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Abstract

Background: The transmission features and the feasibility of containing shigellosis remain unclear among a
population-based study in China.

Methods: A population–based Susceptible – Exposed – Infectious / Asymptomatic – Recovered (SEIAR) model was
built including decreasing the infectious period (DIP) or isolation of shigellosis cases. We analyzed the distribution
of the reported shigellosis cases in Hubei Province, China from January 2005 to December 2017, and divided the
time series into several stages according to the heterogeneity of reported incidence during the period. In each
stage, an epidemic season was selected for the modelling and assessing the effectiveness of DIP and case isolation.

Results: A total of 130,770 shigellosis cases were reported in Hubei Province. The median of Reff was 1.13 (range:
0.86–1.21), 1.10 (range: 0.91–1.13), 1.09 (range: 0.92–1.92), and 1.03 (range: 0.94–1.22) in 2005–2006 season, 2010–
2011 season, 2013–2014 season, and 2016–2017 season, respectively. The reported incidence decreased significantly
(trend χ2 = 8260.41, P < 0.001) among four stages. The incidence of shigellosis decreased sharply when DIP implemented
in three scenarios (γ = 0.1, 0.1429, 0.3333) and when proportion of case isolation increased.

Conclusions: Year heterogeneity of reported shigellosis incidence exists in Hubei Province. It is feasible to contain the
transmission by implementing DIP and case isolation.
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Background
Globally, Shigella spp, which causes severe diarrhea and
dysentery, is the second leading cause of diarrhea death
following rotavirus, and it is estimated that the pathogen
causes approximately 210,000 deaths among all ages, in-
cluding about 63,700 children under the age of five [1].
Despite mortality from diarrhea has declined, its inci-
dence remains high, particularly in economically under-
developed countries [2, 3]. The high-risk groups include

children aged 1 to 4 years old, and some other groups
include travelers to areas where dysentery is prevalent
and men who have sex with men [2, 4–7]. Because
humans are the only host of Shigella spp, diarrhea is
transmitted by contact between people and some related
life behaviors, while food and water are less common to
transmit diarrhea. In addition, flies can spread the
pathogen in environments where feces pollute the
environment [8, 9]. Because asymptomatic individuals
are unpredictable, the disease burden on the disease is
particularly severe worldwide.
At present, the main prevention and control measures

of shigellosis include managing the sources of infection,
cutting off the transmission route and protecting the
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susceptible population [10–12]. Early detection of pa-
tients and carriers, timely isolation and thorough treat-
ment are important measures to control shigellosis. The
ways of cutting off transmission way includes managing
water, excrement and food, managing the transmission
through flies and washing hands before eating and after
using the toilet [13].
The quantitative prediction and early warning of epi-

demic situation based on the model has become the
focus of the public health field, and more quantitative
prediction data have been gradually added to the qualita-
tive assessment of trend judgment. The ARIMA model,
GM (1,1) gray model, prospective space-time scan statis-
tic, Markov model and mathematical model such as a
waterborne pathogen model termed the Susceptible–
Infectious–Recovered–Water (SIRW) model, are com-
monly used to forecast the incidence of bacillary dysentery
[9, 14–16]. Considering the asymptomatic infection, we
previously built a Susceptible–Exposed–Infectious/Asymp-
tomatic–Recovered–Water (SEIARW) model to simulate
the transmission and to assess the effectiveness of the key
interventions in a small-scale outbreak in a school [14].
However, the transmission features and the feasibility of
containing the transmission remain unclear among a whole
population in a large outbreak in China. According to our
previous researches [14, 17], Susceptible – Exposed – Infec-
tious / Asymptomatic – Recovered – Water (SEIARW)
model, in which two routes (person–to–person and reser-
voir–to–person) were considered, could be used to simu-
late the enteric infectious diseases including shigellosis.
However, the latest research showed that shigellosis trans-
mits primarily from person–to–person [2]. Considering the
high coverage of the municipal water systems which pro-
vide the disinfected water in China and reservoir–to–per-
son transmission only occasionally reported in small scale
outbreak in schools in rural areas [18, 19], we developed a
whole–population–based Susceptible – Exposed – Infec-
tious / Asymptomatic – Recovered (SEIAR) model (de-
noted as Model 1) which only includes the transmission
route of person–to–person [20–22].
This study collected data on the incidence of bacterial

dysentery in Hubei Province. The aim was to find the
better prevention and control measures by simulating
the effectiveness of symptomatic infection and simulat-
ing the effectiveness of different isolation rates, so as to
reduce the disease burden.

Methods
Study design
We conducted a time series study in shigellosis cases
reported in Hubei Province from January 2005 to
November 2017. We performed a modelling study to
simulate the incidence of the transmission and to assess

the effectiveness of intervention to contain the transmis-
sion in the area.
This effort of disease control was part of CDC’s rou-

tine responsibility in Hubei Province; therefore, institu-
tional review and informed consent were not required
for this study. All data analyzed were anonymized.

Data collection
Hubei Province, locating at the north of the Dongting
Lake and in the central of China, has a population of
more than 58 million. This study was based on a dataset
of reported Shigellosis cases was built from January 2005
to December 2017 in the province. The illness onset
date of each case was included in the data. Cases were
reported from doctors in clinics or hospitals in Hubei
province and were identified following the case defini-
tions with three categories: 1) Suspected cases; 2) Clinic-
ally diagnosed cases; 3) Confirmed cases, which were
based on the “Diagnostic criteria for bacterial and
amoebic dysentery (WS287-2008)” announced by the
National Health Commission of the People’s Republic of
China. The detailed definitions of the three categories
above can be consulted from existing literature [23]. In
this study, we included clinically diagnosed cases and
confirmed cases for the analysis.

The transmission models
In the model, people were divided into susceptible (S),
exposed (E), infectious (I), asymptomatic (A), and recov-
ered (R) individuals. The equations of the model are as
follows:

ds
dt

¼ − bs iþ kað Þ

de
dt

¼ bs iþ kað Þ − ωe

di
dt

¼ ð1 − pÞωe − γi

da
dt

¼ pωe − γ′a

dr
dt

¼ γiþ γ
0
a

In the model, N is assumed to denote the total popula-
tion size and s = S/N, e = E/N, i = I/N, a =A/N, r = R/N,
and b = βN. The parameters β, k, ω, p, γ, and γ’ are
transmission relative rate, relative transmissibility of
asymptomatic to symptomatic individuals, incubation
relative rate, proportion of asymptomatic individuals, in-
fectious period relative rate of symptomatic individuals,
and infectious period relative rate of asymptomatic indi-
viduals, respectively.
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Because of the interventions or the decreasing propor-
tion of susceptible individuals due to the spread of the
pathogen and other reasons providing the difficulty to
estimate basic reproduction number (R0), which is de-
fined as the expected number of secondary infections
that result from introducing a single infected individual
into an otherwise susceptible population [17, 24–26], ef-
fective reproduction number (Reff) is commonly
employed instead [27]. From the definition, it is clear
that when Reff > 1, the disease is able to spread in the
population. If Reff < 1, the infection will be cleared from
the population.
In the Model 1, Reff was calculated by the equation as

follows:

Reff ¼ bs
1 − p
γ

þ kp
γ 0

� �

Decreasing the infectious period
Asymptomatic individuals were not able to be monitored
commonly because of lacking relative symptoms includ-
ing diarrhea, fever, etc. In this study, we simulated the
effectiveness of decreasing the infectious period (DIP) of
symptomatic individuals. DIP depends on the following
conditions: 1) infected individuals would go to hospitals
or clinics as soon as possible when they get the symp-
toms of the infection; 2) the ability of the hospitals or
clinics to diagnose and treat the infection (giving the
sensitive antibiotics to control the infection). Obviously,
the earlier the infected individuals diagnosed and
treated, the shorter the infectious period (IP) would be.
We simulated the mixed effectiveness of DIP in three
scenarios: 1) IP = 10 days (γ = 0.1); 2) IP = 7 days (γ =
0.1429); and 3) IP = 3 days (γ = 0.3333) using Model 1.

Case isolation
In this study, we simulated the effectiveness of case iso-
lation. When cases were diagnosed, the intervention was
implemented by the following: 1) the severe cases were
isolated in hospital; and 2) the mild cases were quaran-
tined immediately at home and a primary public health
provider would perform follow-up visits and provide
guidance on quarantine, concurrent disinfection, and
terminal disinfection. Because asymptomatic individuals
could not been monitored, we assumed that case isola-
tion was only focused on symptomatic individuals.
Therefore, we built a Susceptible – Exposed – Infec-
tious/Asymptomatic – Recovered – Quarantined (SEIA
RQ) model in which quarantined individuals was de-
noted as Q. We set q =Q/N, and r1, r2, and r3 refer to re-
covered individuals moved from A, I, and Q populations,
respectively. The flowchart of SEIARQ model (Model 2)

was shown in Fig. 1 and the equations of the model are
as follows:

ds
dt

¼ − bs iþ kað Þ

de
dt

¼ bs iþ kað Þ − ωe

di
dt

¼ ð1 − pÞωe − ð1 −mÞγi −mi

da
dt

¼ pωe − γ′a

dq
dt

¼ mi − γq

dr1
dt

¼ γ
0
a

dr2
dt

¼ 1 −mð Þγi

dr3
dt

¼ γq

Although m represents the isolation coefficient in the
model, it is not an isolation ratio. In this study, we define
x as the isolation ratio calculation based on the final ac-
tual isolation cases (r3) and non-isolated cases (r2). Since
isolation was only focused on cases who had symptoms
(i) excluding asymptomatic, r1 was excluded from the
calculation of x. The calculation formula of x was shown
as follows:

x ¼ r3
r2 þ r3

We simulated 10 scenarios (x = 0.1, 0.2, …, 1.0) in
which x referred to the proportion of casa isolation.

Indicator developed to assess the effectiveness of
interventions
We developed percentage of reduction (PR) under differ-
ent intervention scenarios to assess the effectiveness of
DIP and case isolation. The equation to calculate PR was
shown as follows:

PRi ¼ I0 − Ii
I0

� 100%

In the equation, PRi, I0, and Ii refer to percentage of
reduction under different intervention scenarios, inci-
dence of shigellosis under the condition that no inter-
vention was adopted, incidence of shigellosis under the
condition that four intervention scenarios were simu-
lated, respectively.

Rui et al. BMC Infectious Diseases          (2020) 20:643 Page 3 of 10



Considering there is no standard threshold of PR to
judge the satisfying of the intervention, we simulated PR
at 50, 60, 70, 80, and 90% levels.

Parameter estimation
There are eight parameters (b, k, ω, p, γ, γ’ and m) in the
above models. According to our previous research [14],
k, ω, p, γ, and γ’ are disease-specific parameters which
could be estimated from literatures. The incubation
period of Shigellosis is 1–4 days [2, 28], and commonly
1 days, therefore, ω = 1.0. The proportion of asymptom-
atic infection ranges from 0.0037 to 0.27 [29–31], and
can be set p = 0.1. The infectious period of symptomatic
infection is 13.5 days [14], therefore, γ = 0.0741. Accord-
ing to our previous research [14], the infectious period
of asymptomatic infection could be simulated 5 weeks in
our model, thus γ’ = 0.0286. Due to reduction of shed-
ding frequency, the relative transmissibility of asymp-
tomatic individual (k) was modeled to be a reduced
quantity (0.3125) [14]. We set different values of m until
we got the ten target values of x. However, b is scenario-
or area-specific parameter which is various in different
outbreaks even in different periods. Therefore, the par-
ameter is confirmed by curve fitting by Model 1 to the
collected data.

Simulation method and statistical analysis
In this study, we firstly analyzed the temporal distribu-
tion of the reported shigellosis cases, and divided the
time series into several stages according to the homo-
geneity of reported incidence during the period. In each
stage, an epidemic season was selected for the modelling
and assessing the effectiveness of the interventions of
DIP and case isolation.
Berkeley Madonna 8.3.18 (developed by Robert Macey

and George Oster of the University of California at

Berkeley. Copyright©1993–2001 Robert I. Macey &
George F. Oster) was employed for model simulation.
Least root mean square (LRMS) and determination coef-
ficient (R2) were adopted to judge the goodness of fit.
The simulation methods were the same as the previously
published researches [14, 17, 24, 32, 33]. The chi-square
test was performed by SPSS 13.0 (IBM Corp., Armonk,
NY, USA).

Results
Basic characteristics of the reported cases
During the study period, 130,770 shigellosis cases
were reported in Hubei Province. According to the
yearly incidence of the disease, the study period was
divided into four stages: 1) stage 1 was from 2005 to
2008; 2) stage 2 was from 2009 to 2011; 3) stage 3
was from 2012 to 2014; and 4) stage 4 was from
2015 to 2017. The reported incidence decreased sig-
nificantly (trend χ2 = 8260.41, P < 0.001) among the
four stages (Fig. 2).

Model fitting
One epidemic season, which is the time span between
two lowest values of daily reported incidence during a
year, was selected from each stage for the simulation
(Table 1). By model fitting and the rule of LRMS, each
selected epidemic season was divided into several sub-
seasons (Fig. 3). The model fitted the data well except
sub-season 2 in 2005–2006 season and sub-season 3 in
2013–2014 season (Table 1). The median of Reff was
1.13 (range: 0.86–1.21), 1.10 (range: 0.91–1.13), 1.09
(range: 0.92–1.92), and 1.03 (range: 0.94–1.22) in 2005–
2006 season, 2010–2011 season, 2013–2014 season, and
2016–2017 season, respectively.

Fig. 1 The flowchart of SEIARQ model
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Effectiveness of DIP
The incidence of shigellosis decreased sharply with the
decrease of the infectious period through simulating the
effectiveness of DIP in three scenarios (γ = 0.1, 0.1429,
0.3333) among 18 sub-seasons (Fig. 4).

Effectiveness of case isolation
By simulating 10 case isolation scenarios (x= 0.1, 0.2, …, 1.0)
among 18 sub-seasons, the incidence of shigellosis decreased

much sharply when x increased (Fig. 5). Higher value of x
provided higher PR in each sub-season (Fig. 6). The value of
x was 0.25 (range: 0.1–0.4), 0.3 (range: 0.2–0.5), 0.4 (range:
0.2–0.6), 0.55 (range: 0.3–0.8), and 0.75 (range: 0.4–1.0), re-
spectively to reach the PR levels of 50–90% (Table 2).

Discussion
In recent years, more and more prediction methods and
models have been applied to the early warning analysis

Fig. 2 Reported incidences and stages of shigellosis transmission from 2005 to 2017

Table 1 Basic features of the selected data for the simulation

Stages Epidemic seasons
selected

Sub-seasons included Number of
reported cases
included

b Reff R2 P

IDa Start time Stop time

Stage 1 2005–2006 1 February 14, 2005 July 26, 2005 6189 0.0900 1.19 0.94 < 0.001

2 July 27, 2005 August 28, 2005 1917 0.0805 1.07 0.01 0.5570

3 August 29, 2005 September 27, 2005 1917 0.0911 1.21 0.87 < 0.001

4 September 28, 2005 February 2, 2006 3684 0.0649 0.86 0.98 < 0.001

Stage 2 2010–2011 1 January 31, 2010 July 28, 2010 5896 0.0853 1.13 0.97 < 0.001

2 July 29, 2010 September 9, 2010 2321 0.0833 1.10 0.73 < 0.001

3 September 10, 2010 February 11, 2011 4305 0.0689 0.91 0.99 < 0.001

Stage 3 2013–2014 1 January 23, 2013 May 16, 2013 1643 0.0818 1.08 0.78 < 0.001

2 May 17, 2013 July 23, 2013 1558 0.0912 1.21 0.97 < 0.001

3 July 24, 2013 September 2, 2013 1132 0.0826 1.09 0.07 0.0917

4 September 3, 2013 October 3, 2013 675 0.0748 0.99 0.89 < 0.001

5 October 4, 2013 October 9, 2013 164 0.1449 1.92 0.75 0.0266

6 October 10, 2013 February 25, 2014 1826 0.0694 0.92 0.98 < 0.001

Stage 4 2016–2017 1 December 8, 2016 March 17, 2017 694 0.0758 1.00 0.54 < 0.001

2 March 18, 2017 June 12, 2017 953 0.0925 1.22 0.95 < 0.001

3 June 13, 2017 July 11, 2017 381 0.0774 1.03 0.69 < 0.001

4 July 12, 2017 August 9, 2017 412 0.0910 1.20 0.78 < 0.001

5 August 10, 2017 December 31, 2017 1247 0.0712 0.94 0.94 < 0.001
aID Identification, b Transmission relative rate, Reff Effective regeneration coefficient
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of infectious diseases [2, 3]. Therefore, the use of
various methods to explore the occurrence and devel-
opment of infectious diseases has been widely valued.
This study, based on the incidence of shigellosis in
Hubei Province from January 2005 to December 2017,
we used the SEIAR model to simulate the effective-
ness of reducing the infection period (DIP) of

symptomatic individuals, and built the SEIARQ model
to simulate the effectiveness of case isolation to find
the best prevention and control measures. All of our
models have been tested for goodness of fit, the re-
sults showed that more than 90% of R2 are statisti-
cally significant, indicating the models have good
applicability.

Fig. 3 The results of model fitting of SEIAR model to reported data in different stages. a, Curve fitting in 2005–2006 season; b, Curve fitting in
2010–2011 season; c, Curve fitting in 2013–2014 season; d, Curve fitting in 2016–2017 season

Fig. 4 The simulated incidence of different DIP scenarios in different stages. (*γ, infectious period relative rate of symptomatic individuals)
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Fig. 5 The simulated incidence of different case isolation scenarios in different stages. (*x, actual isolation ratio)

Fig. 6 The simulated PR values of different case isolation scenarios in different epidemic seasons. a, total; b, 2005–2006 season; c, 2010–2011
season; d, 2013–2014 season; e, 2016–2017 season. (*PR, percentage of reduction)

Rui et al. BMC Infectious Diseases          (2020) 20:643 Page 7 of 10



The results showed that the incidence of shigellosis de-
creased from 2005 to 2017, and could be divided into four
stages. The decreased trend revealed that the incidence of
the disease might decrease in the following years. Totally,
22 sub-seasons of four epidemic seasons (2005–2006
season, 2010–2011 season, 2013–2014 season, and 2016–
2017 season) were selected for the simulating and asses-
sing the effectiveness of DIP and case isolation. The re-
sults showed that the prevalence of the disease decreased
sharply with DIP form 3 days (γ = 0.3333) to 13.5 days
(γ = 0.0741) in the 22 sub-seasons. The results of the mod-
elling also showed that the prevalence of the disease de-
creased sharply with the proportion of case isolation from
0% (x = 0.1) to 100% (x = 1) in the 22 sub-seasons. If we
aimed to reach the PR levels of 50, 25% (range: 10–40%)
of cases should be isolated. If we aimed to reach the PR
levels of 90, 75% (range: 40–100%) of cases should be iso-
lated. Therefore, case isolation and DIP interventions has
high feasibility and effectiveness, and we strongly recom-
mended to control the transmission of shigellosis.
The actual isolation ratio x is affected by several as-

pects [34, 35]: 1) the sensitivity of the surveillance sys-
tem which could monitor the cases in time when the
symptoms onset; 2) After diagnosed, according to the se-
verity of the disease, mild patients were generally recom-
mended to be isolated at home, resulting in fewer
patients undergoing effective isolation in the hospital.
In our previous research, an outbreak investigation was

conducted in a school [14], but it was not investigated in
the whole population, this study can provide relevant
recommendations for the prevention and control of shig-
ellosis in the whole population. Compared with some pre-
vious studies, although there are many epidemiological
reports, but there are few reports on the ability to quantify
the spread of shigellosis. Our research quantitatively
evaluates the spread of shigellosis through mathematical
modeling, and the effectiveness of interventions, thus pro-
viding a basis for relevant departments to make more ap-
propriate prevention and control decisions.

Limitations
Our modeling on simulating countermeasures was based
on the whole population. However, we did not consider

the age-, sex- or area-specific situations. Another limita-
tion is that we did not divide the interval between symp-
tom onset and notification from IP.

Conclusions
Year heterogeneity of reported shigellosis incidence ex-
ists in Hubei Province, China. DIP and case isolation in-
terventions have high effectiveness to control the
transmission of shigellosis.
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