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infection by meteorological factors in
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temporal study
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Abstract

Background: Zika virus (ZIKV) infection is a pandemic and a public health emergency. It is transmitted by mosquitoes,
primarily the Aedes genus. In light of no treatment currently, it is crucial to develop effective vector control programs to
prevent the spread of ZIKV infection earlier when observing possible risk factors, such as weather conditions enhancing
mosquito breeding and surviving.

Methods: This study collected daily meteorological measurements and weekly ZIKV infectious cases among 32
departments of Colombia from January 2015–December 2016. This study applied the distributed lag nonlinear model
to estimate the association between the number of ZIKA virus infection and meteorological measurements, controlling
for spatial and temporal variations. We examined at most three meteorological factors with 20 lags in weeks in the
model.

Results: Average humidity, total rainfall, and maximum temperature were more predictable of ZIKV infection outbreaks
than other meteorological factors. Our models can detect significantly lagged effects of average humidity, total rainfall,
and maximum temperature on outbreaks up to 15, 14, and 20 weeks, respectively. The spatial analysis identified 12
departments with a significant threat of ZIKV, and eight of those high-risk departments were located between the
Equator and 6°N. The outbreak prediction also performed well in identified high-risk departments.

Conclusion: Our results demonstrate that meteorological factors could be used for predicting ZIKV epidemics. Building
an early warning surveillance system is important for preventing ZIKV infection, particularly in endemic areas.
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Background
Zika virus (ZIKV) was first discovered in 1947 from a
monkey in the Zika Forest of Uganda. The first human
cases of ZIKV infection were reported in 1954 in
Nigeria. The first major outbreak of ZIKV occurred in
2007 in the Federated States of Micronesia. The first
outbreak in continental South America occurred in 2015
in Brazil, followed by other countries in South America
and Asian [1–3]. Now, it has spread to 70 countries with

about 1.5 million people infected with ZIKV [4]. Medical
research has verified that ZIKV infection is associated
with the development of microcephaly in fetuses or
babies and Guillian–Barré syndrome in adults [5–7].
ZIKV is a mosquito-borne viral, mainly transmitted by

Aedes aegypti and Aedes albopictus mosquitoes, which
also transmit dengue and chikunkunya virus [8]. No cure
or vaccine for ZIKV is available so far. Current treat-
ment for ZIKV infection is focused only on treating
symptoms like fever, pain, and rash. The development
and mass production of ZIKV vaccine might take up to
5 years [9, 10]. While none of the vaccines has been
proven to prevent ZIKV infection yet, global and local
public health authorities have urged the prevention
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ZIKV infection by focusing on mosquito control activ-
ities and preventing mosquito bite [10, 11].
The transmission of mosquito-borne diseases is associ-

ated with weather change [12]. Although Aedes aegypti
and Aedes albopictus mosquitoes have different biting
and feeding features, the survival of Aedes mosquitoes is
highly associated with meteorological factors, such as
temperature and humidity [13, 14]. Warmer temperature
can shorten the incubation period of Aedes aegypti,
which might increase the speed of the virus [13]. Previ-
ous studies have explored the potential influence of wea-
ther change on the abundance of Aedes mosquitoes or
ZIKV [15, 16]. Hence, the risk of ZIKV transmission is
characterized by its sensitivity to weather change.
Previous studies have mapped potential hot spots for

the ZIKV transmission [17–19]. Regions with a higher
risk of ZIKV epidemic usually had warmer temperature
because mosquitoes are more abundant and active [19].
To build an early warning and prevention system, a
quantitative measure to capture the risk of new ZIKV
epidemic linked to different meteorological factors is
needed. However, a full understanding of such dynamic
correlations is currently lacking.
With the same transmission as Dengue fever, which

has been investigated to have a nonlinear lagged associ-
ation with weather conditions as well as spatial vulner-
ability in high-risk areas [20], we supposed that ZIKV
infection also had the same scenario. Thus, in this study,
we proposed a spatial nonlinear model to investigate the
association among ZIKV infection, weather conditions,
and lagged effects. We analyzed weekly ZIKV infection
cases and meteorological factors among 32 departments
in Colombia, from January 2015–December 2016. We
hypothesized that a higher risk of ZIKV infection might
occur when specific meteorological measurements were
observed at most 5 months earlier. The study aims were
to: 1) Approximate how early ZIKV infection can be
monitored based on meteorological factors; 2) Estimate
the highest risk of ZIKV infection behind observed me-
teorological measurements; 3) Identify high-risk areas of
ZIKV infection after controlling for meteorological fac-
tors. The ultimate goal of this study was to establish an
early warning system for ZIKV infection, which can be
flexibly applied in different epidemic areas.

Methods
Study area
Colombia, the third-most populous country in Latin
America is located in the northwest of South America,
and has 32 departments (see Fig. 1) [21]. The population
of Colombia is concentrated in the Andean highlands and
the Caribbean coast. The equator is across the southern
Colombia. The climate in Colombia is characterized as
tropical, so its warm and isothermal weather condition is

a favorable environment for breeding mosquitoes. The
Amazon Rainforest, located in the southeastern Colombia,
is one of the main habitats of mosquitoes.

Data source
We collected data on ZIKV infection records and me-
teorological information in Colombia from 2015 to 2016.
These data were collected at the department level, which
was analogous to the state level in the United States.
Weekly data on ZIKV infection counts of each depart-
ment were reported to the Colombian National Institute
of Health through the public health surveillance system.
These data were publicly available at Epidemiological
Bulletin in Colombia (http://www.ins.gov.co/buscador-
eventos/Paginas/Vista-Boletin-Epidemilogico.aspx). Note
that Bogota, the capital of Colombia, only has available
ZIKV infection records in 2015 and the first 2 weeks of
2016. A report mentioned that ZIKV infection in Bogota
is not endemic because it is at 2640 m above the sea level,
and most cases were immigrant cases from people travel-
ling to Bogota from Cundinamarca [22]. Hence, we com-
bined the data from Bogota and Cundinamarca before the
2nd week of 2016. Meteorological factors were obtained
from 42 monitoring stations across 32 departments. These
data were retrieved from the Weather Underground
(https://www.wunderground.com/).

Meteorological measurements
Weather conditions were quantified by 15 meteoro-
logical measurements from 42 monitoring stations in
Colombia (Fig. 1), including temperature (minimum;
maximum; average), humidity (minimum; maximum;
average), dew point temperature (minimum; maximum;
average), sea level pressure (minimum; maximum; aver-
age), wind speed (maximum; average), and rainfall. Be-
cause the missing data rate was as high as 29.3% among
those monitoring stations, we chose to apply kriging
technique because spatial autocorrelation (measured by
Moran’s I) is strong, spatial stratified heterogeneity is
weak (measured by q-statistic [23]), and Pearson’s correl-
ation coefficient is small. Evidence in details can refer to
Additional file 1: Table S1, Table S2 and Figure S1.
Therefore, we especially adopted a local time-space
kriging method to impute missing data for each depart-
ment according to collected measurements along with
calendar day and geographic information of monitoring
stations (i.e., latitude and longitude) [24]. For matching
the weekly ZIKV case data, we first selected the weekly
maximum values of maximum temperature, maximum
dew point temperature, maximum humidity, maximum
sea level pressure, and maximum weed speed from mon-
itoring stations in each of the ten departments with mul-
tiple monitoring stations. The weekly minimum values
of the previous meteorological factors were determined
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similarly. The weekly average values for the department
of all previous indicated meteorological factors were es-
timated by average across monitoring stations. For the
other 19 departments with only one monitoring station,
weekly measurements were derived from maximum,
minimum, and average values of corresponding me-
teorological variables per week. For the three depart-
ments without monitoring station, we applied the local
time-space kriging method again to impute their me-
teorological measurements from the other departments.
Afterward, we applied a geodetector method in those
imputed data, which is a technique to preliminarily de-
tect whether covariates are responsible for an outcome
measurement [23].

Statistical model
In order to take both nonlinear lag effects of meteoro-
logical measurements and spatial correlation into ac-
count simultaneously, we applied the distributed lag
nonlinear model (DLNM) for assessing the nonlinear as-
sociations among ZIKV infection, weather, and temporal
lagged effect [25]. We assumed that the number of ZIKV

infection cases at time t in department d, denoted by
Ydt, followed a Poisson distribution POI(μdt), where
E(Ydt) = φμdt, and φ is a scale parameter. The DLNM
could be regarded as a generalized linear model with
additional cross-basis functions, which are interactions
constituted by a nonlinear function for a covariate and a
nonlinear function for a lag variable; hence, this study
established the DLNM in a quasi-Poisson model frame-
work to take possible over-dispersion into account:

log μdtð Þ ¼ αþ
X

CB Weather; lagð Þ
þ f tð Þ þ f spat dð Þ
þ offset; t ¼ 1;…; 104; d ¼ 1;…; 32;

where α is the intercept, and the offset term is the loga-
rithm of population in each department. A natural cubic
spline f(t) with respect to the calendar time for 104 weeks
from 2015 to 2016 is a time smoother with seven de-
grees of freedom (df) to control long-term temporal
autoregressive correlations. Weather conditions and
lagged effects were analyzed in the cross-basis func-
tion CB(Weather, lag), which is an interaction between

Fig. 1 The map of study areas among 32 departments in Colombia, where the pink circles represent the locations of weather monitoring stations
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a b-spline of a meteorological factor and another b-
spline of the lag factor. The spatial function fspat(d)
describes spatial local heterogeneity of ZIKV incidence
by applying Markov random fields, which follow a
normal distribution with mean

X
d0∈Ωd

f spatðd0Þ=Nd

and variance σ2d=Nd [26]. In details, we defined a
neighborhood as an adjacent department d′ sharing a
part of boundaries of another department, and a
neighborhood set containing all adjacent departments
around the department d was denoted by Ωd. The
number of adjacent departments in Ωd was denoted
by Nd, and fspat(d

′) is the spatial estimated effect in
each adjacent department. Thus, the mean can be
regarded as the average neighborhood effect. In
addition, σ2d is the original variance in the department
d, whereas the number of neighbors diluted its spatial
variance. The spatial function can evaluate the
remaining variation of ZIKV incidence not explained
by meteorological factors. Each department can obtain
a spatial estimate from the spatial function, which can
be interpreted as the logarithm of relative risk (logRR)
in ZIKV of a department compared to the average of
all departments. In the other words, the exponential
spatial estimate can account for the excessive relative
risk (RR) of ZIKV incidence in each department over
the whole country. Moreover, the spatial function can
detect each department as a high-risk area of ZIKV in-
fection after controlling meteorological factors as the
95% confidence interval (CI) of the spatial estimate
significantly greater than zero. We adopted a 3-step
model selection to choose the best model. In details,
the first step is to determine the best model with only
one cross-basis function from 14, 16, 18, and 20 lags
by comparing the quasi Akaike information criterion
(QAIC) among them. The second step is to determine

the best cross-basis function with different degrees of
freedoms from 3 to 7 in each meteorolgocial measure-
ment. The third step is selecting the best model with
one, two, and three cross-basis functions. Eventually,
the best model has three cross-basis functions for
average humidity, total rainfall, and maximum
temperature with 20 lags. The chosen criterion in each
step depends on the smallest QAIC (data not shown
but available upon request from the authors). Each es-
timated cross-basis function was transformed into RR,
while the reference levels varied in different meteoro-
logical factors. Diagnosis of the residuals were conducted
via plots of autocorrelations and partial autocorrelations,
and distribution of residuals over time.
Sensitivity analyses were performed by increasing the

length of lags to 22 and 24 in the final model. We calcu-
lated the similarity of estimated cross-basis function with
the first 21 lags (including lag 0) by using the RV-
coefficient, which is a correlation measurement between
two matrices [27]. Like the general correlation coefficient,
a higher RV-coefficient close to one reflects more similar-
ity between two matrices with the same dimension. We
also applied the analysis of variance to compare the spatial
estimates to see whether the change of lag in cross-basis
functions could affect the spatial function.
Data management of this study was carried out in SAS

V9·3 (SAS Institute Inc., Cary). Data imputation and
model fitting were conducted in the R software, version
3·3·3 (R Development Core Team, 2011). All maps were
generated in QGIS v2·18·2. Statistical significance was
determined by a type I error level of 0·05.

Results
Figure 2 shows the weekly number of ZIKV infection
cases since the 40th week of 2015, which is the first

Fig. 2 The weekly time trend of ZIKV infection cases in Colombia from the 40th week of 2015 to the 52nd week of 2016
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week of the official report published by Epidemiological
Bulletin in Colombia. Table 1 presents the total ZIKV in-
fection cases and the crude incidence of ZIKV infection
among 32 departments in Colombia. Norte de Santander,
Santander, and Valle del Cauca had over 10,000 identified
ZIKV infection cases from 2015 to 2016, but the three
highest crude incidence rates per 10,000 populations were
observed in Arauca (120.96), Casanare (140.21), and the
islands of San Andres and Providencia (192.37), which
were also the only three areas with over 100 ZIKV infec-
tion cases per 10,000 populations. The initial covariate de-
tection reveals that most meteorological measurements
are significantly responsible for the incidence of ZIKV

infection (p-values < 0.0001), except for maximum hu-
midity (p-value = 0.5288) and maximum wind speed
(p-value = 0.1193), see Additional file 1: Table S2.
Defining the lowest average humidity as the reference

level by 31·29%, Fig. 3a shows a great surf around the
top and right corners, indicating a large RR of ZIKV in-
fection increased across all average humidity levels
within 10 lagged weeks. The outbreak of ZIKV infection
can be observed at least after 4 weeks (Fig. 4a), and up
to 15 weeks (Fig. 4c) based on significant RRs. Longer
lagged weeks with a large RR can be detected more
likely in higher average humidity. Table 2 shows that the
estimated cross-basis function of average humidity can

Table 1 The total ZIKV infection cases, population, and crude incidence of ZIKV infection among 32 departments in Colombia, 2015 ̶ 2016
Department # of cases Weekly casesa Population Crude incidence (per 10,000 population)

Amazonas 293 2.50 46,950 62.41

Antioquia 2286 19.54 5,601,507 4.08

Arauca 1851 15.82 153,028 120.96

Atlantico 6743 57.63 2,112,001 31.93

Bolivar 1893 16.18 1,836,640 10.31

Boyaca 374 3.20 1,210,982 3.09

Caldas 384 3.28 898,490 4.27

Caqueta 1212 10.36 337,932 35.87

Casanare 3944 33.71 281,294 140.21

Cauca 265 2.26 1,182,022 2.24

Cesar 1596 13.64 878,437 18.17

Choco 22 0.19 388,476 0.57

Cordoba 2931 25.05 1,462,909 20.04

Cundinamarca 5083 43.44 9,007,373 5.64

Guainia 17 0.15 18,797 9.04

Guaviare 195 1.67 56,758 34.36

Huila 6963 59.51 1,001,476 69.53

La Guajira 673 5.75 655,943 10.26

Magdalena 3180 27.18 1,136,819 27.97

Meta 4301 36.76 713,772 60.26

Narino 59 0.50 1,498,234 0.39

Norte de Santander 10,512 89.85 1,208,336 87.00

Putumayo 538 4.60 237,197 22.68

Quindío 397 3.39 518,691 7.65

Risaralda 1385 11.84 859,666 16.11

San Andres and Providencia 1146 9.79 59,573 192.37

Santander 10,069 86.06 1,913,444 52.62

Sucre 1843 15.75 762,263 24.18

Tolima 7079 60.50 1,312,304 53.94

Valle del Cauca 26,908 229.98 4,052,535 66.40

Vaupes 0 0.00 19,943 0.00

Vichada 41 0.35 44,592 9.19
aThe weekly cases started from the 40th week of 2015, which was the first report released by Epidemiological Bulletin in Colombia
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Fig. 3 Relative risk (RR) of Zika virus (ZIKV) infection along lagged weeks and three selected meteorological measurements in terms of (a) average
humidity, (b) logarithm of total rainfall, and (c) maximum temperature

Fig. 4 Relative risk (RR) of Zika virus (ZIKV) infection at selected lags in three selected meteorological measurements. In average humidity,
the selected lags are (a) 4 weeks, (b) 11 weeks, and (c) 15 weeks. In logarithm of total rainfall, the selected lags are (d) 1 week, (e) 8
weeks, and (f) 14 weeks. In maximum temperature, the selected lags are (g) 3 weeks, (h) 19 weeks, and (i) 20 weeks
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detect the largest significant RR by 4·16 (95% CI = 2·41,
7·19) at lag 11 when the average humidity reached
92·14%. The whole variation of RR at lag 11 in Fig. 4b
reveals that all levels of average humidity had the RR of
ZIKV infection significantly greater than one after
11 weeks.
Figure 3b presents a peak in the top corner, indicating

that a higher RR may more likely happen in a shorter lag
and a large amount of rainfall. Defining no rainfall as
the reference level, besides present week (lag 0), the
most significant outbreak of ZIKV infection (RR = 1·60;
95% CI = 1·26, 2·02) can be observed after 1 week, when
the weekly total rainfall accumulated to 437·03 mm
(i.e., e6·08), see Table 2. Similar as average humidity,
higher total rainfall was more related to ZIKV
infection outbreak. However, we also observed some
significant lagged effects in both high and low total
rainfall. For instance, Fig. 4e reveals that the largest
RR of ZIKV infection at lag 8 was 1·29 (95% CI =
1·07, 1·55) under an extreme rainfall over 1000 mm.
The significant lag effect can last up to lag 14 when
the weekly total rainfall increased at least 3·10 mm
(i.e., e1·13), see Fig. 4f.
As the reference level was defined at 80 °F, the vari-

ation of RR computed from the estimated cross-basis

function of maximum temperature reveals two peaks
(Fig. 3c), demonstrating that a longer lag effect may hap-
pen in both lower and higher maximum temperatures.
The shortest lagged effect was observed at lag 3 when
the maximum temperature was between 90·61 °F and
100·43 °F (i.e., 32·56 °C and 38·02 °C), see Fig. 4g. Table 2
reveals that the largest RR (3·01; 95% CI = 1·61, 5·63) was
observed at lag 19 when the maximum temperature in-
creased to 108·00 °F (i.e., 42·22 °C). The longest lagged ef-
fect can be detected at lag 20 when the maximum
temperature was lower than 69·38 °F, see Fig. 4i.
Figure 5 depicts the map from the estimated spatial

function, revealing a larger logRR located in the middle
or south Colombia. Seventeen of the 32 departments
were positively associated with ZIKV infection, but only
12 of them can be defined as ZIKV high-risk areas be-
cause of a 95% CI strictly greater than zero. The result
indicates that, after controlling for the meteorological
effects, 37·50% (12 out of 32) of departments still
showed a significantly higher risk for ZIKV infection.
These departments are more likely located closer to the
equator. More specifically, if Colombia was split by lati-
tude at 6°N, only four high-risk departments (Sucre,
Magdalena, Norte de Santander, and San Andres) were
located above 6°N, and the other eight high-risk

Table 2 The largest relative risk of ZIKV infection in average humidity, total rainfall, and maximum temperature by lagged week

Lag
(Week)

Average
humidity (%)

Largest
RR

95% Confidence
interval

Logarithm of total
rainfall (mm)

Largest
RR

95% Confidence
interval

Maximum
temperature (°F)

Largest
RR

95% Confidence
interval

0 84.91 1.98 (0.33, 11.86) 5.99 1.98 (1.33, 2.94) 87.69 1.14 (0.90, 1.45)

1 83.52 2.25 (0.48, 10.62) 6.08 1.60 (1.26, 2.02) 90.15 1.13 (0.94, 1.36)

2 44.44 2.82 (0.70, 11.37) 6.34 1.38 (1.19, 1.59) 94.90 1.18 (1.01, 1.37)

3 44.74 3.40 (0.97, 11.90) 6.91 1.38 (1.13, 1.69) 96.56 1.25 (1.08, 1.44)

4 44.94 3.83 (1.24, 11.84) 6.91 1.44 (1.17, 1.78) 97.24 1.31 (1.13, 1.53)

5 45.07 4.06 (1.48, 11.16) 6.91 1.46 (1.18, 1.80) 97.66 1.36 (1.16, 1.58)

6 45.16 4.07 (1.66, 9.98) 6.91 1.43 (1.17, 1.75) 97.99 1.38 (1.18, 1.61)

7 45.22 3.88 (1.77, 8.52) 6.91 1.37 (1.13, 1.66) 98.28 1.39 (1.20, 1.61)

8 87.77 3.70 (1.88, 7.28) 6.91 1.29 (1.07, 1.55) 98.58 1.39 (1.20, 1.60)

9 92.14 3.92 (2.08, 7.37) 6.91 1.19 (0.99, 1.43) 66.00 1.38 (1.14, 1.67)

10 92.14 4.14 (2.34, 7.33) 6.61 1.10 (0.95, 1.27) 66.00 1.39 (1.15, 1.69)

11 92.14 4.16 (2.41, 7.19) 6.15 1.10 (0.87, 1.39) 66.00 1.40 (1.12, 1.76)

12 92.14 3.93 (2.25, 6.86) 5.99 1.12 (0.87, 1.46) 66.00 1.43 (1.09, 1.86)

13 92.14 3.44 (1.91, 6.19) 5.89 1.14 (0.86, 1.51) 66.00 1.47 (1.08, 1.98)

14 92.14 2.77 (1.50, 5.11) 5.82 1.15 (0.85, 1.54) 108.00 1.55 (1.03, 2.32)

15 92.14 2.03 (1.09, 3.77) 5.74 1.13 (0.84, 1.52) 108.00 1.84 (1.24, 2.72)

16 92.14 1.33 (0.73, 2.44) 5.62 1.10 (0.83, 1.45) 108.00 2.15 (1.48, 3.13)

17 31.29 1.00 (1.00, 1.00) 5.41 1.04 (0.82, 1.33) 108.00 2.47 (1.70, 3.60)

18 31.29 1.00 (1.00, 1.00) 0.53 1.02 (0.98, 1.05) 108.00 2.77 (1.78, 4.32)

19 31.29 1.00 (1.00, 1.00) 4.19 1.05 (0.95, 1.16) 108.00 3.01 (1.61, 5.63)

20 31.29 1.00 (1.00, 1.00) 4.09 1.12 (0.98, 1.28) 66.00 2.37 (1.17, 4.78)
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departments were all located between the equator and 6°N.
The significantly lowest risky area was Sucre (logRR = 0·53,
95% CI = 0·07, 0·99), which is the northeast high-risk
department in the mainland territory of Colombia.
The significantly highest risky area was Casanare
(logRR = 3·34; 95% CI = 2·91, 3·76). The equator was
across three high-risk departments, including Putu-
mayo, Caqueta, and Guaviare.
We compared the results of lag 0–20 weeks with those

at lag 22 and 24 weeks and found similar estimates in the
three cross-basis functions (data not shown). The RV-
coefficients were all at least 0·93, suggesting that despite
using a longer length of lags, the first 21 estimates (i.e., lag
0 to lag 20) were still similar to the original results from
20 lags. Moreover, no obvious change was found in the
estimated spatial function when considering more lags
(all p-values > 0·99). Compared to the final model
with 20 lags, the mean square errors were 0·06 and
0·12 when using lag 22 and 24 weeks in the DLNM,
respectively. The change of lag period did not affect
the identification of high-risk areas. The spatial esti-
mates kept the same order among these departments.

Discussion
This study established an early warning model to project
the outbreak of ZIKV infection when a weather condition

with a certain measurement was observed up to 20 weeks
ago. We proposed a modeling selective process to deter-
mine which meteorological factors should be used. The
approach can be applied flexibly in other countries with
high prevalence of ZIKV infections, where meteorological
measurements are available. Our findings suggest that,
averaged humidity, total rainfall, and the maximum
temperature can adequately detect a ZIKV infection out-
break at least 3 months in advance. Since the proposed
model can examine significantly positive lagged effects
and geographic impacts, our findings will be applicable in
the development of a ZIKV surveillance system by govern-
mental agencies.
The lagged effect of weather change on ZIKV infection

has not been well investigated previously. The traditional
approach of using internet search, social media, and news
reports can predict ZIKV infection outbreaks at most 3-
week ahead of time [28]. This short prediction may not
provide sufficient time to implement intervention pro-
grams to prevent ZIKV infection outbreak, especially in
rural areas. Dengue fever has a similar transmission mech-
anism as Zika fever, was observed to have varied and lon-
ger lagged effects in Vietnam (9–12 weeks), Singapore (3
months), and Taiwan (15–18 weeks) [20, 29, 30]. These
studies all highlighted that: (1) longer prediction time
could provide adequate time for governmental agencies to

Fig. 5 Geospatial pattern of Zika virus (ZIKV) infection among 32 departments in Colombia during 2015–2016 in terms of (a) spatial estimate and
(b) spatial significance
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respond; (2) meteorological factors are the main predic-
tors of the disease outbreak, and they are easily accessible
and manageable. Hence, using meteorological factors to
monitor ZIKV infection outbreaks is reasonable, and it
provides an earlier warning because ZIKV and dengue
virus have the same mode of transmission pathway by
mosquito vectors.
The significant association between ZIKV infection

and meteorological factors is expected because vector-
borne diseases are highly correlated with weather condi-
tions, while advanced scientific evidence still needs
further investigation besides this study. A study in Brazil
verified a more direct linkage between daily rainfall,
humidity, and mean temperature and ZIKV infection
with human incubation and infectious periods of 4·8 days
and 3·6 days, respectively [31]. Rainfall, humidity, and
temperature were also used in developing a risk assess-
ment model for calculating the ZIKV risk index [32].
Some of the significant high-risk departments identified

by the spatial function in Colombia were separately inves-
tigated in previous studies. The earliest research in
Colombia estimated the basic reproductive number for
the ZIKV outbreak in San Andres and Girardot (in the de-
partment of Cundinamarca) using data from September
2015 to January 2016 [33]. The estimated cumulative
incidence rates of ZIKV infection in over a half of munici-
palities in Sucre and Tolima showed a high incidence rate
of over 100 cases per 100,000 population [34, 35]. We fur-
ther verified that all these areas were at high risk for ZIKV
infection after controlling for weather conditions.
This study is the first epidemiological research cover-

ing a two-year period among several epidemic areas of
ZIKV in Colombia. We conducted a population-based
study to examine significant associations between ZIKV
infection risk and weather change. Because there is cur-
rently no curative treatment and vaccine for ZIKV infec-
tion, preventing mosquito bites at individual level and
vector control measures at local, regional, and national
level remain the high priority for disease prevention and
control. If we can estimate a potential hazard of ZIKV
infection earlier by using existing measurements, there
will be more time to prepare and develop effective pre-
vention and control programs for vector-borne diseases.
Building a surveillance system that can investigate the
occurrence of ZIKV infection earlier will be useful in
strengthening the efficiency of vector control programs.
In addition, using meteorological measurements in a
surveillance system is convenient and fast because they
are usually measured at monitoring stations hourly and
daily. Our research findings may not exactly reflect the
same scenario in other areas, such as Brazil or Puerto
Rico, because the result of the data analysis may be af-
fected by the completeness of data, the length of the
study period, and the geographic location of the study

area. However, this study proposed a systematic ap-
proach to conduct the surveillance system, which can be
modified easily and flexibly in the other areas.
Using the DLNM for monitoring ZIKV infection by

meteorological factors provides a systematic method for
building an early warning system. The nonlinear lag ana-
lysis and spatial analysis might be applied separately,
while a study has proven the importance of including a
spatial function in the DLNM [36], especially in control-
ling possible overestimation when analyzing spatiotem-
porally imputed data. Practically, this approach can be
adopted in any epidemic area when time series data are
available. Since ZIKV has been verified to cause micro-
cephaly in neonates [37], pregnant women living in
high-risk areas should be alarmed in advance. Micro-
cephaly can be detected as early as 18–20 weeks gesta-
tion [38]. Therefore, as the outbreak of ZIKV infection
can be monitored in advance, the outbreak of micro-
cephaly might be detected earlier.
There are some limitations in this study. First, the study

period was still too short because the first official report of
ZIKV infection cases was not released until the 40th week
of 2015 in Colombia. We believe that, like dengue fever,
there should be a seasonal variation in Zika fever, while it
was unlikely to have better control in the statistical model
with only 2-year data. Second, the Zika fever might be
under-reported, especially in the beginning of October in
2015. During that period, all departments might not have
developed a systematic process to diagnose and report
ZIKV infection. Third, the reported ZIKV infection data
did not differentiate between those acquired locally and
those acquired from other countries. We were also unable
to verify whether a case was caused by mosquito bites or
transmitted by sexual activities. Fourth, the interaction
term between the nonlinear smoothing function of time
and the spatial function is unavailable in the model, so a
real spatiotemporal pattern was unable to be investigated
in this study. Further research will need to incorporate
sociodemographic, interpersonal/intrapersonal charac-
teristics to the current model to better understanding
other potential factors associated with ZIKV infection.
Fourth, measurement bias may exist because the
meteorological measurements were collected at the
community level rather than the individual level. Lastly,
this study may have an uncertainty of causal influence
because of ecological design. Conducting individual-
based analyses may overcome the two limitations if
individual-level data are available.
Future work will rely on data with a longer study

period to obtain more accurate findings. Because ZIKV
can be spread by infected persons, we need to have a
more comprehensive surveillance to investigate whether
ZIKV incidence has a significant spatial variation over
time. More importantly, further analyses are needed to
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evaluate whether prevention, which is carried out in a
certain period of time suggested by our model, can
significantly reduce the number of ZIKV infection, espe-
cially in high-risk areas.

Conclusions
ZIKV is a pandemic and a public health emergency. Unlike
other vector-borne diseases, it does not only affects people
who are bitten by mosquitoes, but also increase the risk of
microcephaly in infants born to infected mothers.
Although ZIKV infection and microcephaly are not associ-
ated with high mortality, it may cause unpredictable med-
ical cost and family burden. Since we do not have curative
treatment and vaccine for ZIKV, it is important to develop
an early warning system that is efficient and inexpensive to
implement because of better technique of monitoring wea-
ther change. We anticipate that the proposed approach in
this study can be applied in other highly endemic areas.
We believe that the more data collected in the future can
help build a better early warning system for ZIKV
infection.
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