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Abstract

Background: Globally, Norovirus (NoV) is considered the most common cause of diarrheal episodes across all age
groups. Despite its wide genetic diversity, the GII.4 strain is the most predominant and has been associated with
epidemics worldwide. In this study, we characterized sporadic cases of diarrhea from NoV-positive children, during
a five-year period (2010–2014).

Methods: A total of 250 NoV-positive samples identified by an enzyme immunoassay (EIA) were subjected to RT-PCR
and partial nucleotide sequencing for polymerase and capsid genes. Phylogenetic analysis was performed to identify
NoV genotypes using the binary classification. In addition, sequences from the P2 subdomain (capsid) gene of GII-4
variants were characterized by evolutionary analyses, using the MCMC method implemented in the BEAST package.
A 3D structure was built using protein modeling.

Results: Phylogenetic analysis demonstrated a predominance of genotype GII.4 (52.4% - 99/189), variants New
Orleans_2009 and Sydney_2012 followed by GII.P7/GII.6 with 6.3% (12/189). Amino acid analyses of the GII.4
strains showed several important amino acid changes. A higher evolutionary rate was found, 7.7 × 10− 3 in the
Sydney variant and 6.3 × 10− 3 in the New Orleans. Based in evolutionary analysis the time to the most recent
common ancestor (TMRCA) has been calculated as estimates of the population divergence time. Thus, TMRCA for
New Orleans and Sydney variant were 2008.7 and 2010.7, respectively. Also, we observed a lineage of transition
between New Orleans and Sydney.

Conclusion: This study describes the different strains of norovirus isolated from Amazonas state in Brazil during a
five-year period. Considering that NoV are capable of changing their antigenic epitopes rapidly, a continuous
surveillance is important to monitor the occurrence and changes of the NoV in the community through epidemiological
studies. These results contribute to the understanding of NoV molecular epidemiology and its evolutionary dynamics in
Amazonas state, Brazil.
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Background
Norovirus (NoV) is considered a major cause of non-
bacterial gastroenteritis worldwide [1]. These viruses are
highly infectious, requiring a low viral load to cause in-
fection (≥18 particles), and they are environmentally
stable for long periods [2]. These characteristics increase
their infectivity and facilitate their transmission and
spread, which can cause outbreaks, hospitalization, and
global epidemics [3].
The main transmission route of the noroviruses is

fecal-oral, contact with infected persons, ingestion of
contaminated water or food, or aerosols produced by
vomiting [4]. A meta-analysis concluded that norovirus
is responsible for 18% of the cases of acute gastroenteritis
(AGE) worldwide, with approximately 24% of these cases
in the community, 20% in outpatients and 17% in hospi-
talized patients [5].
The norovirus genome comprises single-stranded,

positive sense RNA, organized into three open reading
frames (ORFs). ORF 1 encodes a large polyprotein of
1738 amino acid (AA), which is cleaved by viral protease
(3C) into 6 non-structural proteins, p28, NTPase, p22,
VPg, 3C-like protease (3CLpro), and RNA-dependent
RNA polymerase (RdRp). ORF2 encodes a major struc-
tural protein, VP1, and ORF3, a minor structural protein,
VP2 [6].
The virus contains an icosahedral capsid composed of

90 dimers of VP1 protein, which consists of two do-
mains, the shell (S) domain and protruding (P) domain
[7]. The S domain (AA 50-225) is more related to the
structure of the capsid. The P domain (AA 226-530) is
subdivided into two subdomains, P1 and P2. The P2
subdomain contains important determinants of antige-
nicity, being responsible for binding to histoblood group
antigens (HBGA), which function as attachment factors
or co-receptors on host cells [7, 8]. Changes in the P2 nu-
cleotide sequence of GII.4 strains are associated with the
emergence of new pandemic/epidemic strains (variants)
with alterations in their antigenicity profiles [8].
The genus Norovirus is classified into at least six gen-

ogroups (GI to GVI) [9], which are subdivided into more
than 40 genotypes. Viruses from genogroups GI, GII,
and GIV are known to infect humans [6]. The GII.4 is
the predominant genotype responsible for the majority
of norovirus outbreaks [10].
Emergence of new GII.4 variants every two to three

years is associated with most norovirus pandemics. Since
1995, six GII.4 pandemic variants have emerged, which
were denominated as US 95/96, Farmington Hills_2002,
Hunter_2004, Den Haag_2006b, New Orleans_2009, and
Sydney_2012 [11]. In addition, other GII.4 variants
have been described, including Asia 2003 and Yerseke
2006a, both of which were related to additional limited
outbreaks [12].

In the present study, a molecular approach was de-
signed for a phylogenetic analysis of norovirus lineages
in Amazonas state, Brazil, over five years. Sequence ana-
lysis of the polymerase, capsid, and P2 subdomain regions
was successfully used for the identification of genotypes,
as well as for characterization of the recombinant strains.

Methods
Selection of clinical specimens and norovirus detection
Totally, 1053 fecal specimens were collected from children
(< 10 years old) with acute gastroenteritis symptoms by the
National Program for Surveillance of Rotavirus Gastro-
enteritis in Manaus city, Amazonas State, between January
2010 to December 2014. The program investigated spor-
adic cases of diarrhea from inpatients that used public
health facilities. These samples were tested for the presence
of norovirus by an enzyme immunoassay (EIA) using the
RIDASCREEN® Norovirus 3rd Generation EIA kit (R-Bio-
pharm, Darmstadt, Germany) resulting in 349 positive
samples distributed over the five years. Seventy one percent
of these positive samples with available material (n = 250;
2010 = 36; 2011 = 33; 2012 = 70; 2013 = 52; 2014 = 59) were
selected for genotyping and amplification by reverse tran-
scription polymerase chain reaction (RT-PCR).

Ethical considerations
This study was approved by the Ethics Committee on
Human Research of Evandro Chagas Institute, Brazilian
Ministry of Health (CEPH/IEC protocol No. 0017/2014
update No. 1.318.103 of 2015).

Nucleic acid extraction and reverse transcription
Nucleic acids were extracted using the silica method
[13]. The extracted genetic material was submitted to re-
verse transcription (RT) with a random primer [pd(N)6™
(Amersham Biosciences, UK)] using the enzyme
Superscript™ II Reverse transcriptase (Invitrogen, USA).

Norovirus RNA amplification
Norovirus-positive samples were amplified by RT-PCR,
targeting the regions B of polymerase gene (213 bp) and
D of the capsid (253 bp) in the viral genome, using
primers Mon 431/432/433/434 [14] and Cap C/D1/D3
[15], respectively. The GII.4 strains were also amplified
with the primers EVP2F/EVP2R (653 bp) [16], targeting
the hypervariable capsid region, P2 subdomain. To in-
vestigate the samples with different genotypes on poly-
merase and capsid genes, PCR was performed, targeting
the junction region of ORF1/2, using the primers Mon
431 and G2SKR [14, 17].

DNA purification and sequencing
The amplicon was purified with the QIAquick® PCR
purification kit (QIAGEN®) or MEGAquick-spin™ Total

Hernandez et al. BMC Infectious Diseases  (2018) 18:147 Page 2 of 10



Fragment DNA Purification Kit (iNtRON Biotechnology,
Kyungki-Do, Korea) as described in the manufacturers’
protocol. Sequencing was performed with the Big Dye
Terminator Cycle Sequencing Ready Reaction Kit (v.3.1)
(Applied Biosystems, Foster City, CA, USA) using the
same pair of primers from the PCR in an ABI Prism
3130 xl DNA Sequencer (Applied Biosystems, Foster
City, USA) platform. All the reactions were accom-
plished with positive controls (positive standard sam-
ple - norovirus GII.4) and negative controls (DNase/
RNase- Free Water). The sequences generated were
deposited in GenBank under accession numbers
MF401649-MF401943.

Molecular and phylogenetic analyses
Preliminary analyses of the genotypes were performed in
Norovirus Genotyping Tool v.1.0 (http://www.rivm.nl/
norovirus/typingtool) [18]. Phylogenetic analyses were
performed using Maximum-Likelihood with IQTree pro-
gram v.1.3.0 [19] by Ultrafast Bootstrapping (UFboot)
[20]. The statistical significance of phylogenies con-
structed was estimated with 1000 replicates. Edits on the
phylogenetic trees were done with the program FigTree
v.1.4.2 [21].
Analysis of the epitopes of the P2 region was done in

the MEGA 6 program [22]. The prototype sequences were
obtained from GenBank database of the National Center
for Biotechnology Information (NCBI). The recombin-
ation analyses were performed using the Simplot v. 3.5.1
program [23].

Evolutionary analysis of norovirus GII.4 variants
In order to conduct time-measured phylogenetic ana-
lysis, P2 subdomain sequences were tested by the
Bayesian Markov Chain Monte Carlo (MCMC) method
implemented in Bayesian Evolutionary Analysis Sampling
Trees (BEAST) v1.8.2 [24]. The most recent common an-
cestors (TMRCA) were estimated by a relaxed clock, un-
correlated log-normal molecular clock model [25].
TMRCA was determined using the Coalescent Piecewise
Bayesian Skyride Plot method [26] with 100 million
replicates (more details in Additional file 1: Table S1).
Nucleotide variations within and between clusters were
examined by applying the maximum likelihood based on
the GTR + I + G nucleotide substitution model, chosen by
jModelTest v. 2.1 [27].

Protein modeling
The 3D structure was built using protein homology
modeling. The initial search and selection were done
using templates from Protein Database Bank (PDB)
(https://www.rcsb.org/), using the norovirus capsid. The
selected templates were 1IHM and 4OP7. The MODEL-
LER© v. 9.15 software was used to build the 3D models.
After protein modeling, the results were validated using
the PROCHECK [28] and VERIFY3D programs [29] in
order to check the biochemical parameter quality. A
visual inspection was performed using the PyMOL
Molecular Graphics System v. 1.8 (Schrödinger, LLC).

Results
During the period of January 2010 to December 2014,
33,1% (349/1053) samples were positive for norovirus by
EIA test. Seventy one percent (250/349) with sufficient

Table 1 Positivity rates obtained for norovirus in fecal samples from children with acute gastroenteritis, from Manaus, Amazonas,
Brazil, between 2010 and 2014, using an enzyme immunoassay (EIA) and polymerase chain reaction (PCR)

Sample/Year 2010 Pos/Total (%) 2011 Pos/Total (%) 2012 Pos/Total (%) 2013 Pos/Total (%) 2014 Pos/Total (%) TOTAL Pos/Total (%)

Tested by EIA 58/162 (35,8) 69/264 (26,1) 97/285 (34) 63/155 (40,6) 62/187 (33,1) 349/1053 (33,1)

Tested by PCRa 18/36 (50) 26/33 (78,8) 58/70 (82,9) 42/52 (80,8) 45/59 (76,3) 189/250 (75,6)

Pos Positive, EIA enzyme immunoassay, PCR polymerase chain reaction
aPositive by at least one region of the genome

Table 2 Genotypes of norovirus obtained in 189 positive fecal
samples from children with gastroenteritis, from Manaus,
Amazonas, Brazil, between 2010 and 2014

Pol+/Cap+ Nº of cases (%)

GII.Pe/GII.4 Sydney_2012 64 (33.9)

GII.P4/GII.4 New Orleans_2009 35 (18.5)

GII.P7/GII.6 12 (6.3)

GII.P8/GII.8 1 (0.5)

GII.P15/GII.15 1 (0.5)

GII.P22/GII.5 1 (0.5)

GII.P12/GII.12 2 (1.1)

GII.Pg/GII.1 2 (1.1)

GII.Pg/GII.12 1 (0.5)

GI.P5/GI.5 1 (0.5)

Pol+/Cap-

GII.Pe/NA 26 (13,8)

GII.P4/NA 13 (6,9)

GII.P7/NA 17 (9,0)

GII.P4_US95_96/NA 1 (0,5)

GII.P22/NA 1 (0,5)

Pol-/Cap+

NA/GII.4 9 (4,8)

NA/GII.6 2 (1,1)

NA not assigned
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material were tested by RT-PCR and 189 (75.6%) amplified
by at least one region, and then directly sequenced
(Table 1).
Based on the partial sequence of the capsid and poly-

merase region, the norovirus sequences were classified
using the binary nomenclature as described by Krone-
man et al. [30]. The GII.4 (GII.Pe/GII.4 and GII.P4/GII.
4) was the genotype most frequently detected, with a
prevalence of 52.4% (99/189) (Table 2), followed by GII.
P7/GII.6, with 6.3% (12/189). Some strains were only se-
quenced by their capsid or polymerase region (Table 2).
Less frequent genotypes such as GII.P8/GII.8, GII.P15/
GII.15, and GI.P5/GI.5 were also found (Figs. 1 and 2).
The unusual recombinant strains found in this study
have already been described in a preliminary study with
further details [31].

Norovirus GII.4 variants
Between the years 2010 and 2011, we detected the GII.
P4/GII.4 New Orleans_2009 strain at higher frequency,
mainly in the year 2011 (data not shown). The epidemio-
logical data obtained in this period was already described
by Costa et al. [32]. Thus, the temporal distribution

showed in this present study only involved the period
from 2012 to 2014. The temporal genotypic distribution
demonstrated the emergence and spread of a Sydney_
2012 variant from June 2012 until 2014, replacing the
New Orleans_2009 strain (Fig. 3). During this period,
GII.Pe also circulated; this is a signatory strain of the
GII.4 Sydney-2012 in samples genotyped only for the
polymerase gene. The recombinant strain GII.P7/GII.6
was the second most frequent, observed in samples from
all the years studied, except 2010 (Fig. 3).
Amino acid analysis of the P2 subdomain of GII.4 nor-

ovirus showed non-synonymous nucleotide mutations
for the two circulating GII.4 strains (Fig. 4). In the New
Orleans_2009 strains, two of these mutations occurred
in putative A (AA 294) and E epitopes (AA 413) (Fig. 4).
Both changes modified the chemical nature of the AA
from apolar to polar uncharged. Other changes outside
of this epitope were identified, including the AA 341 in
75% of the strains New Orleans_2009 obtained in 2012
(data not shown), but its importance is not well
established.
The GII.4 Sydney 2012 variant had an accumulation of

several changes in putative epitopes on the P2 subdomain.

Fig. 1 Maximum likelihood clade tree, based on the RNA polymerase gene (200 bp) of 143 partial nucleotide sequences of norovirus from children
with acute gastroenteritis in Manaus city, Amazon, Brazil. The color of the branches is based on the NoV-genotype. All samples that were studied begin
with the initials AM, and 35 identical sequences of the same are not shown
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Thus, when Sydney_2012 strains were analyzed we identi-
fied five changes in AA antigenic epitopes: 297 and 372 (A
epitope), 340 (C epitope), 393 (D epitope) and 412 (E epi-
tope) (Fig. 4). The majority (4/5) of these changes oc-
curred in strains collected in 2014, except for the
alteration of AA 393 (D epitope) that was present in 97%
of the total samples. Three of these changes modified the
chemical nature of the AA: Polar uncharged for Apolar
(340) from negative to Polar uncharged (372), Apolar for
Polar non-loaded (393).
Structural analysis of the protein demonstrated several

changes in the distribution of the surface electrostatic
charges (Fig. 5). We note that the Sydney_2012 lineage

is divided into two clusters (named Sydney A and B).
The Sydney_B lineage seems to be a transition between
the New_Orleans_2009 and Sydney_2012 variants. More
phylogenetically close samples to the New Orleans
lineage showed high similarity in the protein surface
with the New Orleans strain; likewise, samples close to
the Sydney_A variant were similar to the Sydney_2012
strain, indicating that the division of the clades within
the Sydney_2012 samples is associated with amino acids
and not only with nucleotide changes.
To investigate the temporal evolutionary dynamics of

the GII.4 norovirus in the Amazon, we applied Bayesian
coalescent analysis in 58 P2 (VP1) sequences from 2010

Fig. 2 Maximum likelihood phylogenetic analysis based on the capsid gene (D region of VP1) (188 bp) of 64 partial nucleotide sequences of
norovirus from children with acute gastroenteritis in Manaus city, Amazon, Brazil. The color of the branches is based on the NoV-genotype. All
samples that were studied begin with the initials AM, and 67 identical sequences of the same are not shown
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to 2014, implemented in the BEAST package. Different
population dynamics models were tested (constant, ex-
ponential, expansion, skyline) and the better values of
ESS (effective sample size) revealed that the skyride
population growth model was the best fit to the data.
The uncorrelated log-normal model estimations calcu-
lated higher rate of evolution, 7.7 × 10− 3 for the Sydney
variant and 6.3 × 10− 3 for New Orleans. The same
Bayesian inference estimated the time to TMRCA. The
year of TMRCA from the population analyzed was 2008.
7 to New Orleans strains and 2010.7 to Sydney. The
boxplot showed that the variation in the evolutionary
rate was higher in the Sydney (7.7 × 10− 3 average)
strains, but the interval was larger than for New Orleans
(1.1 × 10− 3 to 1.8 × 10− 2) (Fig. 5).

Discussion
Considering the high genetic diversity and elevated rates
of evolution of norovirus, continuous surveillance of
cases for monitoring genotypes and the emergence of
new strains is required. The evolution of the GII.4 pan-
demic strains is a consequence of point mutations in the
P domain capsid, and genomic recombination events be-
tween ORF1 and ORF2 [33].
In epidemiological investigations carried out in several

countries, the GII.4 strain was observed as the cause of
most cases, corroborating with the findings obtained in
this study [12, 34]. The pattern observed in the variants
of GII.4 in Manaus was similar to that found across the
world, where new variants appear every 2 or 3 years, re-
placing the previous one [35]. Between 2009 and 2012,
the New Orleans pandemic strain was responsible for
75% of the outbreaks of diarrhea in New Zealand and

Australia [36]. In some studies, it was possible to ob-
serve its co-circulation with other variants of GII.4, such
as Den Haag_2006b [10, 37]. This co-circulation was
found among the analyzed samples of Manaus since
2012, where Sydney_2012 was predominant and New
Orleans_2009 appeared in few cases.
It is known that recombination events are frequently

evolutionary mechanisms in the genomes of norovirus
and that they can strongly influence phylogenetic group-
ing [38]. The GII.Pg/GII.12 strain found in Manaus in
February 2010 shares 99.8% nucleotide identity with
other recombinants that circulated in Rio Grande do Sul
(South of Brazil) in 2009 (KR074161-62, KR074190-91),
indicating a possible circulation in the country. More-
over, data from the literature report that this recombin-
ant has emerged on almost all continents between the
years 2009 and 2011 [39–42].
Interestingly in this work, the recombinant strain GII.

P7/GII.6 was detected in all years between 2011 and
2014. Recombinant strains are usually found in few cases
or causing outbreaks [43]. This fact suggests that this
lineage is well established in the population and that
more comprehensive studies involving immunogen-
icity would be necessary to assess its impact. The ge-
notypes GII.6 and GII.7 are frequently described in
several studies conducted in Brazil, often behind only
GII.4 strains [44, 45]. In most epidemiological studies,
genotyping was performed by sequencing only one region
of the genome, the viral capsid, which makes it difficult to
understand the actual epidemiology of the recombinant
strains. The data obtained in the present study reinforce
the need for binary classification of norovirus genotypes,
as already suggested by Kroneman et al. [30].

Fig. 3 Monthly distribution of NoV-genotypes associated with acute gastroenteritis in Manaus city, Amazon, Brazil, between 2012 and 2014
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Fig. 4 Alignment of antigenic residues of capsid protein (P2 region) in strains circulating in Brazil, 2011-2014. Antigenic residues are divided in five
epitopes (A-E). The prototype strains representative of the epidemic strain variants that emerged between 2009 and 2012 are highlighted in blue.
Amino acid residues that differ from those of the prototype are highlighted in yellow and green. a Structure modeling of the VP1 protein (PDB
4OP7) showing the amino acid replacement in NoV GII.4 New Orleans_2009 lineages from Manaus, Brazil. Antigenic epitopes are colored in yellow
(A), blue (B), green (C), red (D), and purple (E). b Structure modeling of the VP1 protein (PDB 4OP7) showing the amino acid replacement in NoV
GII.4 Sydney_2012 lineages from Manaus, Brazil
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By the analysis performed on the subdomain P2,
changes were found in both the GII.4 New Orleans_
2009 and the Sydney_2012 strains. It is known that this
subdomain interacts with neutralizing or blocking anti-
bodies, and with HBGA ligands. Several studies using
human and mouse monoclonal antibodies against noro-
virus VLPs in neutralization assays have identified a cor-
relation between the emergence of novel GII.4 epidemic
strains and amino acid changes in specific epitopes (A-E).
Such changes alter the immunogenicity pattern, resulting
in an escape from the action of the immune system [46].
The alterations found in the Manaus strains indicate

that residues 294/413 and 297/372 were identified as
antigenic determinants of New Orleans and Sydney
2012, respectively. Thereby, the New Orleans and Sydney
lineages have undergone significant mutations in blocking
epitopes, and already exhibit differences with respect to
the prototypes. In the Sydney strains, it is possible to ob-
serve that the changes in epitopes occurred only from
May 2014, which may indicate that over the years
2012 and 2013, these strains were acquiring point
mutations, culminating in amino acid changes in the
strains from 2014.

It is known that RNA viruses have a high evolution
rate, higher than the DNA genomes, mainly because
they do not have repair mechanisms for their replication
[47]. The relaxed-clock estimations calculated similar
rates of evolution in Manaus (Sydney: 7.7 × 10− 3; New
Orleans: 6.3 × 10− 3) to other studies, which reported 6.
99 × 10− 3 and 7.3 × 10− 3 subst./site/year for full VP1 and
subdomain P2 gene sequences, respectively [48, 49]. In a
study conducted in Belem, a state adjacent to Manaus,
over 30 years, Siqueira et al. [50] found an evolutionary
rate of 9.05 × 10− 3 subs./site/year for other GII.4 variants.
The time-scale evolutional was constructed based on the
subdomain P2, which is the most hypervariable region in
VP1, which are under selection pressure of the immuno-
logical system. Its can explain the reasons to the high evo-
lutionary rates founded in this study. Further studies
should be carried out for studying the time-scale evolu-
tionary phylogeny and phylodynamics of the VP1 and
RdRp genes.
The amino acid changes acquired over the years in

samples from the present study are already reflected in
the 3D structure of the protein, which may have allowed
the virus to evade host immune surveillance. Recently,

Fig. 5 Molecular clock phylogeny based on the 58 nucleotide sequence (627 bp) of P2 region (VP1), estimated by uncorrelated log-normal model
using the Coalescent Piecewise Bayesian Skyride Plot method with 100 million replicates, from 2010 to 2014 in Amazon, Brazil. The taxa were
represented by colored circles according to the GII.4 variant. The most recent common ancestor (TMRCA) of each variant is indicated next to the
clade. The black circle represents supported clades (> 95%). Three-dimensional VP1 structure of the GII.4 predicted by homologous modeling
based on the crystal structure (PDB number 4OP7) (*) Surface-exposed electrostatic charges showing differences within the Sydney lineage. (**)
Surface-exposed electrostatic charges showing a sample clustering with Sydney variant but demonstrating more similarities in the surface protein
with New Orleans variant. Boxplot of evolutionary rates of Sydney and New Orleans variants
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the emergence of the GII.17_Kawasaki strain has been ob-
served in several countries, but it is important to note that
GII.4 strains still play a key role in norovirus cases.
One of the limitations that may be considered in this

study is the use of EIA for norovirus screening, taking into
account the limited detection potential of this technique
over the current gold standard quantitative PCR (qPCR),
as well as lower sensitivity against emerging genotypes.
However, a research conducted by Siqueira et al. [51] dem-
onstrated a good performance using the same EIA kit, with
a sensitivity of 92% and a specificity of 83.3%. This meth-
odology has already been used in other studies, carried out
in the Amazon region, establishing higher positive rates
[44, 52, 53]. Uncommon recombinants strains (GII.P21/
GII.2, GII.13/GII.17, GII.P21/GII.3) and emergent variants
(GII.4_Sydney) were also detected by EIA [50, 54].

Conclusion
The research conducted in the present study was based
on the epidemiological and molecular surveillance of
norovirus strains, in samples collected from an import-
ant state of the Brazilian Amazon region, over a period
of five years. Our data indicate that noroviruses are an
important cause of gastroenteritis in the Amazon region.
Although highly diverse, NoV circulating over the past
5 years was predominantly characterized as GII.4, includ-
ing GII.4 variants New Orleans_2009 and Sydney_2012.
Monitoring of GA cases caused by norovirus is essential to
evaluate the impact of this virus in the community
(sporadic cases and outbreaks), as well as for the de-
velopment and evaluation of control measures, such
as vaccines.

Additional file

Additional file 1: Table S1. Nucleotide substitution rate and divergent
times using 10 million generations. (DOC 43 kb)
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