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Abstract

Background: Bidirectional signalling between the brain and the gastrointestinal tract is regulated at neural, hormonal,
and immunological levels. Recent studies have shown that helminth infections can alter the normal gut microbiota.
Studies have also shown that the gut microbiota is instrumental in the normal development, maturation and function
of the brain. The pathophysiological pathways by which helminth infections contribute to altered cognitive function
remain poorly understood.

Discussion: We put forward the hypothesis that gastrointestinal infections with parasitic worms, such as helminths,
induce an imbalance of the gut-brain axis, which, in turn, can detrimentally manifest in brain development. Factors
supporting this hypothesis are: 1) research focusing on intelligence and school performance in school-aged children
has shown helminth infections to be associated with cognitive impairment, 2) disturbances in gut microbiota have
been shown to be associated with important cognitive developmental effects, and 3) helminth infections have been
shown to alter the gut microbiota structure. Evidence on the complex interactions between extrinsic (parasite) and
intrinsic (host-derived) factors has been synthesised and discussed.

Summary: While evidence in favour of the helminth-gut microbiota-central nervous system hypothesis is circumstantial, it
would be unwise to rule it out as a possible mechanism by which gastrointestinal helminth infections induce childhood
cognitive morbidity. Further empirical studies are necessary to test an indirect effect of helminth infections on the
modulation of mood and behaviour through its effects on the gut microbiota.
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Background
Soil-transmitted helminth (STH) infections such as Ascaris
lumbricoides, Trichuris trichiura and hookworms affect
more than a third of the world’s population, with the
heaviest worm burdens occurring in non-industrialized
countries [1]. STH,infections are associated with signifi-
cant morbidity, particularly in children; infection is recog-
nised to cause nutritional deficits, with clinical and
physical consequences including anaemia and reduced
growth [2–5]. In addition to their nutritional effects, soil-

transmitted helminth infections are also reported to impair
cognitive function [6–8], limit educational advancement,
and as a result, hinder economic development [9]. The
effects of helminth infections, particularly by hookworms,
on cognitive development of children were first reported
by Waite and Neilson in 1919 [10]. Since then, there have
been several studies that looked at the effects of STH
infections on different domains of cognitive function.
Nevertheless, at present, available evidence is conflicting.
A recent update of the Cochrane review concluded that
there is little or no evidence that cognitive function is af-
fected by STH infections [11, 12], but some have argued
that trials included in the Cochrane review were of poor
quality to measure effects [13] and that STH effects on
cognition could even be greater than initially suggested
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[3]. Several observational studies (some not included in
the meta-analysis by the Cochrane review) reviewed in
[13] reported that STH infections impair the efficiency of
cognitive processes including memory, learning, verbal flu-
ency and non-verbal intelligence [6–8, 14–17]. In addition,
investigations into STH infections during pregnancy have
also demonstrated an association with poor cognitive and
motor development in infants [18, 19].
Multiple mechanisms have been demonstrated to

explain STH-induced nutritional impairment in infected
individuals: a loss of iron and protein through feeding
on host tissues [20], an increasing malabsorption of nu-
trients [5], a competition for vitamin A in the intestine
[21], or diarrhoea and dysentery [22]. Conversely, the
pathophysiological pathways by which STH infections
contribute to altered intellectual performance reported
by some studies are still subject to significant debate.
Some of the cognitive effects of STH infection can be
partly explained by the direct effect of observed nutri-
tional deficits on the brain and the indirect effect of
pathophysiological events occurring in the gut environ-
ment where STH reside; the relative importance of these
competing mechanisms remain unclear.

Main text
Interaction between gut microbial communities and the
brain
There is a bidirectional functional communication between
gut microbiota, the gastrointestinal (GI) tract and the cen-
tral nervous system (CNS); these relationships have been
recognised as the microbiota-gut-brain axis, which has
been subject to substantial scientific enquiry in recent
years [23–26]. The microbiota-gut-brain axis operates
through a variety of physiological mechanisms, including
neural, hormonal and immunological pathways [24].
Recent reports pointed to a crucial role of the

microbiota-gut-brain axis in normal development, mat-
uration and function of the brain [27–29], supported by
emerging evidence that the disruption of the gut micro-
bial community (i.e. dysbiosis) can affect emotional
behaviour and related brain systems, which can lead to a
range of abnormal or altered phenotypes, i.e. human
brain diseases including autism spectrum disorder [30],
anxiety, depression, and chronic pain [31, 32]. Clinical
findings of these studies are supported by evidence pri-
marily collected from experimental studies in rodents
using various strategies: experiments using germ-free an-
imals, experimental modification of the gut microbiota
via antibiotics (downregulation) or prebiotics/probiotics
(upregulation), or experimental infection with various
pathogenic bacteria. Experimental studies on mice have
shown how the microbial content of the GI tract influ-
ences feeding behaviours [33], stress-related behaviours

[23, 34–36], pain perception pathways [37], and
memory/learning development [36, 38].

Gut microbiota and brain development
Mammalian brain development is initiated in utero, with
rapid changes in neuronal organization [29]. But a con-
siderable amount of morphological development, cell
differentiation and acquisition of function takes place
during postnatal development, with a striking increase
in brain growth during the first 2 years of life [39]. In-
ternal and external environmental signals such as nutri-
tion, infection, the environment, or stress (maternal or
environmental) can affect brain development until adult-
hood. As an example of diet impact, prolonged and
exclusive breastfeeding has been shown to improve
children’s cognitive development [40, 41].
Interestingly, the maturation of the gut microbiota

occurs during the first 2 to 3 years of postnatal life,
coinciding with a critical window of early brain devel-
opment [42]. Initial colonization of the GI tract is
dictated by the mother’s microbes (during the deliv-
ery) and the hospital environment, and further influ-
enced by a number of factors including antibiotic use,
diet, mode of delivery, environmental factors, or the
maternal microbiota [43–45]. The gut microbiota
plays a fundamental role in key systems regulating
CNS development, especially synaptogenesis and mye-
lination [39, 46]; this entails that a sustained imbal-
ance within the microbial ecosystem of the infant gut
could impair the cognitive development in early life. In-
sufficient or disturbed colonization of an infant
resulting from Caesarean section and/or inadequate
nursing could thus have unexpected outcomes.

Interactions between helminths, gut microbiota and the
host
One environmental factor impacting the gut microbiota
is parasitic infection. The qualitative and quantitative
alterations on the composition of the gut microbiota of
the host upon helminth infection, and the underlying
mechanisms leading to these changes have mainly been
studied in animal models, specifically Heligmosomoides
polygyrus bakeri infection in mice and Trichuris suis in-
fection in pigs (reviewed in [47]). Such evidence in
humans [48] or wild animals [49] under natural settings
is scarce but also rarely investigated. A recent study on a
population of wild mice naturally infected showed a
modification in the diversity and composition of the gut
microbiota, with evidence that the abundance of gut mi-
crobial taxa varies according to the helminth species col-
onizing the host [49].
A potential mechanism by which helminth infection

could alter the gut microbiota composition is its effect
upon the host immune system, which could disrupt the
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homeostatic relationship established between the gut
microbiota and the host. Helminth effects on the host
immune system can come about by direct competition
for niche space in the GI tract, or primarily through host
immunomodulation. The direct helminth-induced host
immune responses include down-regulation of inflam-
mation, mainly via a protective Th2 response [50, 51].
These changes have resistance and tolerance roles,
establishing an environment that promotes parasite
survival and a prolonged reproductive phase [50–53]. Hel-
minth interaction with the host immune cells/molecules
can also occur indirectly through the excretory/secretory
products released by live worms [54]. These proteins
with immunomodulation properties are involved in
creating an anti-inflammatory (e.g. by induction of
Th2 response) and immuno-tolerant environment
(e.g. via host dendritic cells modulation) [55–57] that
promote both helminth and host survival [51]. The
host-helminth-microbiota interaction is thus a com-
plex and dynamic relationship, and all three compo-
nents must be considered to better understand helminth
pathogenesis.

Testing the helminth-gut microbiota-CNS hypothesis
Available data suggests that helminths, the gut micro-
biota and the host should be viewed as a dynamic and
integrated system [52]. In support of that view is current
evidence pointing out that (1) helminth infection in in-
fants is associated with significant cognitive impairment;
(2) studies focusing on the gut-microbiota-brain axis
demonstrate that the gut microbiota has a key role in
early brain development and dysbiosis in the gut micro-
biota adversely affects cognitive abilities; and (3) STH in-
fections result in gut microbiota dysbiosis. This suggests
that any disturbance in homeostasis of the healthy gut
microbiota, e.g. as a result of STH infection, is likely to
impact on the host’s health (Fig. 1). We thus hypothesize
that the effects on cognitive function associated with hel-
minth infection can be partly explained by a secondary/
indirect effect of the gut microbiota dysbiosis induced
by infection.
While there is evidence on the interactions between

different players in this complex system, the quantitative
rates by which the players interact with each other can-
not be informed from current literature. The helminth-

Fig. 1 The microbiota-gut-brain axis and its interactions with soil-transmitted helminths (STH): (1) shows the bidirectional communication between
the gut and the brain, which occurs through multiple pathways that include hormonal, neural and immune mediators; (2) shows the impact
of gut microbiota dysbiosis on cognition; (3) shows the impact of helminth infection on the gut microbiota. The dotted arrow shows the
hypothesized pathway leading from STH infection to cognitive impairments, potentially through its impact on the gut microbiota (i.e. dysbiosis).
Adapted from De Palma et al. 2014 [65]
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gut microbiota-CNS hypothesis needs support from
further experimental and epidemiological studies. Some
reliable measurement tools exist to assess anxiety behav-
iours, working memory or pain perception, and they
have been used in some studies investigating the impact
of helminth-microbiota induced changes on those
parameters. The specific micro-organisms and compo-
nents involved in this process, the clinical relevance and
the mechanisms underlying possible alterations of the
microbiota composition in helminth-infected children
require further population-based studies. These investi-
gations would bring a novel and refreshing approach to
scientific enquiry into the role of STH on cognitive func-
tion of children, with important implications for clinical
practice by offering a range of potential therapeutic
opportunities to target CNS developmental and behav-
ioural disorders.
There is strong evidence linking parasite infections,

particularly hookworms, to anemia [58], and many
studies which link anemia to disturbances in social,
emotional, and cognitive development (e.g. [59, 60]).
Thus investigations could be extended to examine the
role of parasite infection on cognitive impairment as an
indirect result of anemia. Furthermore, recent studies
showed that, unlike gut microbiota from healthy children,
microbiota from undernourished children is immature
[61–64] and can transmit growth impairment, as shown
by faecal transplant experiments [61]. So it would be
worth testing the potential impact of helminth infection
on children growth via infection-induced microbiota
dysbiosis through a similar loop analysis.

Summary
We put forward the hypothesis that changes in the gut
microbiota induced by helminth infections play an im-
portant role in cognitive morbidity of children (the
helminth-gut microbiome-CNS axis). Factors supporting
this hypothesis are: 1) the role that gut microbiota has
on cognitive development; 2) the ability of helminth in-
fections to change gut microbiota composition and di-
versity; and 3) the observed effect of helminth infection
on cognitive development indicators. The hypothesis
should be further tested using experimental and epi-
demiological studies.

Conclusions
While available evidence in favour of the helminth-
microbiota-CNS hypothesis is circumstantial, the recent
debate around helminth associated morbidity indicate
the need for further research to elucidate the mecha-
nisms through which gastrointestinal helminth infec-
tions induce cognitive developmental morbidity. Future
studies looking at the effect on STH on childhood cogni-
tive developmental domains should be adequately

powered to measure effects that are likely to be subtle.
In addition future studies should considered validated
tools for measuring cognitive morbidity effects; these
need to be sensitive enough to detect quantitative
changes in the microbiota and longitudinal study designs
will be paramount to quantify the effects on each elem-
ent of the system. Combining metagenomic output with
comprehensive psychometric tests constitutes an im-
portant direction for future work.
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