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Abstract

Background: The symptoms of many infectious diseases influence their host to withdraw from social activity
limiting their potential to spread. Successful transmission therefore requires the onset of infectiousness to coincide
with a time when the host is socially active. Since social activity and infectiousness are both temporal phenomena, we
hypothesize that diseases are most pervasive when these two processes are synchronized.

Methods: We consider disease dynamics that incorporate behavioral responses that effectively shorten the
infectious period of the pathogen. Using data collected from face-to-face social interactions and synthetic contact
networks constructed from empirical demographic data, we measure the reachability of this disease model and
perform disease simulations over a range of latent period durations.

Results: We find that maximum transmission risk results when the disease latent period (and thus the generation
time) are synchronized with human circadian rhythms of 24 h, and minimum transmission risk when latent periods are
out of phase with circadian rhythms by 12 h. The effect of this synchronization is present for a range of disease models
with realistic disease parameters and host behavioral responses.

Conclusions: The reproductive potential of pathogens is linked inextricably to the host social behavior required for
transmission. We propose that future work should consider contact periodicity in models of disease dynamics, and
suggest the possibility that disease control strategies may be designed to optimize against the effects of
synchronization.

Keywords: Reachability, Contact network, Transmission, Synchronization, Circadian rhythm, Latent period,
Generation time

Background
The prevention and mitigation of infectious disease out-
breaks remains a major challenge that crosses several
scientific disciplines. While advances in virology and
immunology remain crucial for the development of vac-
cines and therapeutics, contributions from the social and
behavioral sciences continue to improve our understand-
ing of disease transmission at the population scale [1, 2].
Recent work in the field of network epidemiology has
made important strides in our understanding of how the
dynamics of individual and population social behavior
drive epidemic outbreaks [3–8]. However, many questions

*Correspondence: ec975@georgetown.edu
1Department of Biology, Georgetown University, Washington, DC, 20057 USA

still remain about the complex interplay that emerges
from coupling the dynamics of human social behavior
with the life-cycle of a pathogen [9].
After entering a human host, diseases typically expe-

rience a latent period. During this time, the pathogen
multiplies within the host, but is yet unable to transmit
to others. This is then followed by the infectious period,
during which disease transmission is possible [10]. The
latent period is closely related to the incubation period
(the time between receiving the infection and the onset
of symptoms), but in many cases infectiousness precedes
symptoms, resulting in a period of time for which the host
is capable of transmission but unaware that they have been
exposed to the infection [11, 12].
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An additional aspect of disease dynamics is the behav-
ioral responses of the host and the community follow-
ing the onset of illness. Sickness behaviors such as fever,
lethargy, depression, and loss of appetite, cause the host
to limit their movement and social interactions [13–16].
These responses are thought to be adaptive as they protect
host resources, reduce pathogen reproduction, and pro-
mote inclusive fitness by protecting the social group from
infection [17]. In humans, transmission can be reduced
significantly through social isolation or through the avoid-
ance behavior of other susceptible individuals [18, 19].
Here, we focus on the effect of social withdrawal behav-

iors on the spread of disease. While previous studies
have considered reduced or rewired contacts [20, 21],
we choose to examine the possibility that the infectious
period, which is typically estimated from survey data or
controlled experiments [12, 22, 23], is effectively cut short
by the onset of sickness behaviors. Under these condi-
tions, it may be possible for diseases to have a reproduc-
tive advantage when their latent period synchronizes with
the timing of human social behavior (see Fig. 1).
To test this hypothesis, we use temporally resolved

human contact network data from various social settings
(a conference, a school, and a hospital) and ask how dis-
ease spread would fare in each of these networks. We also
consider this question in semi-empirical networks which
include both household and non-household contacts. We
primarily focus on diseases that have a short window

of opportunity for transmission to occur; this assumes a
rapid reduction in social contact after the onset of infec-
tiousness and therefore may not be appropriate for less
virulent infectious diseases.
Biological rhythms are known to influence within-host

infection dynamics, immune response, and transmission
between hosts [24, 25]. There has been recent interest
in the idea that pathogens can adapt to take advantage
of periodic changes to their environment. For example,
viruses whose life-cycle synchronizes with the timing of
regular antibiotic treatment may be more resistant to
the drug than those who do not [26]. Our work is a
contribution to this growing area with a focus on the inter-
action between host social behavior cycles and pathogen
dynamics.

Methods
The goal of our study is to use empirical contact data
to reveal the presence and magnitude of the synchro-
nization between contact dynamics and disease progres-
sion. While the underlying concept may be relevant to
a range of infectious diseases, we focus specifically on
a moderately-transmissible respiratory disease such as
influenza. After describing the empirical data used in this
study we introduce a method to measure the contagion
potential of a temporal contact network with respect to
a disease with given latent and infectious period dura-
tions. We then describe a method to quantify the effect

Fig. 1 Conceptual illustration showing the effect of different latent periods. In the upper panel, the host becomes infectious 12 h after receiving the
infection, at which point he has entered a more sedentary phase of his daily schedule. The symptoms of the infection influence him to avoid
returning to his school or workplace and no further transmission occurs. In the lower panel, the infectious period begins at the same time of the day
that he received the infection. While the symptoms of the disease may result in social withdrawal, there is a period of time for which he is both
infectious and socially active, giving the disease an opportunity to spread
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of synchronization for simulated disease spread on a tem-
poral contact network, and lastly outline how we couple
the disease simulation with three different host behavioral
responses.

Data
In the first two parts of our analysis we use human contact
data from the Sociopatterns project (sociopatterns.org),
and in the third part, we utilize synthetic networks based
on demographic data from an urban area [27].
Data relating to the kind of close-proximity interactions

that allow respiratory diseases to transmit was down-
loaded from the Sociopatterns website. The data has the
format of a temporal network, meaning that for each inter-
action recorded, we are given the identities of the two
individuals involved, and the times for which the inter-
action started and ended. We use human contact data
recorded in three separate locations and Sociopatterns
studies. Participants wore radiofrequency identification
(RFID) sensors that detect face-to-face proximity of other
participants within 1 − 1.5 meters in 20-s intervals. Each
data-set lists the identities of the people in contact, as
well as the 20-s interval of detection. To exclude contacts
detected while participants momentarily walked past one
another, only contacts that are detected in at least two
consecutive intervals are considered interactions.
Sensors were not worn outside the locations being stud-

ied so there are long spans of inactivity corresponding to
the periods from early evening to early morning (See the
top panels of Fig. 2). The three data-sets used were: (a) a
conference in which 110 participants were recorded over
3 days [28], (b) a hospital ward in which 74 participants

were recorded over 4 days [29], and (c) a primary school in
which 242 participants were recorded over 2 days [30, 31].
In a similar fashion to the original study [30], we looped
this data to produce a dataset spanning six weeks.We used
the first day to represent Monday, Wednesday and Friday
and the second day to represent Tuesday and Thursday.
We then added 2 days of inactivity to replicate a typical
school week and weekend.
Because the data provided by each of the above stud-

ies is limited to a single setting, we used another data
approach to consider the impact of more complete net-
works, including home contacts in addition to the non-
home contacts captured in the datasets discussed above.
We used the procedure used in [27] (originally developed
in [32]) to generate synthetic contact networks based on
empirical distributions of ages, household sizes, school
and classroom sizes, hospital occupancy, workplaces,
and public spaces from the Greater Vancouver Regional
District.
We generated a population with 1094 households,

which yielded 2692 individuals. Each member of this pop-
ulation was assigned to activities according to their age,
and edges between individuals were created based on their
location and nature of their overlapping daily activities.
Full details of how edges were assigned can be found in
[27]. For the present study we converted this static net-
work into a temporal network by adding times to the edges
in the following way: we synthesize a typical weekday by
assigning to all non-household contacts a start time at
8am and end time at 4pm and to household contacts a
start time of 4pm and end time of 12am. A typical week-
end day is created by assigning a start time of 8am and

Fig. 2 Reachability. The top panels show the number of face-to-face interactions between pairs of individuals (in the school data we only show 2 of
the 6 weeks). The bottom panel shows the mean reachability of a disease over a range of latent periods. For the purpose of presentation we have
subtracted the number of nodes reached directly from the seed (this is the same for all values of the latent period duration). The tendency for latent
periods which are larger multiples of 24 h or 7 days to result in lower reachability is explained by the limited time span of the data-sets
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end time of 12am to all household contacts. We then
piece these days together to create six weeks of temporal
network data.

Measuring disease impact through reachability
The reachability of an individual,X, is defined as the num-
ber of individuals that could potentially become infected
given that X is the source of infection [33–36]. The orig-
inal definition applied only to contagion processes where
each individual can be in one of only two states: suscepti-
ble or infectious (i.e. an SI model). The concept has since
been developed to incorporate the recovered state (i.e. an
SIR model) [37]. Here, we have further extended the con-
cept of reachability to include a latent state of infection
(i.e. an SEIR model).
We compute the reachability ofX with respect to a given

set of disease parameters; namely, the latent period, �E ,
which is the length of time from when an individual is
exposed to infection to the time they are able to trans-
mit to others (more commonly called the “Exposed” state);
and the effective infectious period, �I , which is defined
as the length of time a host remains infectious after the
latent period has elapsed. To capture the impact of sick-
ness behaviors, we will assume very short durations for
�I . The host may experience illness for longer (the true
infectious period, which we denote�J ) but, due to the lack
of social interactions, there are no transmission events
possible after �I .
We say that a member of the population, X, can “reach”

another, Z, if a sequence of contacts exists that makes it
feasible for a pathogen to spread fromX toZ. For this to be
the case, the time between any two consecutive contacts in
the sequence must be greater than �E and less than �E +
�I (see Figure S1 in the Additional file 1). We impose one
further restriction that the sequence must begin during
the period of length�I that starts when X is first observed
interacting. This represents a situation in which X arrives
in the system in an infectious state.
We have chosen to use reachability as it incorporates

the relevant elements of disease dynamics while also being
relatively fast to compute. It does, however, make implicit
assumptions about the dynamics of the disease in ques-
tion. Specifically, it is assumed that the disease variables,
i.e. the latent and effective infectious period durations,
are homogeneous across the population. To test whether
the results obtained are sensitive to these assumptions,
we perform disease simulations on the same data using a
computation model.

Measuring the effect of synchronization
Real diseases exhibit a range of dynamical behaviors that
may invalidate the results obtained through the analytical
approach of reachability. For example, there may be vari-
ation in the distribution of latent periods [38], the length

of the effective infectious period (between onset of infec-
tiousness and social withdrawal) [18], the proportion of
individuals that are asymptomatic [39, 40], and the perse-
verance of individuals [13]. Here we describe how we use
a computational disease model over the empirical contact
network data to measure the impact of synchronization
and its sensitivity to changes in each of these variables.
The disease simulation, based on an SEIR model (fully

described in Section S1 and Figure S3 of the Additional
file 1), takes as input: the temporal contact data, a “seed”
individual from which the outbreak originates, the time
for which the seed becomes infectious, and the following
disease parameters: β , the per-second probability of trans-
mission during contact between an infectious individual
and a susceptible one; the mode of the latent period dis-
tribution, �̂E ; the dispersion of the distribution of latent
periods σ

(E)
g ; the mode of the effective infectious period

distribution, �̂I ; perseverance of the population, 1/kI ,
which we define as the reciprocal of the shape parameter
of the effective infectious period distribution and which
captures the variation in host response to disease; and the
proportion of exposed individuals that are asymptomatic,
a, who do not experience symptoms or sickness behaviors,
and thus experience a longer effective infectious period
of �I = �J . By using the modes of the distributions
of �E and �I , and not the mean, we are able to vary
the frequency of large outliers through dispersion and
perseverance while keeping the outcome for the typical
individual at a specific value.
According to our hypothesis, we expect the number of

disease cases to be largest when the generation times of
the outbreak are close to multiples of 24 h. The gener-
ation time for a transmission event is the time between
the moment the host received the infection and the
moment they transmitted it to another individual. Since
the expected time between the onset of infectiousness and
transmission is �̂I/2 h (assuming infections times are dis-
tributed uniformly over the effective infectious period),
the expected generation time is �̂E + �̂I/2. We therefore
expect to find the largest outbreaks to occur in the simu-
lation when �̂E = 23 and the smallest when �̂E = 11; we
use the difference between these two cases to measure the
effect of synchronization.
More specifically, we select each individual, i, in the

population as the seed of the outbreak, and the time of
their first contact as the start of their effective infec-
tious period. The outbreak is allowed to proceed as
per the SEIR model and is complete when there are
no longer any infected individuals in the population,
or when there are no more contacts in the popula-
tion (due to the limitation of the datasets). This is
repeated 100 times for each individual, i, with �̂E =
11 h and another 100 times with �̂E = 23 h. To
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measure the magnitude of the outbreak, we calculate the
mean number of infected individuals across these sim-
ulations and denote this as I

(
i,β , �̂E , �̂I ,�J , σ (E)

g , kI , a
)
.

We note that we do not include the seed, or those
infected directly by the seed, in this calculation so
as to exclude infections that have no relation to the
latent period. The synchronization effect for an individ-
ual i is defined as

[
I
(
i,β , �̂E = 23, �̂I ,�J , σ (E)

g , kI , a
)

−
I
(
i,β , �̂E = 11, �̂I ,�J , σ (E)

g , kI , a
)]

.

Measuring disease impact with household contacts
Given the different structure of the urban contact net-
work model, we specify further the disease simulation
algorithm on this network. Here, the disease simulation
begins with a seed becoming infectious at a random time
during the first 24 h of the synthetic temporal contact
network (which happens to be a Monday). To quantify
the impact of household contacts on the synchronization
effect, we consider three models: (I) No sickness behavior
is implemented. Individuals are infectious for the entirety
of the true infectious period, i.e. �I = �J . We assume that
the transmission probability, β , is lower in this case to
make the results comparable to the remaining cases (see
Additional file 1: Section S2.1). (II) Sickness behavior leads
to social withdrawal from non-home contacts only. This
withdrawal takes effect the day after infectiousness begins
(details are described in Additional file 1: Section S2.1).
Lastly, (III) extreme sickness behavior is implemented (as
we did with the RFID data) and �I � �J . Thus, infected
individuals socially withdraw from all contacts (home and
non-home).

Results
In the three RFID contact networks, the rate of contact
between individuals fluctuates periodically in time with
the cycles of human social activity (see Fig. 2). By con-
sidering the spread of disease through these networks, we
find that the impact of infectious disease is maximized
when timing of infectiousness is synchronized with these
temporal dynamics.We show this through analytical mea-
surement of the temporal network structure (reachability)
and test the robustness of these results through analysis of
simulated disease outbreaks on each network. We further
show that similar synchronization occurs for outbreaks on
a larger scale, and with various types of contact, using the
urban contact network data.

Influence of the latent period on disease impact
To reveal the epidemiological impact of the timing of
infectiousness, we computed the mean reachability (over
all individuals in the network) for a range of latent periods
and an effective infectious period of �I = 2. The results
are shown in Fig. 2.

For the conference setting we observe peaks in
reachability when the latent period is 24 or 48 h. The peak
corresponding to a latent period of 24 h is larger than the
size of the peak corresponding to an approximate 48-h
latent period. In the first case, those infected by the seed
on day one, can cause a second generation of infections on
day two, which then causes a third generation infections
on day three. In the second case only two generations of
infection are possible.
Similarly, in the hospital setting we observe four peaks

in reachability. The largest peak corresponds to a 24-h
latent period and represents generations of infection that
reproduced on days 2-5 of the hospital contact dataset.
The peak corresponding with a 48-h generation time rep-
resents a disease that was able to reproduce on only
2 of the 5 days (2 and 4 days after the time the seed
was infectious). The final two peaks represent the opti-
mal latent periods in cases where only 1 generation of
infections is possible due to the limited time frame of
the data.
Results for the school setting show a comparable pat-

tern but on a larger time-scale. In this data, all individuals
are seeded on day 1; the peak in reachability correspond-
ing with a 24-h generation time includes infections that
occurred on days 2-5; since no contacts occur on week-
ends, the disease dies out on Day 6 (Saturday). Peaks
corresponding to generation times of 2 days and 4 corre-
spond to outbreaks that can only survive for 2 generations
of infection. In both of these scenarios, the disease also
dies out over the weekend. The absolute maximum reach-
ability corresponds to a latent period of 7 days. This peak
occurs because infections caused by the seed on the first
day are able to reproduce on the same day of the follow-
ing week, a third generation can again occur on the same
day of the next week, and this pattern can continue for all
six weeks of the data. Epidemics with latent period dura-
tions that are not a multiple of 7 days will eventually die
out because of the absence of social contact during the
weekends.

Robustness of the synchronization effect
To consider the sensitivity of the synchronization effect to
realistic variability in pathogen or host behavior charac-
teristics, we simulated disease outbreaks on the empirical
contact data over a range of parameter values. For the
initial baseline parameters, we assume a latent period dis-
persion factor of σ

(E)
g = 1.1 which represents the low,

yet realistic, value for respiratory infections [41]. We set
the mode of the effective infectious duration distribu-
tion, �̂I = 2 h. (While we are unaware of empirical data
measurements of �I , [42] report an average of 8.5 work
hours are lost due to severe common colds). We set a true
infectious period of �J = 24 h, following [43]. We also
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assume that the asymptomatic proportion, a = 0 and
perseverance, 1/kI = 0.2.
In this baseline case, the synchronization effect was

positive, i.e. changing the mode value of the latent dura-
tion distribution from �̂E = 11 to �̂E = 23 yielded
an increase in the number of infections. This is consis-
tent with the results of the previous section (Influence
of the latent period on disease impact). We then tested
the robustness of this effect by perturbing each parameter
away from its baseline value towards more realistic sce-
narios (Fig. 3). The following paragraphs report the effect
of each parameter perturbation.
Since asymptomatic individuals remain in the system for

significantly longer than those who do experience symp-
toms, their presence increases the overall outbreak size.
Moreover, since the time at which they first become infec-
tious has relatively little affect on the number of infections
they cause, we expect to see a decrease in the synchroniza-
tion effect as a increases. This was found to be the case for
moderate proportions of asymptomatic individuals (0.1 <

a < 0.3); however, at lower values, the presence of asymp-
tomatic individuals did not benefit the non-synchronized
disease significantly more than the synchronized one.
This is seen most clearly in the school setting, in which
the synchronization effect was actually amplified by the
addition of asymptomatic cases. The asymptomatic pro-
portion for influenza has been estimated to be within
4− 28% [44], making the relevance of synchronization for
influenza unclear.

Increasing perseverance (i.e. the variation in the time
to social withdrawal among infectious individuals) leads
to longer periods of infectiousness for some individuals,
and consequently allows for more opportunities for trans-
mission. In Fig. 3, we see that the relationship between
perseverance and synchronization effect is qualitatively
similar to that seen for the asymptotic proportion; at low
values, perseverance benefits both the non-synchronized
and synchronized diseases. For larger values, the indi-
viduals who persevere for prolonged durations dominate
transmission and the time at which they first become
infectious loses significance.
Dispersion in the distribution of latent periods, σ

(E)
g ,

affects the mean outbreak size differently depending on
the value of �̂E . For �̂E = 11, as dispersion increases, the
probability that the latent period will be close to 11 gets
smaller and the probability that the effective infectious
period will intersect with a period of high social activity
gets larger. The opposite is true for �̂E = 23. Increas-
ing σ

(E)
g therefore causes the difference in mean outbreak

sizes of the two cases to converge towards zero.
As the effective infectious period, �̂I , increases, there

are two consequences: outbreaks become larger as there
is more time for transmission, and the exact duration
of the latent period, �̂E , becomes less significant since
infected hosts spend a larger fraction of a 24-h period in
an infectious state (and are thus more likely to have social
interactions while infectious, regardless of when their

Fig. 3 The effect of synchronization. The dark line represents the median effect size over individuals in the population. The effect size is defined as
the increase in mean outbreak size between a disease for which the latent periods follow a log-Normal distribution with a mode of 11 h, and one
which has a mode of 23 h (dispersion factors are equal). Points correspond to the values on the horizontal axis for which the effect size was
computed and the gray area is the inter-quartile range. We see that the synchronization effect observed in “Influence of the latent period on disease
impact” Section is present for a wide range of parameters values in the disease model
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infectiousness began). Consequently, we find that the syn-
chronization effect is maximized at approximately �̂I = 6
h; here, the effective infectious period is long enough for
a relatively large number of infections to occur, but short
enough that it can be entirely absorbed by periods of low
activity in the asynchronous case.
In the conference and hospital settings, the number of

generations of infection is limited by the duration of the
data (3 and 4 days, respectively). In general, this gives
the shorter latent period an advantage over the longer
one, and we eventually see the synchronization effect go
below zero. In the primary school dataset, on the other
hand, most infections die out before the end of the 6-week
duration and the synchronization effect is rarely negative.

Effect of household contacts
Since the hospital, school, and conference datasets do not
include interactions that occur outside of their established
settings, it is necessary to ask whether the synchroniza-
tion effect would be found in a complete contact net-
work which included long-duration home contacts during
evenings and weekends. The effect of these missing links
could be significant enough to break the synchronization
pattern we see. For example, interactions that occur in
the household may act as bridges that allow infection to

spread between schools and workplaces [45], contribut-
ing more to the size of the outbreak than does the effect
of synchronization. We present the results of our epi-
demic simulations on the urban contact network model to
address this question.
In the first model (I), we consider epidemic outcomes

when infected individuals do not change their behavior
in any way and �I = �J = 24 h. In Fig. 4, we see that
the duration of the latent period has little effect on the
disease outcomes. However, even in the absence of sick-
ness behavior, epidemics are more likely to occur at values
around 18 h.
In the second model (II) illness does not affect house-

hold contacts. We assume that if an individual becomes
symptomatic during home hours, they will stay at home;
and if the individual becomes symptomatic during the
daytime, they will continue to engage in non-household
social contacts until the end of the day. Epidemics occur
when the latent period is close to 20 and 42 h. We note
that large epidemics are likely across a larger range of
latent period modes in the second cluster due to the larger
variance in the distribution of latent periods. This is a
consequence of the fact that incubation (and thus latent)
periods follow a log-Normal distribution for which higher
mean results in a higher variance [46].

Fig. 4 Simulated outbreaks in a synthetic urban environment The proportion of outbreaks that exceed a given size are shown (for each latent period
103 simulations were performed starting from randomly selected seeds at random times during the first day). The three models shown are
described in “Effect of household contacts” Section
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The third model (III) is similar to that used in the reach-
ability analysis, where infected individuals withdraw from
all contacts after 2 h of infectiousness. This results in a
similar synchronization pattern as model II, however, as
wemight expect from a typically shorter infectious period,
the latent period durations that correspond to epidemics
are more tightly clustered (around 23 and 46 h).

Discussion
The reproductive potential of a pathogen is driven by
the host social behavior that underlies transmission. We
have considered the class of diseases that causes hosts
to socially withdraw due to symptoms, and focused on
the role that the latent period plays in determining their
epidemic potential. Our results support the hypothesis
that disease risk can be amplified by synchronization
between the latent period of the infection and the circa-
dian rhythms of the host population.
Through analysis of empirical face-to-face contact net-

works, we have shown that a disease is most pervasive
when its generation time is close to a multiple of 24 h.
In such cases, infections that occur during a socially busy
time of day will likely cause another generation of infec-
tions during the same socially active time on a subsequent
day, thus perpetuating the life-cycle of the pathogen. Con-
versely, we observe minimum disease risk when the gener-
ation time is out-of-phase with human circadian rhythms
by exactly half a day. In this case, individuals infected dur-
ing socially busy times will become infectious during a
time when there are fewer opportunities for transmission.
The results of our final analysis illustrate that the avoid-

ance or non-avoidance of contact with household mem-
bers in the evening has limited effect on the optimal
generation time of the disease. In all models of that anal-
ysis, a significant fraction of transmission occurs through
household contact (53%, 67% and 44% for models I, II and
III, respectively) suggesting that the the period of social
inactivity during sleeping hours is the main opponent to
the disease (and the reason why epidemics die out faster
when the latent period is not synchronized). This is most
apparent in Models II and III, which could be said to be
more virulent than Model I (higher transmission prob-
abilities and more likely to provoke social withdrawal).
In the trade-off between transmissibility and life history
traits, this result suggests a novel advantage to being less
virulent [47].
Our modeling approach has a number of limita-

tions. Biologically, we have assumed that the popula-
tion is homogeneously and perfectly susceptible. While
this assumption would be invalidated with pre-existing
natural or vaccine-induced immunity in the host popu-
lation, we expect our results to hold given any periodic-
ity in the contact patterns of the remaining susceptible
population. Additionally, while our results indicate that

synchronization with human circadian cycles should be
advantageous for an infectious disease, this is only true
when the window of opportunity for transmission is suit-
ably short. In some cases symptoms coincide with infec-
tiousness closely enough to induce a rapid behavioral
response from the host and be consistent with our results
[11, 12, 48], while others exhibit much longer periods of
pre-symptomatic viral shedding that would be unaffected
by human circadian rhythms [23]. However, even in these
cases there is doubt that transmission occurs before the
onset of symptoms [49]. Another possibility that would
invalidate our model is if infectiousness persists after the
end of symptoms but evidence suggests that this does not
occur for influenza [11].
Behaviorally, we make a number of simplifying assump-

tions about social distancing and contact patterns. For
one, we assume that behavior change by infected individ-
uals eliminates transmission potential entirely, but there
may be more variation in this change. Second, we ignore
that social isolation could also result from susceptible
individuals avoiding symptomatic infected individuals;
these responses may be driven by public awareness of the
epidemic and therefore change dynamically as it grows in
size [50]. Third, the contact network data we use in this
study do not represent the range of human social behav-
ior heterogeneity: the RFID contact networks neglect any
influence from outside the selected location, and the
urban contact network model assumes temporal homo-
geneity in contact dynamics. In combination, however,
our results do provide qualitative insights into the impact
of partial social withdrawal.
The results of this analysis suggest that by having a life-

cycle that synchronizes with the circadian cycles of human
behavior a pathogen can gain a reproductive advantage
over those that do not. If this hypothesis holds, we would
expect to see the generation times of diseases to be close
to multiples of 24 h. A recent review of serial intervals
(which are closely related to generation times if symptoms
and infectiousness track each other) reported the mean
and standard deviation from seven influenza studies [51].
In all reported cases, the mean generation time was within
0.3 days of perfect synchronization; the probability that
this would occur by chance is less than 0.1. Moreover, five
of these cases were out of phase by 0.2 days or less, and the
two that were further from synchronization had variances
that were above the average. These data are consistent
with the idea that for influenza to reach epidemic scale,
its generation time must either synchronize with human
circadian rhythms, or have highly variable latent period
durations.
The conclusions of this work have implications for pre-

dicting and controlling infectious disease transmission at
the population scale. Contact rates vary dynamically, both
periodically according to cycles of human behavior, and
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in response to the disease itself. Consequently, the win-
dow of opportunity for transmission may be much shorter
than the actual duration of infectiousness determined in
experimental studies; thus, the important question is not
How long is the infectious period?, but rather When does
the infectious period begin?.
Epidemic models that do not consider the effect of

sickness behaviors, and assume a constant (non-cyclic)
rate of contact, may lead to misleading conclusions about
the drivers of transmission. This is most likely to apply
to cases where sickness behaviors are strong and infec-
tiousness begins shortly before the onset of symptoms.
Previous work has drawn attention to the importance of
this period, suggesting that control strategies involving
the treatment or isolation of symptomatic individuals are
only effective if individuals can acknowledge that they
have the disease within a reasonable amount of time [18].
Our work suggests that, in such cases, the duration of the
latent period becomes a primary driver of transmission
patterns.
Finally, we suggest the possibility that control strate-

gies for managing infectious disease may be designed
around the effects of synchronization. For example, antivi-
rals for influenza are expected to alleviate symptoms if
taken within 24 h of symptom onset. Our results sug-
gest that if antivirals eliminate transmissibility (which
does not appear to be supported for influenza, [52]), it
would be possible to optimally time antiviral adminis-
tration to minimize cases by making the period from
exposure to antiviral onset out of phase with human cir-
cadian rhythms. As another example, the manipulation of
school and workplace schedules to break the synchroniza-
tion effect may result in a hostile environment towards
infections with particular latent periods. More generally,
a better understanding of the coupling between human
and disease dynamics could lead to methods of social dis-
tancing that are sensitive to the temporal dynamics of
infectious disease.

Conclusions
We have proposed the hypothesis that infectious diseases
are most pervasive when their latent period, and con-
sequently their generation times, are synchronized with
circadian rhythms of the host population. We predict
that synchronization is most likely to occur for diseases
that invoke a strong symptomatic response and lead to
a withdrawal of social contact in the host. Our analy-
sis of empirical temporal contact networks supports this
argument by showing that the reachability of a disease is
strongly dependent on its latent period and that simulated
diseases that synchronize with the daily rhythms of social
contact gain a reproductive advantage over those that do
not. We conclude that the surveillance, modeling, and
mitigation of infectious diseases should carefully consider

the consequences of disease synchronization, and, more
broadly, the complex interactions that can occur between
social and biological systems.
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