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Abstract

Background: Tuberculosis (TB) is the leading cause of death for individuals infected with Human
immunodeficiency virus (HIV). Conversely, HIV is the most important risk factor in the progression of TB from the
latent to the active status. In order to manage this double epidemic situation, an integrated approach that includes
HIV management in TB patients was proposed by the World Health Organization and was implemented in Uganda
(one of the countries endemic with both diseases). To enable targeted intervention using the integrated approach,
areas with high disease prevalence rates for TB and HIV need to be identified first. However, there is no such study
in Uganda, addressing the joint spatial patterns of these two diseases.

Methods: This study uses global Moran’s index, spatial scan statistics and bivariate global and local Moran’s indices
to investigate the geographical clustering patterns of both diseases, as individuals and as combined. The data used
are TB and HIV case data for 2015, 2016 and 2017 obtained from the District Health Information Software 2 system,
housed and maintained by the Ministry of Health, Uganda.

Results: Results from this analysis show that while TB and HIV diseases are highly correlated (55–76%), they exhibit
relatively different spatial clustering patterns across Uganda. The joint TB/HIV prevalence shows consistent hotspot
clusters around districts surrounding Lake Victoria as well as northern Uganda. These two clusters could be linked
to the presence of high HIV prevalence among the fishing communities of Lake Victoria and the presence of
refugees and internally displaced people camps, respectively. The consistent cold spot observed in eastern Uganda
and around Kasese could be explained by low HIV prevalence in communities with circumcision tradition.

Conclusions: This study makes a significant contribution to TB/HIV public health bodies around Uganda by
identifying areas with high joint disease burden, in the light of TB/HIV co-infection. It, thus, provides a valuable
starting point for an informed and targeted intervention, as a positive step towards a TB and HIV-AIDS free
community.
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Introduction
Tuberculosis (TB) is an airborne bacterial disease caused
by Mycobacterium tuberculosis that most often affects
the lungs. The World Health Organization (WHO) has
estimated that about 10.4 million people fell ill with TB,
and 1.7 million died from the disease in 2017 [1]. Hu-
man immunodeficiency virus (HIV) is one of the most

important risk factors responsible for the progression of
latent TB to active TB [2]. People living with HIV have a
20-fold higher risk of developing TB than those without
HIV, and the risk continues to increase as the vital im-
munity cells (CD4) count progressively decreases [3].
HIV/TB co-infection is thus known as a ‘double trouble’
[4] and a public health threat especially for regions
where both diseases are endemic.
Sub-Saharan Africa carries the biggest burden of both

diseases, with 95% of global TB deaths and more than
70% of the global HIV burden [5]. Uganda, like the rest
of Sub-Saharan countries, is plagued by the dual TB and
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HIV epidemics and is the seventh in the 22 countries
with the highest TB prevalence [1]. Whereas Uganda’s
HIV prevalence has reduced to 6.0% in 2016 (from 7.3%
in 2011, among 15–49 years old), it was still estimated
that 1.3 million individuals were infected with HIV [6].
With TB/HIV co-infection at 41.5%, TB is the leading
preventable cause of death among people with HIV, re-
sponsible for over 30% of HIV deaths [7].
To decrease the combined TB/HIV prevalence, the

WHO formulated a framework in 2005 (modified in
2012), that aims at collaborating TB/HIV activities to
manage TB in HIV patients [8]. This position is re-
echoed by the WHO in its strategy to end TB in the
post-2015 era of the Sustainable Development Goals
(SDG) [9, 10]. The motivation for simultaneous manage-
ment of TB/HIV was largely informed by the proven in-
teractions between TB medication and HIV medication,
leading to the ineffectiveness of the TB medication [3].
Additionally, both diseases complement each other with
HIV quickening the progression of TB, and vice versa,
for co-infected patients [11].
Due to the importance of TB and HIV co-infection, a

number of scholars have endeavored to study the correl-
ation between the two diseases. For example, while
studying HIV and TB prevalence in New York, Wallace
et al. [12] observed that whenever HIV infection was
high in the population, there were also high numbers of
patients with tuberculosis. Additionally, Corbett et al.
[13], having used global TB and HIV prevalence data,
concluded that both diseases exhibited similar patterns
in both space and time. From a geographical perspective,
Wei et al. [14] observed similar spatial clustering pat-
terns between TB and TB/HIV co-infection in Xinjiang
province, China. Similarly, Ross et al. [15] used bivariate
choropleth mapping and showed that both TB and HIV
were correlated and that the joint distribution for both
diseases was spatially heterogeneous across Brazil. Their
outputs provided an information basis for targeted inter-
vention by the public healthcare bodies responsible for
TB and HIV.
However, due to the historical lack of geographically

referenced disease records, as well as lack of reliable sta-
tistics on morbidity and mortality in most African coun-
tries with high TB/HIV disease burden [6, 16], few
studies have considered the simultaneous spatial pat-
terns of these comorbidities in Africa. Luckily, with the
introduction of District Health Information Software 2
(DHIS2), an open source software platform developed by
Health Information System Program (HISP) to African
countries, healthcare admission data for most diseases
can now be recorded, hierarchically, from local to na-
tional levels [17]. For example, Gwitira et al. [5] used
DHIS2 data from Zimbabwe to investigate the spatial
overlaps in the distribution of HIV/AIDS and malaria.

They identified 5 out of the 71 districts as clusters hav-
ing high records for both HIV and malaria. These would
be areas where efforts targeting minimizing both dis-
eases would pay special attention.
In line with the WHO recommendation for collabora-

tive management of TB and HIV, we argue that it is lo-
gical to establish the spatial joint distribution of these
two co-infections in order to inform local and national
intervention strategies. Whereas some studies have ex-
amined the individual spatial clustering of TB and HIV
both elsewhere [18–21] and in Uganda [22], an interven-
tion based on only one of the two complementary dis-
eases would be ineffective.
Given that the spatial perspectives of HIV/TB co-

infection are yet to be studied in Uganda, our main aim of
this study, therefore, is to examine the spatial clustering of
TB and HIV prevalence rates in Uganda for a three-year
period (2015 to 2017) – with particular emphasis on
spatial co-clustering. To the best of our knowledge, this is
the first spatial study to consider co-clustering of both dis-
eases at a national scale in Uganda. We use spatial-
clustering detection and analysis techniques to identify
significantly persistent clusters for TB and HIV, providing
an informed basis to the Ministry of Health and partners,
on the location of such co-clusters thereby potentially aid-
ing effective joint TB/HIV intervention.

Methods
Study area
The study is carried out in Uganda, a country located
within East Africa, and about 800 km from the Indian
Ocean. Uganda is landlocked bordered by Kenya in the
East, South Sudan in the North, Democratic Republic of
Congo in the West, Tanzania in the South, and Rwanda
in South West. It has a total area of 241,551 km2, of
which the land area covers 200,523 km2. Administra-
tively, the country is divided into one city and 122 dis-
tricts (as of 2018) that are further subdivided into
counties, sub-counties, parishes, and villages. Uganda’s
climate is equatorial with the mean temperature range
of 16 °C to 30 °C, even when the Northern and Eastern
regions sometimes experience relatively high tempera-
tures exceeding 30 °C and the South Western region
sometimes has temperatures below 16 °C. The relief of
the study area ranges from 614m (above mean sea level)
to 5,111 m at the highest point. The 2014 national cen-
sus estimated the population of Uganda to be about 35
million people.

Data
TB and HIV admission records were obtained from the
DHIS2 system that is housed by the Ministry of Health
of Uganda. The DHIS2 system is a community-based ag-
gregation health information system that scales from the
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lowest level to the national level [23]. The annual TB
and HIV were recorded at the geocoded government
healthcare facilities distributed throughout the country
and aggregated to the district level. The recorded TB
and HIV were all diagnosed cases, for patients that
tested at centers located within a specific district. Re-
cords from 2015 to 2018 were obtained. However, at the
time of acquisition (June 2018), only half of 2018 were
recorded and therefore the 2018 records were excluded
from the analysis.
Whereas HIV-TB coinfection records were retriev-

able from the DHIS2 system, they were deemed unre-
liable (by the staff ) mainly because many health units
that report to the DHIS2 do not have the capability
of diagnosing both HIV and TB simultaneously. They
thus report HIV and TB separately. In total, TB and
HIV records were obtained for 122 districts in
Uganda (based on 2018 administrative boundaries).
District level population data and the district mapping
shapefiles were obtained from Uganda Bureau of Sta-
tistics (https://www.ubos.org/).

TB and HIV admission counts were spatially joined to
their respective district polygons for 2015, 2016 and
2017. The TB and HIV disease prevalence was calculated
by dividing the total number of each disease cases in
each district by the total human population in the dis-
trict to obtain the population-adjusted district level
prevalence rates. For all the years, the population used
was that from the 2014 Uganda national census, and the
resultant trends are visualized through Fig. 1. As can be
observed, the prevalence rates for both TB and HIV, for
any given year, are not uniform across Uganda.

Statistical analysis
To understand the characteristics of the TB and HIV
data, global pattern analysis was conducted. This in-
volved computing for Spearman’s correlation – an
overall measure of the linear relationship between TB
and HIV district-recorded prevalence rates. The influ-
ence of neighborhood prevalence rates on the district-
observed prevalence rates was also investigated. This
spatial tendency is known as spatial autocorrelation

Fig. 1 TB and HIV prevalence rates per 10,000 people in Uganda from 2015 to 2017 (a, b and c for TB; d, e and f for HIV)
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and was globally investigated by using global Moran’s
Index and bivariate global Moran’s Index that identi-
fied whether the data were spatially autocorrelated or
not. Then, spatial scan statistics (SaTScan) was used
to extract the local spatial clusters and mark the areas
of high risk to inform prevention intervention.
The global analyses were concerned with summarizing

the trends within the data, when viewed at a Uganda na-
tional level, for the years 2015, 2016 and 2017. SaTScan
was concerned with identifying the location and the
shape of significant local clusters (hotspots and cold
spots) in the study area.
Given that reliable records for HIV-TB coinfection

were not available (as discussed in section 2.2), bivari-
ate local Moran’s Index was used to investigate the
simultaneous occurrence and hence co-clustering in
both TB and HIV. It reports areas with hotspots
(High-High), cold spots (Low-Low) and discordant
(High-Low or Low-High) clusters. To ensure the ro-
bustness of the obtained clusters, 9,999 randomiza-
tions were allowed for this analysis.

Global pattern analysis
Spearman’s correlation analysis was used as a statistical
measure for the strength of the linear relationship be-
tween TB and HIV district-paired data. The global Mor-
an’s I was used to examine the spatial auto-correlation
in the TB and HIV prevalence rates. Generally, spatial
autocorrelation can be understood as the measure of the
influence that the neighborhood values have on the ob-
served values [24–26]. It stems from Tobler’s first law of
Geography: “everything is related to everything else, but
near things are more related than distant things” [27].
This required computation of contiguity information
through the generation of the spatial weight matrix.
Rooks contiguity was used in this study [28]. Moran’s I
relates the average TB or HIV prevalence rate within
each neighborhood (spatial lag) and the standardized TB
or HIV prevalence rate. The global Moran’s I and bivari-
ate global Moran’s I were performed using GeoDa soft-
ware [29].

Spatial scan statistics
District-specific TB and HIV clusters were detected by
applying Kulldorff ’s spatial scan statistics [30]. The same
technique has been widely used in many applications
[14, 18–20, 22, 31]. Spatial scan statistics have reason-
able sensitivity and specificity [32]. This enhances their
efficiency and accuracy when compared with other clus-
ter detection methods, such as Bayesian disease mapping
[5]. The Spatial clusters were detected based on the
Poisson probability model, with the underlying assump-
tion that the observed TB and HIV cases in each district,

when adjusted for the population at risk, result from a
random process [32].
The basic idea behind SaTScan is to impose circular win-

dows of various sizes across the study area, and at each lo-
cation, defined by the district centroid location in this
study; a comparison is made between the disease rate
within the window and that outside of it. Under the discrete
Poisson assumption, SaTScan [33] detects potential clusters
by calculating the likelihood ratio (LR) given by eq. (1).

LR uð Þ ¼ c
E c½ �

� �c C−c
C−E c½ �

� �C−c

I
c
E c½ �

>
C−c
C−E c½ �

� �
ð1Þ

where C is the total number of TB or HIV cases in the
study area; c is the observed number of TB or HIV cases
within a circle; E[c] is the adjusted expected number
within the window under the null hypothesis; C − E[c] is
the expected number of TB or HIV cases outside the
window, and Ið c

E½c�
> C−c

C−E½c�
Þ is the binary indicator of

high-risk clusters (1) or low-risk clusters (0) or both
(11). Based on the magnitude of the values of the likeli-
hood ratio test, the set of potential clusters are then
ranked and ordered. The circle with the maximum likeli-
hood ratio among all radius sizes at all possible centroid
locations is considered as the most likely cluster. The
statistical significance of the clusters is determined
through Monte Carlo simulations (999 simulations).
Within the SaTScan software, the “spatial” option to

2015, 2016, and 2017 TB and HIV case data, both High
and Low rates (Hotspots and Coldspots) were analyzed.
The user-defined maximum radius of the circular spatial
window was varied, starting at 5% and incremented by
5% until it reached 50%. The obtained results were not
affected by the choice of the radius selected. The default
value of 50% of the population at risk, as advised by
Kulldorff [30] was thus maintained.

Bivariate local Moran’s I
The bivariate local Moran’s I, also called BiLISA, is an
extension of the univariate local Moran’s I to model the
correlation between one variable (e.g. TB) at a location,
and a different variable (e.g. HIV) at the neighboring lo-
cations. The bivariate Moran’s I (for TB) of the i th dis-
trict can be calculated as eq. (2).

Ii ¼
xTB−xHIVð Þ

X
j

wij xTB−xHIVð Þ

S2
ð2Þ

where xi = the TB prevalence rate for the i th district; x
= the mean HIV prevalence rate for all districts in the
study area; xj = the TB prevalence rate for the j th dis-
trict; wij = a weight parameter for the pair of districts i
and j that represent proximity; S = the standard deviation
of the TB prevalence rates in the entire study area. The
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same was done for HIV, with TB and HIV switching
positions.

Results
Global pattern analysis
Table 1 represents these global summary statistics for
the study period.
It can be observed that for both diseases, the Moran’s I

is significantly positive (at 95% confidence interval) – dis-
qualifying the null hypothesis that observations are
spatially independent (Moran’s I of zero). The positive
Moran’s I values in Table 1 show that neighboring districts
tend to have similar prevalence rates for both TB and
HIV. Also, for the whole study period, HIV was consist-
ently more spatially correlated than TB. The significantly
positive bivariate Moran’s I showed that overall, the ob-
served TB rates were positively influenced by the HIV
rates in the neighborhood and vice versa. The computed
Spearman’s correlation showed that the two diseases were
highly correlated through the correlation varied with time.
The correlation was highest for 2015 (76%), lowest for
2016 (55%) and moderately high (60%) for 2017.

Clustering analysis
To distill out areas with probable clusters of TB and HIV,
spatial scan statistics (discrete Poisson) were employed
and the result is shown in Fig. 2.
It can be observed in Fig. 2 that TB high clusters were

largely around Lake Victoria and in the central north
and one consistent high cluster in the northeast. There
is a noticeable reduction in the number of big high clus-
ters from 2015 (six), to 2016 (four), and 2017 (three).
The TB low clusters were concentrated in the West and
the East (with the central axis dominated with high clus-
ters). On the other hand, HIV high clusters were consist-
ently concentrated in the south, around Lake Victoria
and the central parts of Uganda, throughout the study
period. The low clusters were generally concentrated in
the east, northeast, northwest, and southwest.

Co-clustering analysis
To this end, the concentration has been on the spatial glo-
bal trends or local clustering patterns in the individual dis-
ease prevalence rates. To investigate the simultaneous
variation of TB and HIV prevalence in Uganda, the study
area was segmented into 9 regions (“bins”) based on the
study area coordinates, and the linear relationships between
the prevalence rates regenerated. Given that relatively simi-
lar clustering trends were observed throughout the study
period, it was considered that any single year would be rep-
resentative of the study period. Figure 3 shows the resultant
relationships after regionalization, for 2015.
Figure 3 shows the spatial variation of TB-HIV rela-

tionship across Uganda for 2015 (the pattern is observed
for 2016 and 2017). It illustrates that across Uganda, TB
generally had a positive association with HIV and this
relationship varies significantly across the geographical
space. For example, across the diagonal (plots g, e, and
c), the gradient is consistently around 0.2 and significant
(at 95% confidence interval) for plots g and e, and not
significant for plot c. The region with the highest spatial
relationship between the two diseases is the middle
upper-most region (b). The lowest right region (plot i)
has a negative relationship between TB and HIV, though
it is not statistically significant.
To model the simultaneous occurrence and hence co-

clustering of both diseases in space, the bivariate local
Moran’s I was used to show areas where similar disease
rates were clustered; characterizing the resultant clusters
into High-High, Low-Low, Low-High and High-Low
clusters as shown by Fig. 4.
Figure 4 illustrates that generally, there are two High-

High TB/HIV occurrence and co-clusters: one around
Lake Victoria consisting districts of Kalangala, Mpigi,
Kyotera, Kalungu, Masaka, and Mukono, and the other
in the north-central districts of Pader and Omoro, in
2015. There is a Low-Low TB/HIV occurrence and co-
cluster in the east consisting districts of Butebo, Kaliro,
Pallisa, Kumi, Bukwo, and Kibuku, and another central-
west co-cluster in Kyegegwa district. Six districts appear
as discordant clusters with Lwengo, Wakiso, and Kotido
appearing as Low-High, while Rukungiri, Kabale, and
Mbale appear as High-Low, for 2015.
For 2016 and 2017, the trends in TB/HIV occurrence

and co-clusters are more or less the same as for 2015 with
generally a High-High TB/HIV occurrence and co-cluster
around the Lake Victoria region and north-central, and a
Low-Low occurrence and co-cluster in the east that pro-
gressively increase in size with time. For 2016, Koboko in
the northwest appears as a cold cluster, though it again be-
came insignificant in 2017. Apart from Mbale and Kotido
discordant clusters that are consistent throughout the study
period, other discordant clusters (Rukungiri, Kabale,
Lamwo, Omoro) are temporally unstable. Also, the districts

Table 1 Moran’s I and Correlation for TB and HIV (2015–2017)

2015 2016 2017

Moran’s I

TB 0.118 0.069 0.129

HIV 1.239 0.327 0.377

Bivariate Global Moran’s I

TB/HIV 0.112 0.074 0.110

Spearman’s Correlation

TB/HIV 0.759 0.548 0.602
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of Kalangala, Masaka, and Kyotera, consisting of the lower
south High-High co-cluster, are unstable throughout the
study period.

Discussion
Epidemiological intervention based on the homogeneity
of disease patterns often results in non-optimised
utilization of the available resources where resources are
dedicated to areas that do not require them, at the ex-
pense of the areas that require them more [34]. Through
the use of spatial methods, health outcomes data can be
distilled into their spatial heterogeneity, providing a basis
for the explanation of the observed heterogeneity on the
basis of existing local risk factors [35].
Our analysis shows that TB and HIV prevalence is

geographically heterogeneous. This spatial variability is
consistent with the results from the 2016 Uganda Popu-
lation HIV Impact Assessment (UPHIA) which indicated
that the magnitude of HIV prevalence varied consider-
ably across Uganda from a low of 2.8% in West-Nile to
7.7% in the southwestern region [7]. Similarly, our re-
sults were consistent with those from the first nation-
wide community-based TB prevalence survey in 2014/

15. Here, it was established that TB was about 1.3 times
more prevalent among the urban population than rural
residents; approximately three times more prevalent
among men than women; nearly three times more
prevalent among HIV-negative than HIV-positive indi-
viduals; and that TB hotspots exist in both urban and
rural areas [36].
These two national surveys for HIV and TB confirm

that both epidemics significantly vary across the Ugandan
geographic space. However, they do not explicitly identify
where the disease clusters are located, making targeted
intervention difficult if not impossible. In our study, we
identified the clusters exhibited by each disease, as well as
the combined occurrence and clustering of both diseases.
We also found that the two diseases were highly corre-
lated, hence qualifying the need to manage both diseases
simultaneously [9, 37]. Our analysis found a 76, 55, and
60% correlation between TB and HIV for 2015, 2016 and
2017, respectively. This was consistent with results by Dye
[16] who observed up to 50% correlation between the two
diseases in South Africa, Zambia, and Zimbabwe.
Even with such high correlation, TB and HIV show

relatively different spatial clustering patterns across

Fig. 2 TB and HIV High (RED) and Low (BLUE) clusters across Uganda (2015–2017)
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Uganda, as observed in the location of clusters in Fig. 2.
For example, there were consistent TB hotspots in the
greater northern and north-eastern parts of Uganda.
This trend was not the same for HIV whose clusters
were persistently concentrated around central and
southern parts of Uganda, especially around districts in
or surrounding Lake Victoria. Also, persistent cold spot
clusters for both HIV and TB were observed in the east-
ern, north-western, and the very south-western (around
Kabale) districts of Uganda. These low prevalence rates,
especially for HIV, were consistent with projections by
the United Nations Programme on HIV/AIDS [38].
Given that in Uganda HIV is more studied than TB, and

considering the contribution of HIV in TB progression
within TB/HIV co-infected persons [11], the observed TB/
HIV geographical clustering trends can easily be explained
from an HIV than from a TB standpoint. In Uganda, HIV
was first discovered in a rural fishing community of Rakai
district, in 1982 and some of the patients surveyed then
had TB [39]. Since then, HIV has spread to almost all
parts of the country, with some areas more affected than
others, so that a more recent study by Bbosa et al. [40]
found that these fishing communities are no longer
sources but sinks of HIV infection. Even still, this geo-
graphical variability in HIV, which is the main risk factor
for the progression of latent TB to active TB [4, 9, 14], can
be explained by the variability in the underlying socio-
economic, behavioral, and cultural factors [41]. Apart

from HIV, other population-level risk factors for TB in-
clude poor living and working conditions, malnutrition,
smoking, diabetes, alcohol abuse, poverty, contact with
persons with active TB (health workers, family members),
overcrowding and indoor air pollution [42–44].
The most pronounced TB/HIV hotspot co-cluster

observed in this study consisted of districts around
Lake Victoria; it is thus worth discussing the most
likely risk factors around the lake regions. Uganda’s
fishing communities have been listed among the
most-at-risk population with the highest prevalence
rate of 15–40% compared to 7% in the general popu-
lation [36]. In an exclusive study about HIV infections
in the fishing communities of Lake Victoria, Opio et
al. [45] found the HIV prevalence to be 22%. They
also found that these communities were underserved
with HIV prevention, care, and support services when
compared with other communities. Also, previous
studies have shown that fishing communities have fa-
talistic attitudes, with some viewing HIV infection as
less risky than drowning while fishing [46]. Moreover,
Ondondo et al. [41], while studying the fishing com-
munities on the Kenyan side of Lake Victoria con-
cluded that the high HIV prevalence (23.3%) could be
explained by high-risk unsafe sex practiced within
fishing communities. We thus think that the TB/HIV
hotspot around Lake Victoria is driven by the high
HIV prevalence rates among the fishing communities,

Fig. 3 Spatial variation of TB condition on HIV across Uganda, 2015. Letters a-i represent the regions from which the variations are derived as
shown by the map on the right
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explained by confounding overlap of lack of TB/HIV
support, behavioral and high-risk sex life.
This study observed another TB/HIV hotspot co-

cluster in northern Uganda (Pader and Omoro). Its pres-
ence could be attributed to the presence of refugees,
mainly from South Sudan, and to people that were ini-
tially internally displaced into camps, during the Lord’s
Resistance Army (LRA) war that happened in northern
Uganda until 2008. Refugee camps and congested places
have been shown to increase TB prevalence [6] and the
HIV/AIDS is also known to progress in such settings
[47] even when this complex relationship is not well
documented [48]. What is not contested, however, is
that living in such camps reduces the communities’ re-
silience to such epidemics [48].
The contribution of HIV to the observed TB/HIV co-

clustering notwithstanding, one cannot rule out the
contribution of other known TB risk factors. These fac-
tors were discussed by Narasimhan et al. [49] and were
characterized into personal factors, including age, gen-
der, proximity to active TB, malnutrition, diabetes, and
environmental factors, including overcrowding, smok-
ing, occupational risk, dangerous alcohol consumption,
indoor air pollution.
Finally, this study observed consistent TB/HIV cold

spots, especially in eastern Uganda. These were areas,
around Mbale district (discordant cluster), that had low
prevalence rates for both TB and HIV – consistent with
district estimates by UNAIDS [38], especially for HIV.
This eastern cold spot could be linked to the traditional
practice of male circumcision among the people in those
communities – Bagisu and Sebei [50]. Also, from the

HIV clusters observed in Fig. 2, Kasese district (inhab-
ited mainly by Bakonjo) has a consistent cold cluster.
Male circumcision has for long been associated with re-
duced risk in acquiring HIV infection. The World
Health Organization, based on male circumcision studies
from Kisumu in Kenya [51], Rakai district in Uganda
[52], and an earlier study from South Africa [53] that
had realised 53, 51, and 60% reduction in HIV acquisi-
tion risk, respectively, recommended safe male circumci-
sion as an additional measure to reduce HIV acquisition
in men [54]. Relatedly, Opio et al. [45] observed higher
prevalence rates in uncircumcised men (27%) compared
to their circumcised counterparts (11%). We thus submit
that the observed TB/HIV cold spot clusters could be at-
tributed mainly to low HIV prevalence rates, which are
in turn mediated through culturally practiced male cir-
cumcision practices.
Whereas this study achieved its set objective of analyz-

ing the areas in Uganda with elevated prevalence rates
for HIV and TB, there were some limitations, especially
regarding data availability. Data were available at the dis-
trict level – which is a larger aggregate level. These re-
sults could be more informative had the analysis been
done on a finer geographical level (like parish or village
level). Also, data about other risk factors for both TB
and HIV was not available – this data would have been
used to do a more informative spatial regression analysis.
These aspects shall be considered in future studies.

Conclusions
Given that for most HIV patients, TB is responsible for
more than half the mortalities, and given that HIV

Fig. 4 Spatial Co-clustering of TB and HIV across Uganda (2015–2017)
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increases the chances of developing active TB by up to
20-folds, scientific evaluation of places where these two
diseases are persistently prevalent is not only important
but essential for effective management of both diseases.
Our study analyzed for joint spatial clustering of TB and
HIV. To the best of our knowledge, this is the first
spatial study to consider both diseases at a national scale
in Uganda, using DHIS2 data. By identifying areas where
both diseases co-cluster for the period 2015 to 2017, this
study provides valuable information to healthcare policy
concerned with these two complementary and endemic
diseases in Uganda.
Our analysis identifies the middle-south regions around

Lake Victoria (Kalangala, Masaka, Rakai, Mukono,
Wakiso, and Mpigi) and some districts in northern
Uganda (Pader and Omoro) to be of special interest, as
they constitute hotspots. The districts of Kabale and
Mbale constitute discordant districts (areas of relatively
high prevalence rates in the neighborhood of low preva-
lence rates, and vice versa) while other eastern districts
are significantly cold spots. By aligning healthcare policy
and intervention efforts with this obtained spatial hetero-
geneity in both disease prevalence rates, our study pro-
vides an informed starting point towards simultaneous
management of TB and HIV.
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