down-regulated as compared to uninfected control cells. All the experiments were performed in triplicates (£SD)

and the significance was calculated by Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001). HBV- represents HBV Negative group and HBV+

represents HBV Positive group

the patients that had recovered from HBV infection. On
the other hand, the FAM26F expression was significantly
downregulated in all HBV infected groups as compared
to controls. Among different study groups, FAM26F was
significantly differentially expressed in samples from
HBV patients as well as in controls with p =0.0007 as
shown in Fig. 7a. The correlation of FAM26F with viral
load of various patient groups demonstrated an inverse
relation. Recovered cases with least viral load had max-
imum FAM26F expression as compared to the Inactive
carriers as well as Chronic HBV patient groups (Fig. 7b).

Discussion

Calcium homeostasis plays a central role in the activation
of cells of the immune system by increasing the cytosolic
calcium levels through extracellular Ca** influx and by

triggering Ca*" release from the intracellular stores (Endo-
plasmic Reticulum (ER) and Golgi) [30], ultimately mediat-
ing the release of large amounts of ROS [30]. This
production of ROS in turn allows the host cell to trigger an
efficient RIG-I-mediated IRF-3 activation and downstream
antiviral genes [31]. FAM26F, also termed as Calcium
homeostasis modulator protein 6 (CALHMBS), has recently
been recognized as a potent innate immunity modulator,
owing to its calcium homeostasis modulator domain [19].
Previously, we have demonstrated that FAM26F is func-
tionally related to calcium-binding proteins, specifically to
Thioredoxin, and it was proposed that the FAM26F ex-
pression is regulated by cytosolic calcium disturbances
[20]. Likewise, the HBV expression has also been shown
to be linked with disturbance in calcium homeostasis and
up-regulation of ROS levels [2, 3]. Owing to the Ca**
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Fig. 3 Effect of NAC treatment on expressions of IRF3, FAM26F, and IFN-B. The mRNA and proteins were extracted from HepAD38 and HepG2/
pHBV1.3 (300 ng) cells 3 and 5 days post HBV induction respectively. GADPH was used as an internal control. Upregulation of IRF3, FAM26F, and
IFN- expression was seen in HBV+ (+NAC) cells treated with 250 uM NAC for 24 h. Significant differences were seen in both HepAD38 and
HepG2/pHBV1.3 cell lines. All the experiments were performed in triplicates (+SD) and the significance was calculated by Student’s t-test(*P < 0.05,
**P < 0.01). The X-axis indicates the group without NAC treatment as HBV+(—NAC) and the NAC treated group as HBV+(+NAC), while the Y-axis
shows the IRF3, FAM26F, and IFN-B3 expressions in both cell lines
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treated group as HBV+(+EGTA), while the Y-axis shows IRF3, FAM26F, and IFN-B expressions in both the cell lines. NS: non-significant
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modulation by FAM26F and its interaction with Thiore-
doxin, it was hypothesized that FAM26F might play a role
in Ca** and ROS regulation post HBV infection. However,
no previous study or data is available in this regard.

Hence thecurrent study was designed to decipher the
expression of FAM26F in vitro and in vivo upon HBV
infection or in HBV infected patients respectively, and
the effect of using ROS and calcium inhibitors on the
regulation of FAM26F expression. Owing to the signifi-
cance of IRF3 and IFN-f in mediating antiviral response
and their reported involvement in regulating and enhan-
cing FAM26F expression [25, 26], IRF3, and IFN-3 were
also investigated simultaneously with FAM26F for their
expression regulation.

The results of the current study demonstrated that the
expression of FAM26F, IRF3, and IFN-P was significantly
down-regulated in both HBV replicating (HepAD38) and
HBV induced (HepG2) cells as compared to uninfected
control cells (Fig. 2). The decreased expression of IRF3,
and IFN-P can be attributed to the various strategies that
HBV has evolved to evade the host immune system by
interrupting IFN-inducing cascades, hence resulting in

their decreased expression [32—40]. Interestingly, IRF3
and IFN- are both found to be essential for inducing the
expression of FAM26F. A study involving the activation of
NK cells by FAM26F showed that FAM26F induction was
dependent on TICAM-1 and IRF-3 activation, as TICAM-
1-/-or IRF3-/- knockout mDC was unsuccessful in indu-
cing full NK cytotoxicity [25]. Another study investigating
the diverse macrophage activation in response to cyto-
kines identified FAM26F as a responsive gene induced by
more than one cytokine (IFN-y, IEN-B, and IL-10) [26].
Since IRF3 and IFN- are the upstream players of
FAM26F, and their expression is impaired during viral in-
fection, hence FAM26F expression was also found to de-
crease upon HBV infection. This decrease in FAM26F
expression analogous to the decrease in expressions of
IRF3 and IEN-f suggests that FAM26F can also serve as a
potential marker of HBV infection.

HBYV can induce excessive oxidative stress and ROS pro-
duction [41, 42], causing oxidative damage to hepatocytes
and finally leading to the development of liver disease
[43]. In the current study, to counter the detrimental ef-
fects of ROS, both HepAD38 and HepG2 cell lines were
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treated with the antioxidant NAC which resulted in an in-
creased expression of FAM26F, IRF3, and IFN-B (Fig. 3).
This indicates that NAC treatment somehow downregu-
lated HBV replication, and thus elevated the virus-
induced inhibitory effect from these antiviral immune pro-
teins. This is consistent with previous studies which dem-
onstrated similar effects when ROS was inhibited in HBV
infected cells.

We further evaluated the effect of calcium chelators on
the expression of our target proteins in both HepAD38
and HepG2 cell lines. Treatment with EGTA-AM and
BAPTA-AM increased the expression of FAM26F, IFN-f3,
and IRF3 in both the cell lines (Figs. 4 and 5). HBx acts on
stored cytosolic calcium as a fundamental activity for
HBV replication [2], thus it was postulated that calcium
chelation would result in the decrease of HBV replication,
and subsequently diminish its hold on the antiviral im-
mune pathways, resulting in enhanced expression of
FAM26F, IRF3, and IEN-P. The results of our study are in
accordance with this notion. The significance of using cal-
cium chelators for inhibiting HBV replication has been re-
ported for long, as the compounds that stimulate

cytoplasmic calcium accumulation, or mobilization can even
replace the requirement for HBx in specifically promoting
HBV DNA replication through a variety of pathways [44].
For instance, chelation of cytosolic calcium with BAPTA-
AM blocked HBx activation of Pyk2, a critical stimulant of
HBV DNA replication [2]. Derivatives of cyclosporine, i.e.,
cyclosporine A and cyclosporine H which block cytosolic cal-
cium signaling also impaired HBV replication [44]. The
blocking of store-operated calcium entry (SOCE) results in
the reduction of HBx mediated HBV replication [45]. An-
other study also demonstrated that the replication of wild-
type HBV is inhibited by treating cells with the intracellular
calcium chelator BAPTA-AM [2].

Ru360 is a potent and specific inhibitor of mito-
chondrial calcium uniporter (mCU) [46], the main
transporter involved in the uptake of Ca®* into mito-
chondria [47]. As discussed earlier, HBV replication
requires increased cytosolic calcium plateau which is
achieved by altering the mitochondrial Ca®* uptake.
This mitochondrial uptake of Ca®* dampens Ca**-me-
diated inhibition of further Ca®* release from the ER
and/or Ca®* entry through the SOC channel, thereby
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prolonging Ca®* entry into the cytosol to elevate cyto-
solic calcium levels [48-52]. To counter this mechan-
ism and analyze the subsequent effects, both
HepAD38 and HepG2 cell lines were treated with
Ru360. The results showed a significant upregulation
of the FAM26F mRNA as well as protein expression.
The expression of IRF3 and IFN-B was also upregu-
lated but not that significantly (Fig. 6). The significant
increase in the FAM26F expression indicates the high
potential of Ru360, and hence inhibition of mitochon-
drial Ca®* uptake to counter the HBV infection.
Moreover, it also implies that the expression of
FAM26F is regulated by more than one pathway. Pre-
vious studies have also reported HBV inhibition by
blocking the mitochondrial calcium uptake system.
For instance, inhibition of the mitochondrial perme-
ability transition pore (MPTP) blocks the HBx-
induced increase of cytosolic calcium levels [44, 53].
Another study demonstrated that inhibition of SOCE
or mitochondrial calcium uptake blocks the HBx-
induced increase in the plateau level of calcium spikes
[45]. Furthermore, inhibition of mitochondrialchan-
nels with CGP37157 or CsA also blocked HBx activa-
tion of HBV DNA replication [2].

In the in vivo experiments, FAM26F was significantly
downregulated in all HBV infected groups as compared
to controls (Fig. 7a). However, the expression of
FAM26F was highest in HBV recovered cases, which
was consistent with in vitro results and signified the im-
portance of FAM26F as a critical immune modulator
and antiviral agent. Different HBV patient groups dem-
onstrated a significant differential expression of FAM26F
as compared to controls. When correlated with viral
load in the respective groups, a trend of inverse relation
between FAM26F and viral load was observed (Fig. 7b).
This might be due to the inhibition of HBV by FAM26F,
as was observed previously in a microarray study of
HCV patients where FAM26F was identified as one of
the various proteins associated with HCV viral clearance
[11]. This further emphasizes the importance of
FAM26F, and thus merits it for further thorough investi-
gation at molecular level.

Conclusions

The current study is the first to show the association of
FAM26F with HBV. Cumulatively, the results of our
study highlight the significance of FAM26F as an innate
immune modulator and it is proposed that FAM26F
expression could be an early predictive marker for HBV
infection. Regardless of whether FAM26F is implicated
promptly during the regulation of viral replication or ul-
timately through the immune resistance; our study has
revealed that it is a significant molecule having visible
intrinsic worth for further investigation.
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